Mathematical model of electromechanical system with variable dissipativity

Alexsandr Baykov1 , Boris Gordeev2

1Nizhny Novgorod State Technical University n. a. R. E. Alexeev, Nizhny Novgorod, Russia

2Institute of Machine Building of Russian Academy of Sciences, Nizhny Novgorod, Russia

1Corresponding author

Vibroengineering PROCEDIA, Vol. 8, 2016, p. 392-396.
Received 14 August 2016; accepted 16 August 2016; published 7 October 2016

Copyright © 2016 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License
Abstract.

The article considers the mathematical model of a system of two electric motors. The motors are mounted on hydro mounts with magnetorheological fluid. The viscosity of the magnetorheological fluid changes when applying a magnetic field. The validity of the model is confirmed as the analysis of the balance of power in the steady state with a static load, and analysis of transient process of synchronization shaft at different coefficients of dissipative. The model allows evaluating the electrical energy consumption of electric motor in transient process.

Keywords: induction motors, energy dissipation, electromechanical systems, mathematical model, resilience, vibrations.

Acknowledgements

The research was performed with the support of the Russian Science Foundation Grant (Project No. 15-19-10026).

References

  1. Gordeev B. А., Gordeev А. B., Kovrigin D. А., Leontyeva А. V. Hydraulic vibration mounts application in synchronous mechanical systems. Privolzhsky Nauchny Zhurnal, Vol. 3, 2009, p. 49-53. [CrossRef]
  2. Wereley N. M., Singh H. J., Choi Y. T. Magnetorheology: Advances and Applications. Royal Society of Chemistry, Cambridge, 2014. [CrossRef]
  3. Gordeev B. А., Leontyeva А. V., Osmekhin А. N., Okhulkov S. N., Bugaysky V. V. Experimental investgayion of side effects at synchronization of two engines on elastic foundation. Vestnik Mashinostroeniya, Vol. 6, 2013, p. 39-42. [CrossRef]
  4. Kravchik А. E. Asynchronous Motors of 4А Series: Reference Book. Bursa, Moscow, 2002. [CrossRef]
  5. Shreyner R. T. Mathematical modeling of alternating current drives with semiconductor frequency converters. URO RAN, Ekaterinburg, 2000. [CrossRef]
  6. Gordeev B. А., Kovrigin D. А., Leontyeva А. V. The task to synchronize a pair of engines on elastic foundation rotation. Vestnik Mashinostroeniya, Vol. 10, 2011, p. 3-7. [CrossRef]
  7. Sokolov V. V. Wave propagation in magnetic nanofluids (A Review). Acoustical Physics, Vol. 56, 2010, p. 972-988. [CrossRef]
  8. Ovchinnikov I. E., Sokolov V. V. Effect of an external magnetic field on the propagation velocities of magnetoacoustic waves in a magnetic fluid. Acoustical Physics, Vol. 55, 2009, p. 359-364. [CrossRef]
  9. Hornowski T. Ultrasonic properties of EMG-605 magnetic liquid. Proceedings SPIE Acousto-Optics and Applications V, Vol. 5828, 2005, p. 205-212. [CrossRef]
  10. Gordeev B. A., Kovrigin D. A., Leontyeva A. V. The task of synchronizing rotation of a pair of motors on an elastic foundation. Vestnik Mashinostroyeniya, Vol. 10, 2011, p. 3-7. [CrossRef]
  11. Degang W., Bo F., Hongliang Y., Bangchun W. Mathematical analysis of self-synchronous theory of vibrating system. Journal of Multidisciplinary Engineering Science and Technology, Vol. 2, 2015, p. 303-310. [CrossRef]
  12. Lai Xin, Xie Wanjun Theoretical and experimental study on electromechanical coupling properties of multihammer synchronous vibration system. Shock and Vibration, Vol. 20, 2013, p. 327-340. [CrossRef]