Fatigue damage virtual simulation research on heavy vehicle

Sun Li1 , Chen Nan2

1, 2School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 210096, China

1School of Traffic Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu 223003, China

1Corresponding author

Vibroengineering PROCEDIA, Vol. 8, 2016, p. 275-279.
Received 19 August 2016; accepted 21 August 2016; published 7 October 2016

Copyright © 2016 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License
Abstract.

Heavy vehicles are the most important transportation tools. In order to study deeply the fatigue damage problem of the heavy vehicles, we propose favoring the virtual simulation method. Firstly, the definition and development status of fatigue damage is introduced. Then we pay more attention to the fatigue damage simulation research of heavy vehicle, especially the finite element analysis and fatigue life prediction by related software. Some findings are introduced to be the references for researchers. Fatigue damage virtual simulation research on heavy vehicle is correct, convenient, simple and low cost by the verification of the real vehicle test.

Keywords: heavy vehicle, fatigue damage, virtual simulation.

Acknowledgements

This work is supported in part by the Project of National Natural Science Foundation of China (Grant No. 51505172), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1402017C), Six Talent Peaks Project in Jiangsu Province (Grant No. JXQC2015008), and the Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 13KJB580001).

References

  1. Sun L., Liu Y. C. Review of vehicle-road vertical coupling. 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 2012, p. 2827-2830. [CrossRef]
  2. Kang Y. P., Huo F. X., Wei D. Y., Wang C. M. Finite element analysis and experimental verifications of the transmission case strength. Journal of Machine Design, Vol. 28, 2011, p. 21-23. [CrossRef]
  3. Gu X. S. Finite element analysis of commercial vehicle balancing shaft shell. Automobile Technology, Vol. 4, 2000, p. 19-20. [CrossRef]
  4. Zhu X. G., Gu L. Structure strength analysis on idler wheel of tracked vehicle. Journal of Taiyuan University of Technology, Vol. 46, 2015, p. 274-277. [CrossRef]
  5. Zhu X. G., Gu L., Yang C. S., Zhao F. Structure strength analysis of a certain type of track based on FEM. Manufacturing Automation, Vol. 37, 2015, p. 44-46. [CrossRef]
  6. Ju B., Li J. W., Liu D. W. Study on the load spectrum of the front discharge concrete-mixer transportation truck frame. Journal of Qingdao University, Vol. 30, 2015, p. 47-51. [CrossRef]
  7. Yu H., Yang H. P., Liu Z. E., Yan F. W. Fatigue life analysis of truck axle load. Journal of Wuhan University of Technology, Vol. 38, 2014, p. 667-671. [CrossRef]
  8. Deng G. H., Li Y., Yang E. C., Ou J., Zhang Y. Body structure strength and fatigue analysis on the gear-box of heavy vehicle. Journal of Chongqing University of Technology (Natural Science), Vol. 30, 2016, p. 12-16. [CrossRef]
  9. Liu J., Xiao L. S., Wu H. H., Liu Z. Y., Pang H., Xiao W. S. Analysis of the fatigue life of oilfield fracturing truck frame in multiple operating conditions. China Petroleum Machinery, Vol. 42, 2014, p. 75-78. [CrossRef]
  10. Zhao W. Y., Gu X. S., Wang K., Wei L., Cao Z. Q. Simulation for fatigue life of commercial vehicle steering gear bracket. Journal of Chang’an University (Natural Science Edition), Vol. 31, 2011, p. 90-94. [CrossRef]
  11. Chen Z., Zhou L., Zhao B., Liang X. X. Study on fatigue life of frame for corn combine chassis machine. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), Vol. 31, 2015, p. 19-25. [CrossRef]
  12. Gao Y. D., Hu X. X. The multi-axial fatigue of concrete mixer sub-frame. Machinery Design and Manufacture, Vol. 6, 2015, p. 211-214. [CrossRef]
  13. Li C. L., Song S. S., Han Z. N. Fatigue reliability analysis of frame based on nCode design-life. Journal of Graphics, Vol. 35, 2014, p. 42-45. [CrossRef]
  14. Mi C. J., Gu Z. Q., Wu W. G., Tao J., Liang X. B., Peng G. P. Fatigue life analysis of rear axle housing of mining dump truck under random load. Journal of Mechanical Engineering, Vol. 48, 2012, p. 103-109. [CrossRef]
  15. Liu Y. C., Wang G. L., Sun L. Fatigue damage analysis and life prediction for vehicle control arm. Transactions of the Chinese Society of Agricultural Engineering, Vol. 29, 2013, p. 83-91. [CrossRef]
  16. Liu Y. C., Wang G. L., Sun L. Prediction method on subframe’s fatigue life based on measured load spectrum. Automobile Technology, Vol. 4, 2014, p. 58-62. [CrossRef]