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Abstract. This paper mainly studies a reverse engineering of material parameters through finite 
element optimization algorithm based on free modal test results, focusing on free modal test and 
establishment of finite element optimization model. The elastic modulus and density of the 
material can be solved by the finite element optimization algorithm to ensure the accuracy of the 
simulation results. When the accurate material parameters are obtained, the accuracy of abnormal 
sound simulation can be improved. It plays a guiding role in the development of vehicle BSR 
performance, so as to improve the ride comfort of the vehicle. 
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1. Introduction 

In NVH simulation analysis, the elastic modulus and density of materials are very important 
to the accuracy of simulation results [1]. For the same material, the material parameters provided 
by different suppliers are not the same, which leads to great differences between the simulation 
results and the test results, which has no guiding significance for the development and design. 

In order to obtain the elastic modulus and density of the material, first, actual modal frequency 
and shape can be obtained through the free modal test [2-5], and then the finite element 
optimization model is constructed, taking values of free modal test as the reference values, and 
the elastic modulus and density of the material can be solved. Finally, the elastic modulus and 
density obtained from the solution are used as the input for the modal simulation analysis, 
comparing with simulation results and the test results. 

2. Free mode test 

The sample used in this paper is the tailgate trim panel of an SUV, which is made of PP / PE 
and weighs 1.8 kg. The equipments for modal test are LMS Test. Lab, 15 unidirectional 
piezoelectric sensors, each weighing 4 g, a rubber hammer. Two points elastic suspension is used 
for the test sample, as shown in Fig. 1. 

 
Fig. 1. Free mode test 

The free mode test results are shown in Table 1. 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2021.22253&domain=pdf&date_stamp=2021-12-02
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Table 1. Mode test results 
Modal orders Frequency / Hz 

1 8.8 
2 31.6 
3 40.4 
4 42.8 
5 52.3 
6 54.5 
7 63.0 
8 70.2 
9 71.0 
10 76.8 
11 78.6 
12 86.4 

The first torsional mode and the first bending mode are shown in Figs. 2 and 3. 

 
Fig. 2. The first torsional mode 

 
Fig. 3. The first bending mode 

3. Establish the finite element optimization model 

3.1. Mesh the tailgate trim panel 

Import the tailgate trim panel into HyperMesh, switch to the Optistruct template, extract the 
middle plane and mesh the tailgate trim panel. The mesh adopts CQUAD4 & CTRIA3 element, 
and the average size of the mesh is 5 mm. The finite element model of the tailgate trim panel is 
shown in Fig. 4. The sensor used in the modal test is simulated by CONM2 element, and the 
position of the mass element is consistent with that in the modal test. 

 
Fig. 4. The trim panel of tailgate 
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4. Establish the finite element optimization model 

The finite element optimization model is established in HyperMesh-Optistruct. 

4.1. Setting optimization variables 

For the content of this paper, the elastic modulus and density of the material should be set as 
the optimization variables. And associate the variable with the corresponding attribute. The 
variable setting and attribute association in HyperMesh-Optistruct are shown in Fig. 5. 

 
Fig. 5. The optimization variables 

4.2. Setting the responses 

This example needs to establish four responses, which are the first order modal frequency of 
the flexible body, the second order modal frequency of the flexible body, the total mass of the 
model and the functional response. The functional response is the square sum of the difference 
between the simulation results and the test results [6-8]. The test modal frequency of the first order 
flexible body is 8.8 Hz, and that of the second order flexible body is 31.6 Hz. The specific settings 
are shown in Fig. 6. 

 
Fig. 6. The optimization variables 

4.3. Setting the constraints 

Since the actual mass of the sample is known, the total mass of the model is set as a constraint 
variable, and the total mass of the tailgate trim panel and sensor is 1860 g. In order to ensure the 
convergence of the optimization model, the total mass of the model is allowed to fluctuate in a 
small range, and the fluctuation range is 40 g. The constraint settings are shown in Fig. 7. 

 
Fig. 7. The optimization variables 

4.4. Setting the objectives 

In order to improve the consistency between the optimization results and the test results, it is 
necessary to minimize the error between the simulation and the test. The optimization objective 
of this paper is to minimize the sum of squares of the differences between the simulation results 
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and the test results, as shown in Fig. 8. 

 
Fig. 8. The objective 

4.5. Solving the finite element optimization model 

After the optimization model is established, it is submitted to Optistruct solver for solution, 
and the solution result is shown in Fig. 9. 

 
Fig. 9. The optimization results 

4.6. Comparative simulation and experiment 

From the above optimization results, it can be seen that the elastic modulus of the tailgate trim 
panel of the SUV is 2756 MPa and the density is 1.0e-9t/mm3. Assign the value to the finite 
element model, carry out free modal analysis again, and compare the analysis results with the test 
results. The comparison results are shown in Table 2 and Fig. 10. The error rate defined here is 
the absolute error rate, that is, the simulation result minus the test result and then divided by the 
test result. 

Table 2. Mode benchmarking results 
Modal orders Simulation results Test results Error rate 

1 9.2 8.8 4.55 % 
2 31.6 31.6 0.00 % 
3 40.7 40.4 0.74 % 
4 42.5 42.8 –0.70 % 
5 52.6 52.3 0.57 % 
6 54.0 54.5 –0.92 % 
7 62.7 63.0 –0.48 % 
8 70.3 70.2 0.14 % 
9 71.2 71.0 0.28 % 
10 76.1 76.8 –0.91 % 
11 78.1 78.6 –0.64 % 
12 86.5 86.4 0.12 % 

 
Fig. 10. The modal benchmarking results 
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5. Conclusions 

In this paper, the modal frequencies of tailgate trim panel is obtained by modal test, and the 
elastic modulus and density of the material are solved by the finite element optimization model, 
and the obtained elastic modulus and density are substituted into the finite element model for free 
modal analysis. Finally, the simulation values are compared with the test values, and the error of 
the first flexible body modal frequency is 4.55 % within 80 Hz. The error rate of the remainder is 
less than 1 %, which verifies the effectiveness of the method, and then can ensure the prediction 
accuracy of CAE simulation for NVH. 
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