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Abstract. Plant availability and reliability can be improved through a robust condition monitoring 
and fault diagnosis model to predict the current status (healthy or faulty) of any machines and 
critical assets. The model can then predict the exact fault for the faulty asset so that remedial 
maintenance can be carried out in a planned plant outage. Nowadays, the artificial intelligence 
(AI)-based machine learning (ML) model seems to be current trend to meet these requirements. 
Hence, the paper is also proposing such vibration-based faults diagnosis ML model through an 
experimental rotating rig. Here, the 2-Steps approach is used with the ML model to easy the 
industrial operation and maintenance process. The Step-1 provides the information about the asset 
health status such as healthy or faulty. The Step-2 then identifies the exact nature of fault to aid 
the decision making for the fault rectification and maintenance activities to avoid the risk of failure 
and enhance the reliability. 
Keywords: fault diagnosis, rotating machines, machine learning, plant reliability, artificial 
intelligence. 

1. Introduction 

The maintenance approaches implemented in industry have been changing over time. The 
development of new techniques and technologies, along to the increased concerns on safety and 
reliability during operation, have determined the new trends. 

Predictive maintenance has gained an important recognition as it allows to detect the machines’ 
faults before a major breakdown or catastrophic event occurs, contributing to the improvement of 
the processes. These techniques, such as vibration analysis, oil analysis, acoustic analysis, among 
others, are based on information that indicates deterioration. This characteristic not only allows to 
achieve its primary concern, which is the failure prevention, buy it also supports an efficient 
operation. An efficient operation is translated into improved safety, the products quality, reliability 
and availability, as well costs [1]. 

Traditional time-based or preventive maintenance approach is still widely used in industry [2]. 
Regardless the beneficial possibilities provided by predictive maintenance implementation, it is 
typically reserved for most critical equipment, as these techniques tend to be related to a costly 
implementation. However, new advances, such as the ones in wireless technology, allow to have 
a continuous monitoring, without frequency-based inspections, at a lower cost [3].  

While collecting data through condition monitoring tasks provides knowledge on the asset 
condition, it does not modify the actual state of the equipment. It is required a well defined process 
that provides clear indication if further action is required. The quality of the collected data has 
vital impact on the decision making process. Baidya and Ghosh [4] highlight on their proposed 
model for a predictive maintenance system. The importance of the correlation between the changes 
in the physical condition of the asset and the appropriate maintenance actions defined to take, 
which should aim to maximise the service life of the equipment, always having the risk of failure 
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under control. 
Traore et al. [5] proposed model for efficient predictive maintenance which integrates several 

tools on its development such as failure mode effect and criticality analysis (FMECA) and fault 
tree analysis (FTA), along with supervision and prognosis architecture. The authors remark the 
importance of data driven approaches to assess dynamical systems, as their behaviour evolves 
over time, being difficult to represent them by mathematical models.  

Machine learning (ML) techniques for the pattern recognition are found among the data driven 
approaches. These techniques have been widely developed over the last few years, showing 
promising results on their industrial application in several areas. Many research studies are found 
in the literature for the fault diagnosis in machines. Therefore, the smart fault diagnosis models 
using the industrial internet of things (IIoT) seems to be a possible future avenue for fault diagnosis 
in machines without the involvement of the engineering judgments and experience.  

Civerchia et al. [6] have demonstrated that a real industrial application for advanced predictive 
maintenance under IIoT concept is feasible. They implemented a IIoT based solution with smart 
sensing devices in an electricity plant, developed. Among the benefits presented for the usage of 
sensors to monitor equipment operation is the data collection to perform predictive maintenance, 
the improvement on the maintainability and reduction of risks, as well the possibility to avoid 
delays related to human interactions. 

In the conceptual framework for the development of a predictive maintenance application 
within the Industry 4.0 proposed by Chukwuekwe et al. [7], it is highlighted how predictive 
maintenance heavily relies on the utilised algorithm and its ability to define the patterns from data 
collected by sensors in real time. Consequently, the quality of the outcomes will depend firstly on 
the quality of the collected data, and secondly on having a reliable model with the capability of 
being consistent: equipment to equipment in a fleet of similar machines, as well time to time and 
place to place. 

In this paper, it is presented a fault detection model for rotating machinery, using a supervised 
ML technique and experimental vibration data. The well- known vibration-based parameters [8], 
[9] are used as the inputs in the development of the ML model. This model performs a pattern 
recognition for the machine condition in 2-Steps. Step-1 identifies if the machines is healthy or 
faulty, and then it performs the fault diagnosis over the samples detected as faulty in the Step-2 
approach. The proposed 2-Steps approach is inline with the industrial requirements to quickly 
know the machine status – healthy or faulty and then doing further diagnosis to know the exact 
fault if the machine is faulty. This is likely to make the decision making process easy in the process 
of the condition-based maintenance to optimise the availability and improve the reliability.  

The paper presents the proposed methodology and its demonstration through the experimental 
rotating rig with healthy and different fault conditions. 

2. Proposed 2-steps approach 

Artificial neural network (ANN) approach is used to develop the robust and reliable VFD-ML 
model for the fault diagnosis in rotating machines. In this study, a multi-layer perceptron (MLP) 
network structure is used to develop a 2-Steps diagnosis model. The proposed MLP ANN for this 
2-steps approach is shown in Fig. 1. The Step-1 identifies whether the sets of data are belong to 
heathy or faulty state of machine and then Step-2 further identifies the exact nature of the machine 
fault. The ANN architectures used in Step-1 and Step-2 are identical. 

The architecture implemented in this model is initially set by iterations. During the iteration 
process, different parameters were adjusted, namely the type of mathematical functions as well 
the number of layers and neurons at each layer. The resultant feedforward network is seen in  
Fig. 1. It has 4 hidden layers, 1 to 4, which have 1000, 100, 100 and 10 neurons, respectively. In 
addition to the hidden layers, the input layer and the output layer are shown. The output layer 
shows the possible classes at each step of the proposed method. 

The selected functions are functions typically used in pattern recognition neural networks. At 
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hidden neurons, the transfer function is the hyperbolic tangent sigmoid [10]; at output neurons the 
transfer function is sofmax [11]; scaled conjugate gradient backpropagation is set as the training 
function; and the performance function is cross-entropy from Matlab.  

In Step-1, the input layer moves forward along the hidden layers, finishing with the delivery 
of the result from the decision layer, which has 2 possible classes – heathy and faulty conditions. 
Similarly in Step-2, only data diagnosed as faulty in Step-1 are used, relating 4 faulty conditions 
as possible outputs, namely misalignment, shaft bow, looseness and rub. 

  
Fig. 1. Schematic of 2-steps approach using MLP within ANN method 

3. Experimental rig 

The schematic of the laboratory scaled rig is shown in Fig. 2. It consists of 2 shafts supported 
through 4 ball bearings. Both, long shaft (Sh1) and short one (Sh2) of length of 1.0 m and 0.5 m 
respectively, are joined by a rigid coupling C2. The long shaft Sh1 is connected to an electric 
motor by a flexible coupling, C1. Two discs D1 and D2, are mounted on the long shaft Sh1 and 
one disc, D3, on the short shaft Sh2. The 4 bearings, B1 to B4, are mounted on the flexible 
pedestals P1 to P4, respectively [12]. 

 
Fig. 2. Schematic of the experimental rig 

4. Experimental vibration data 

The available measured vibration data [13] from the rig at the steady speed, 1800 RPM (30 Hz) 
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are used in the study. Healthy and 4 different rotor faulty conditions are used. The measured 
vibration data are made of the simultaneously measured acceleration responses at the 4 bearing 
housings (one per bearing) at a sampling rate of 10 samples per second. The number of samples 
per rotor condition are summarised in Table 1. 

The healthy condition samples are subject to small residual unbalance and residual 
misalignment as expected for any healthy machine. Hence, the measured vibration velocity spectra 
at all bearings are also showing prominent peak at 1x (speed synchronous vibration due residual 
unbalance) with a small peak at 2x due to the residual misalignment. This is common feature for 
any industrial rotating machine. However, the typical experimental amplitude velocity spectra for 
the faulty rotor conditions (with added faults) at the machine speed of 1800 RPM (30 Hz) are 
shown in Fig. 3. The spectra show the presence of the peak at 1x and higher harmonics with 
different amplitudes for the different fault conditions. The misalignment, Fig. 3(a), is showing 1x 
and 2x peaks. The 1x and 2x peaks are increased significantly for the shaft bow condition, 
Fig. 3(b). In case of the looseness, Fig. 3(c) the significant increase in 1x and 3x (odd harmonic) 
peaks is observed, however higher harmonics are showing increasing trend in case of shaft rub, 
Fig. 3(d). 

Table 1. Experimental data samples at 1800 RPM 
Rotor condition Samples (runs) 

Healthy (residual unbalance and residual misalignment) 66 
Misalignment 109 

Shaft bow 202 
Looseness in bearing pedestal 190 

Rotor rub 112 
Total samples 679 

 

 
a) Misalignment 

 
b) Shaft bow 

 
c) Looseness in pedestal 

 
d) Rotor rub 

Fig. 3. Typical velocity vibration spectra at Bearing 3 (B3) for the experimental faulty conditions 
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5. Data preparation 

Earlier study [14] has optimised the vibration parameters to be used in the ML model for the 
reliable and accurate machine health diagnosis. These parameters are the combinations of time 
and frequency domain parameters of the measured vibration responses. They are acceleration root 
mean square (RMS), acceleration kurtosis (𝐾), velocity (1x, 2x, 3x components) and the velocity 
spectrum energy (𝑆𝐸) to include effects of subharmonics and any other frequency components 
due to different faults. Spectrum energy 𝑆𝐸  includes the range from 0.2 times to 5 times 
operational speed. 

The input databank, 𝐷𝑎𝑡𝑎, is created as per Eq. (1). The elements of 𝐷𝑎𝑡𝑎𝐻 are shown in 
Eq. (2). Similarly, the databanks for the faulty conditions; misalignment (𝐷𝑎𝑡𝑎𝑀), shaft bow 
(𝐷𝑎𝑡𝑎𝐵), looseness (𝐷𝑎𝑡𝑎𝐿) and rotor rub (𝐷𝑎𝑡𝑎𝑅) are constructed. These elements or parameters 
are calculated from the vibration data collected simultaneously at the 4 bearing locations. As a 
result, a vector made by 24 elements (6 parameters per bearing x 4 bearings) represents one sample 
as per Table 1. Thus, 𝑅𝑀𝑆  is the 𝑅𝑀𝑆 value calculated at the bearing B1, 𝑅𝑀𝑆  is the RMS 
value at B2, and so on for the 𝑖-sample. Similarly, the subscripts, B3 and B4 represents the 
bearings 3 and 4 respectively of the rig: 𝐷𝑎𝑡𝑎 = 𝐷𝑎𝑡𝑎𝐻       𝐷𝑎𝑡𝑎𝑀      𝐷𝑎𝑡𝑎𝐵      𝐷𝑎𝑡𝑎𝐿     𝐷𝑎𝑡𝑎𝑅 , (1)𝐷𝑎𝑡𝑎𝐻 = 𝐻 𝐻 ⋯ 𝐻 , (2)

where: 𝐻 = 𝑅𝑀𝑆 𝐾 1𝑥 2𝑥 3𝑥 𝑆𝐸 𝑅𝑀𝑆 … 𝑆𝐸 𝑅𝑀𝑆 … 𝑆𝐸 𝑅𝑀𝑆 … 𝑆𝐸 . 
6. Implementation of the 2-steps approach 

The proposed 2-Steps approach discussed in Section 2 is implemented here. The samples 
(runs) listed in Table 1 are grouped into 3 datasets for the ML model training, validation and then 
testing. A set of 70 % of the samples (runs) from each machine condition at 1800 RPM are used 
for training the network, modifying the weights according to the learning rule. 15 % of the samples 
are further used for validation, which is conducted by verifying the trained network with these 
samples until their classification error reaches a desired point of minimum error, giving the order 
to stop the training process. At this point, the weights are the optimal for the network and, the last 
group of unknown remaining data, 15 %, is then tested, providing the generalisation of the 
network. 

The data 70 %-15 %-15 % (training-validation-testing) are applied to both Step-1 and Step-2 
models as per Fig. 1. The model performance is calculated as in Eq. (3). The error means that the 
model diagnosis is not accurate at a few occasions: %𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑟 %𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = .   ∗ 100 %. (3)

7. Results 

The overall performance in all stages (training, validation and testing) for both Step-1 and 
Step-2 models are observed to be 100 %. Therefore, the diagnosis by the proposed 2-Steps 
approach are going to 100 %. The overall diagnoses by the proposed 2-Steps smart fault detection 
model are summarised in Tables 2-3. Table 2 contains the overall results in Step-1 while Table 3 
contains the overall results in Step-2. The results also confirm that the optimised parameters earlier 
suggested [14] are useful for the 2-Steps approach. These parameters should be used for any 
rotating machines. The results are definitely encouraging for industrial applications to know the 
health status of the assets immediately, which is going to be useful for operation and maintenance 
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for any industries. 

Table 2. Step-1, diagnosis performance (%) 

Diagnosis Actual 
Healthy Faulty 

Healthy 100.0 0.0 
Faulty 0.0 100.0 

Table 3. Step-2, diagnosis performance (%) for faulty conditions 

Diagnosis Actual 
Misalignment Bow Looseness Rub 

Misalignment 100.0 0.0 0.0 0.0 
Bow 0.0 100.0 0.0 0.0 

Looseness 0.0 0.0 100.0 0.0 
Rub 0.0 0.0 0.0 100.0 

 
Fig. 4. Step-1 performance (%) of the smart fault detection model  

in separating heathy and faulty conditions 

 
Fig. 5. Step-2 performance (%) of smart fault detection model in fault diagnosis 

8. Concluding remarks 

The current study has utilised vibration parameters that are commonly used in industries for 
the faults diagnosis in rotating machines. Therefore, the proposed model is not using any complex 
signal processing. However, the smart diagnosis model is proposed such that it is useful for 
industrial applications. The Step-1 confirms whether the measurement from the machine indicates 
about the status of the machine, healthy or faulty. If it is heathy then there is no further action is 
needed. However, if it is faulty, then the Step-2 provides the nature of the defects. This approach 
is definitely going to add new dimension in the condition based maintenance practice to enhance 
the machine availability and reliability. The proposed 2-Steps approach is demonstrated through 
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in a laboratory scaled experimental rotating rig with healthy and faulty conditions. 
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