
 

 ISSN ONLINE 2669-2465, KAUNAS, LITHUANIA 17 

On the concept of a conformable fractional differential 
equation 

Soumen Shaw1, Mohamed I. A. Othman2 
1Department of mathematics, Indian Institute of Engineering Science and Technology,  
Shibpur, Howrah, 711103, India 
2Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt 
2Corresponding author 
E-mail: 1shaw_soumen@rediffmail.com, 2m_i_a_othman@yahoo.com 
Received 21 May 2021; received in revised form 15 June 2021; accepted 29 June 2021 
DOI https://doi.org/10.21595/jets.2021.22072 

Copyright © 2021 Soumen Shaw, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. A new simple well-behaved definition of the fractional derivative termed as 
conformable fractional derivative and introducing a geometrical approach of fractional 
derivatives, non-integral order initial value problems are an attempt to solve in this article. Based 
on the geometrical interpretation of the fractional derivatives, the solution curve is approximated 
numerically. Two special phenomena are employed for concave upward and downward curves. In 
order to obtain the solution of fractional order differential equation (FDE) with the integer-order 
initial condition, some new criteria on fractional derivatives are proposed. 
Keywords: conformable differentiation, non-integral differential equation, geometrical 
interpretation, fractional derivatives, numerical approximation. 

1. Introduction 

The impact of this fractional calculus in both pure and applied branches of science and 
engineering started to increase substantially during the last two decades apparently. Differential 
equations governing most of the physical system, evade closed-form solutions and thereby 
necessitating the adoption of numerical methods to arrive at the desired solutions of the equations. 
Moreover, in many practical situations, some of the coefficients or functions in the differential 
equation may be non-linear or are presented as a set of discrete data, and then, numerical methods 
become inevitable for obtaining solutions. 

Since the last decade, fractional-order differential equations have gained considerably more 
attention due to their applications in many engineering and scientific disciplines. As the 
mathematical models for the systems and processes, the fractional differential equation has been 
successfully applied in various fields of physics and engineering such as biophysics, 
bioengineering, quantum mechanics, finance, control theory, image and signal processing. A 
rather detailed account of diverse recent theoretical advances and applications of fractional 
calculus in the various fields can be found in the books of Sabatier et al. [14], Hilfer [6] and 
Atanackovic et al. [1]. Works such as [2, 3, 7, 8, 11, 15, 16, 22-29] and the monographs [4, 13] 
analyzed qualitative and quantitative aspects of the solution of the fractional-order differential 
equation. The methods employed in the aforementioned literature include the sequential technique 
of successive approximation as well as the classical fixed-point approaches of Banach and 
Schauder. Othman et al. [20] studied the effect of hydrostatic initial stress and gravity on a fiber-
reinforced thermoelastic medium with a fractional derivative heat transfer. The effect of 
hydrostatic initial stress on the plane waves in a fiber-reinforced magneto-thermoelastic medium 
with fractional derivative heat transfer was explained by Sarkar et al. [21]. 

In the sequel, we would confine our attention to developing an algorithm for solving the 
initial-value problem, namely: 𝑑 𝑦𝑑𝑥 𝑓 𝑥,𝑦 ,    𝑦 𝑥 𝑦 ,    0 𝛼 ≤ 1. (1)
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Eq. (1) may be viewed as a curve in the 𝑥𝑦-plane, at each point on the curve the value of its 𝛼-order derivative is given in terms of 𝑥 and 𝑦, however, refers to a particular curve that passes 
through a given point (𝑥 ,𝑦 ). 

In an endeavour to incorporate the curvature of the curve to arrive at an approximate numerical 
solution of the initial-value problem (1); one tries to explore the possibility of alternative 
approaches. This leads to the following two types of procedures: 

(i) Semi-analytical approach based on the power series expansion (see Refs. [5, 11, 15, 17]). 
(ii) Numerical approach applying the geometrical interpretation of fractional derivatives. A 

new geometrical approach to obtain an approximate solution of FDEs, subject to integer-order 
initial conditions which are significant to describe most of the physical phenomena, is the main 
course of study of this paper. 

2. Fractional Taylor series 

An extensive introduction to the use and meaning of fractional derivatives in physical and 
biological systems can be found in the article Metzler and Klafter [9]. The fractional Taylor series 
is a generalization of the Taylor series of fractional derivatives. The fractional Taylor series at the 
point 𝑦 = 𝑥 + Δ𝑥 is defined by Odibat and Shawagfeh [10]: 

𝐹(𝑦) = 𝐹(𝑥) + (𝑦 − 𝑥)Γ(𝛼 + 1)𝐷 𝐹(𝑥 +) + (𝑦 − 𝑥)Γ(2𝛼 + 1)𝐷 𝐷 𝐹(𝑥 +) + ⋯, (2)

where Γ(𝑥)  is the gamma Function, and 𝐷  is the Caputo fractional derivative of order  0 < 𝛼 < 1 with base point 𝑥, which is defined by: 

𝐷 𝐹(𝑦) = 1Γ(1 − 𝛼) 𝐹′(𝑦 − 𝑥)(𝑢 − 𝑥) 𝑑𝑢, (3)

where 𝐹  is the usual first derivative, and the notation 𝑥 + in Eq. (2) indicates the limit as we 
approach 𝑥 from the right. Note that there are other definitions of fractional derivatives, but the 
fractional Taylor series is valid for the Caputo form. The main distinguishing feature of the Caputo 
fractional derivative is that, analogous to integer order derivatives, the Caputo fractional derivative 
of a constant is zero. This property is very critical for a fractional Taylor series. It is also a notable 
fact that the third term of Eq. (2) involves the 𝛼  order fractional derivative of 𝛼  fractional 
derivative, which is not identical to the 2𝛼 order fractional derivative. 

To ensure this fact we consider the function: 𝑓(𝑦) = 𝑝 + (𝑦 − 𝑥) , (4)

where 𝑦 = 𝑥 + ℎ. 
Now the 𝛼 order derivative of Eq. (4) is a constant when 𝑞 = 𝛼, and the 𝛼 fractional derivative 

of that constant is zero. Then the coefficients of the fractional Taylor series can be found in the 
usual manner, by repeated fractional differentiations. The traditional integer-order Taylor series 
can be recovered from Eq. (2) when 𝛼 = 1, applying the well-known property of the Gamma 
function Γ(𝑛 + 1) = 𝑛!. 

The fractional Taylor series gives an extremely good estimation of non-integer power-law 
functions. We now adopt Eq. (4) for a non-linear power-law function, to illustrate this behaviour. 

The traditional integer-order Taylor series approximation for Eq. (4) with 𝑞 = 2, expanded 
about 𝑥 and truncated at the second-order term, is: 

𝑓(𝑦) = 𝑓(𝑥) + 𝑓′(𝑦 − 𝑥) + 𝑓′′ (𝑦 − 𝑥)2! . (5)
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If 𝑝 = 𝑓(𝑥),  𝑓′(𝑥) = 2(𝑦 − 𝑥) | = 0,  𝑓′(𝑥) = 2(𝑦 − 𝑥) | = 0,  and 𝑓′′(𝑥) = 2.1(𝑦 − 𝑥) | = 2, Eq. (5) becomes: 𝑓(𝑦) = 𝑝 + (𝑦 − 𝑥) . (6)

Hence, the second-order Taylor series approximation is exact for 𝑓(𝑦), because the order of 
nonlinearity of the function matches the order of the Taylor series approximation. If 𝑞 = 3, a 
third-order Taylor series would provide an exact approximation. 

However, if 𝑞 is a non-integer real number, no finite integer order Taylor series can give an 
exact match between the value of the function and its Taylor series approximation. 

Now let us examine the fractional Taylor series approximation of Eq. (4), when 𝑞 > 0 is some 
real number. The Caputo fractional differentiation of Eq. (3) is: 

𝐷 𝑓(𝑦) = 𝐷 [𝑝 + (𝑦 − 𝑥) ] = Γ(𝑞 + 1)Γ(𝑞 − 1 + 𝛼) (𝑦 − 𝑥) . (7)

Thus, first-order fractional Taylor series for (4) expanded about 𝑥 is exact when 𝑞 = 𝛼: the 
first term is 𝑝 = 𝑓(𝑥). For the second term, use Eq. (7) along with the fact that the Caputo 
fractional derivative of the constant 𝑝 is zero to write: 

𝐷 𝑓(𝑦) = Γ(𝑞 + 1)Γ(𝑞 − 1 + 𝛼) (𝑦 − 𝑥) . (8)

Then for any 𝑦 > 𝑥  we have (since 𝑞 = 𝛼,  the exponent 𝑞 − 𝛼 = 0,  so the term  (𝑦 − 𝑥) = 1 for any 𝑦 > 𝑥): 

𝐷 𝑓(𝑦) = Γ(𝑞 + 1)Γ(𝑞 − 1 + 𝛼) . 1. (9)

Then of course the limit 𝑦 → 𝑥 + is: 

𝐷 𝑓(𝑥+) = Γ(𝑞 + 1)Γ(𝑞 − 1 + 𝛼) . 1. (10)

Thus, the second term of fractional Taylor series is given by: 

𝐷 𝑓(𝑥+). (𝑦 − 𝑥)Γ(𝛼 + 1) = Γ(𝑞 + 1)Γ(𝑞 − 1 + 𝛼) . 1 (𝑦 − 𝑥)Γ(𝛼 + 1) = (𝑦 − 𝑥) . (11)

Here we have used 𝑞 = 𝛼 and Γ(1) = 1. Since 𝐷 𝑓(𝑦) is a constant, the remaining higher 
order Caputo derivatives are all zero. Therefore, the two-term fractional Taylor series 
approximation is exact: 

𝑓(𝑦) = 𝑓(𝑥) + (𝑦 − 𝑥)Γ(𝛼 + 1)𝐷 𝑓(𝑥+) + (𝑦 − 𝑥)Γ(2𝛼 + 1)𝐷 𝐷 𝑓(𝑥+) + ⋯= 𝑝 + (𝑦 − 𝑥) + 0 + ⋯. (12)

This is a very significant result. It proves that if we match the order of the fractional Taylor 
series approximation to the exponent in the power-law function, then the two-term fractional 
Taylor series approximation to that function is exact. 
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3. Modified Riemann-Liouville fractional derivative 

In this section, we illustrate the fractional derivatives based on fractional differences which are 
slightly different from the classical Riemann-Liouville framework. The fractional calculus so 
obtained is quite parallel to the classical calculus, and it involves non-commutative derivatives, 
which seems to be quite consistent with non-commutative geometry. The purpose herein is to 
contribute some new results to this approach. 

3.1. Fractional derivatives via fractional differences 

Definition 1. (Fractional right derivative): Let 𝑓:𝑅 → 𝑅  be a continuous (not necessarily 
differentiable) function and let ℎ > 0  denotes the constant discretization span. The forward 
difference operator 𝐹 (ℎ) is defined by: 𝐹 (ℎ)𝑓(𝑥) = 𝑓(𝑥 + ℎ), (13)

the fractional difference of order 𝛼 (0 < 𝛼 ≤ 1) , from the right, of 𝑓(𝑥)  is defined by the 
expression: 

Δ 𝑓(𝑥) = (𝐹 − 1) 𝑓(𝑥) = (−1) ( )𝑓(𝑥 + (𝛼 − 𝑘)ℎ), (14)

and the corresponding fractional derivative on the right is given by: 

𝑓 (𝑥) = lim→ Δ [𝑓(𝑥) − 𝑓(0)]ℎ . (15)

Definition 2. (Fractional left derivative): The left hand (or backward) fractional difference of 
the function 𝑓(𝑥) of order 𝛼 (0 < 𝛼 ≤ 1), is defined as: 

Δ 𝑓(𝑥) = (1 − 𝐹 ) 𝑓(𝑥) = (−1) ( )𝑓(𝑥 − 𝑘ℎ), (16)

and its fractional derivative on the left is given by: 

𝑓 (𝑥) = lim→ Δ [𝑓(𝑥) − 𝑓(0)]ℎ . (17)

These are local definitions as compared with the standard integral approach. These are very 
close to the standard definitions of derivative and as a direct result, the 𝛼-order derivative of a 
constant is zero. 

When 𝑓 (𝑥) = 𝑓 (𝑥) to shorten in writing we shall set 𝑓 = 𝑓 = 𝑓 = ( ) . Here we are 
fully in the Leibnitz framework, i.e., to say both 𝑑 𝑓 and 𝑑𝑥  denote the finite increments. 

3.2. Some important properties 

Here we can mention few important properties of the aforementioned fractional derivative: 
(1) The fractional derivative, as so defined, is not commutative. Clearly one has: 𝐷 𝐷 𝑓(𝑥) ≠ 𝐷 𝐷 𝑓(𝑥). (18)
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The equality holds if 𝑓 (0) = 𝑓 (0). 
(2) Let 𝑓(𝑥):𝑅 → 𝑅 be a continuous function such that 𝑓(𝑥) has fractional derivative of 𝑘𝛼, 

where 𝑘 is any integer and 0 < 𝛼 ≤ 1, then: 𝑑 𝑓 ≅ Γ(1 + 𝛼)𝑑𝑓,       0 < 𝛼 < 1. (19)

(3) Let us consider the compound function 𝑓(𝑢(𝑥)). Assume that 𝑓(𝑢) is 𝛼-differentiable 
with respect to 𝑢 and 𝑢(𝑥) is differentiable with respect to 𝑥 then: (𝑓(𝑢(𝑥))) = 𝑓( )(𝑢)(𝑢′ ) . (20)

(4) Assume that both 𝑓(𝑢)  as well as 𝑢(𝑥)  are 𝛼 -differentiable with respect to 𝑢  and 𝑥 
respectively, then: (𝑓(𝑢(𝑥))) = Γ(2 − 𝛼) 𝑢 𝑓( )(𝑢) 𝑢( )(𝑥). (21)

(5) One can extent the aforementioned fractional derivatives for negative order also i.e. of 
order 𝛼 (𝛼 < 0), can be expressed in the following integral form: 

𝑓 = 1Γ(−𝛼) (𝑥 − 𝜉) 𝑓(𝜉) 𝑑𝜉,        𝛼 < 0. (22)

For 𝛼 > 0 one can set: 

𝑓 (𝑥) = 𝑑𝑑 𝑥 𝑓 (𝑥) = 1Γ(1 − 𝛼) 𝑑𝑑𝑥  (𝑥 − 𝜉) 𝑓(𝜉) − 𝑓(0) 𝑑𝜉,   0 < 𝛼 ≤ 1.   (23)𝑓 (𝑥) = 𝑓 (𝑥) ,    𝑛 − 1 ≤ 𝛼 < 𝑛. (24)

The difference between Eqs. (22) and (23) is that the second one involves the constant 𝑓(0) 
whereas the first equation does not. We shall refer to this fractional derivative as the modified 
Riemann-Liouville derivative. 

Proof. proofs of the properties (1)-(4) are left for the readers. For (5); take Laplace to transform 
with respect to x in both sides of the Eq. (23) and denoting 𝐿[𝑓(𝑥); 𝑥 → 𝑠] = 𝑓̅(𝑠) yields: 

𝐿[𝑓 (𝑥)] = 1Γ(1 − 𝛼) 𝑑𝑑𝑥 (𝑥 − 𝜉) (𝑓(𝜉) − 𝑓(0)) 𝑑𝜉 𝑒 𝑑𝑥       = 𝑠Γ(1 − 𝛼) (𝑥 − 𝜉) 𝑒 𝑑𝑥 (𝑓(𝜉) − 𝑓(0)) 𝑑𝜉       = 𝑠Γ(1 − 𝛼) 𝑒 𝑡 𝑒 𝑑𝑡 (𝑓(𝜉) − 𝑓(0)) 𝑑𝜉       = 𝑠Γ(1 − 𝛼) 𝑒 Γ(1 − 𝛼)𝑠 (𝑓(𝜉) − 𝑓(0)) 𝑑𝜉        = 𝑠  𝑒 (𝑓(𝜉) − 𝑓(0)) 𝑑𝜉 = 𝑠  𝐿[𝑓(𝑥)] − 𝑠 𝑓(0). 
(25)

Now according to the Eq. (15) (in definition 1): 
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𝐿[Δ 𝑓(𝑥)] =  𝐿 (−1) ( )𝑓(𝑥 + (𝛼 − 𝑘)ℎ) =  (−1) ( )𝐿[𝑓(𝑥 + (𝛼 − 𝑘)ℎ)] 
       =  (−1) ( ) 𝑓(𝑥 + (𝛼 − 𝑘)ℎ)𝑒 𝑑𝑥 
      =  (−1) ( )𝑒( ) 𝐿[𝑓(𝑥)] = (𝑒 − 1) 𝑓(̅𝑠). 

(26)

Therefore, from Eq. (15) we get: 

𝐿[𝑓( )(𝑥)] =  𝐿 lim→ Δ [𝑓(𝑥) + 𝑓(0)]ℎ = 𝑠 𝑓̅(𝑠) − 𝑠 𝑓(0). (27)

Hence the proof. 

3.3. Fractional Taylor series with Mittag-Leffler function 

Let us consider the continuous function 𝑓:𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) has a fractional derivative of 
order 𝑘𝛼, for any positive integer 𝑘 and 𝛼, 0 < 𝛼 ≤ 1, then the following relation holds: 

𝑓(𝑥 + ℎ) = 𝑓 (𝑥) 
 ,        𝑛 − 1 ≤ 𝛼 < 𝑛, 

𝑓(𝑥 + ℎ) = ℎ𝑘𝛼 (𝐷 ) 𝑓(𝑥),        0 < 𝛼 ≤ 1, (28)

where ((𝐷 ) 𝑓(𝑥) = 𝐷 𝐷 ⋯𝐷 𝑓(𝑥) (𝑘 times), is the derivative of order 𝛼 + 𝛼 + ⋯+ 𝛼 (𝑘 
times) of 𝑓(𝑥), and with the relation: Γ(1 + 𝑘𝛼) = (𝑘𝛼)!. (29)

The definition of forwarding difference operator, given by the Eq. (13) and from the Eq. (14) 
one can show that the forward operator 𝐹 (ℎ)  satisfies the following fractional differential 
equation: (𝐷 ) 𝐹 (ℎ) = (𝐷 ) 𝐹 (ℎ), (30)

and the solution of this equation is 𝐹 (ℎ) = 𝐸 (ℎ 𝐷 ) = ∑ ( )!. 
Therefore, the series can be expressed in the following manner: 𝑓(𝑥 + ℎ) = 𝐸 (ℎ 𝐷 )𝑓(𝑥). (31)

In which 𝐷  is the differential operator with respect to 𝑥 , and 𝐸 (𝑢) is the Mittag-Laffler 
function given by: 

𝐸 (𝑢) = 𝑢(𝑘𝛼)! . (32)

This fractional Taylor’s series does not hold with the standard Riemann-Liouville derivatives, 
and it applies to non-differentiable functions only. In addition, it is different from Osler’s series 
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of fractional order [12]. 

4. The concept of approximation 

In this section, we attempt to prove a special nature of the straight “line” (or tangent line) 
drawn at a point to the curve taking different order fractional derivatives as its slope at that point. 
To do that, firstly we demonstrate few important properties as follows: 

Theorem 1. For any two real numbers 𝛼  and 𝛽 (0 < 𝛽 < 𝛼 < 1) , 𝐷 𝑓 >  or < 𝐷 𝑓 
accordingly 𝑓(𝑥) is a concave upward or concave downward function. 

Proof. From the definition 1, for any real number 𝛼 (0 < 𝛼 < 1): 

𝐷 𝑓(𝑥) = 𝑓 (𝑥) =  lim→ Δ [𝑓(𝑥) + 𝑓(0)]ℎ       =  lim→ ∑ (−1) ( ){𝑓(𝑥 + (𝛼 − 𝑘)ℎ) − 𝑓((𝛼 − 𝑘)ℎ)}ℎ =  (−1) 𝑢(𝑥; 𝑘,𝛼), (33)

where 𝑢(𝑥;𝑘,𝛼) = lim→  { ( ( ) ) (( ) )}. 
Now it is clear that, if 𝑓(𝑥) is a non-decreasing function then 𝑢(𝑥;𝑘,𝛼) is also non-decreasing 

for all values for 𝑥 > 0 (0 < 𝛼 < 1). 
Therefore: 𝐷 𝑓(𝑥)   − 𝐷 𝑓(𝑥) = (−1) [𝑢(𝑥; 𝑘,𝛼) −  𝑢(𝑥; 𝑘,𝛽)] 

        =  lim→
∑ (−1) [{ℎ ( )𝑓(𝑥 + (𝛼 − 𝑘)ℎ) − ( )𝑓(𝑥 + (𝛽 − 𝑘)ℎ)}        −{ℎ ( )𝑓((𝛼 − 𝑘)ℎ) − ( )𝑓((𝛽 − 𝑘)ℎ)}]ℎ . (34)

Since, 𝑥 + (𝛼 − 𝑘)ℎ > (𝛼 − 𝑘)ℎ and 𝑥 + (𝛽 − 𝑘)ℎ > (𝛽 − 𝑘)ℎ, then for a concave upward 
function 𝑓(𝑥),  {ℎ ( )𝑓(𝑥 + (𝛼 − 𝑘)ℎ) − ( )𝑓(𝑥 + (𝛽 − 𝑘)ℎ)} > {ℎ ( )𝑓((𝛼 − 𝑘)ℎ) −( )𝑓((𝛽 − 𝑘)ℎ)} for all positive real values of 𝑥. 

Thus, if 𝑓(𝑥) is a concave upward function, for any two real numbers 𝛼 and 𝛽 (0 < 𝛽 < 𝛼 <1), 𝐷 𝑓 > 𝐷 𝑓. 
With the similar arguments, it can be prove that for a concave downward function 𝑓(𝑥), 𝐷 𝑓 < 𝐷 𝑓, where (0 < 𝛽 < 𝛼 < 1). 
Hence the Proof. 
Therefore, in order to estimate the curve, for a concave upward function, the “lines” (or tangent 

lines) with the highest order fractional derivative 𝐷 𝑓(𝑥) where 𝛼 ∈ (0,1] to the curve at the 
point will be a more appropriate one. 

Whilst, for a concave downward curve, the “line” (or tangent) at a point having the slope 𝐷 𝑓(𝑥) with the lowest order fractional derivative where 𝛼 ∈ (0,1] at that point to the curve 
would have been more suitable than the conventional tangent line. 

5. Graphical illustration 

Here we illustrate the nature of the tangent lines with different fractional-order derivatives 𝐷 𝑓(𝑥)  where 𝛼 ∈ (0,1] , which is taken as the slope of the line, for concave upward and 
downward curves. For this purpose, we have considered two simple polynomials (see Fig. 1 and 
Fig. 2). 

Let 𝑦(𝑥)  be an approximation in the interval (𝑥 ,𝑦 ) . Expanding 𝑦(𝑥)  about the point  𝑥 = 𝑥 , we have: 
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𝑦(𝑥) = 𝑦(𝑥 ) + (𝑥 − 𝑥 )𝛼! 𝐷 𝑦(𝑥 ) + (𝑥 − 𝑥 )(2𝛼)! 𝐷 𝐷 𝑦(𝑥 ) + ⋯       + 𝐷 ) 𝑓(𝜉)((𝑛 + 1)𝛼 + 1)! (𝑥 − 𝑥 )( ) , (35)

where 𝐷 𝑦(𝑥 ) is the 𝛼 order derivative of 𝑦(𝑥) at 𝑥 = 𝑥  and 𝑥 ≤ 𝜉 ≤ 𝑥 . 

 
Fig. 1. Various “lines” (or tangent lines) with different slopes for 𝑓(𝑥) = 𝑥  

 

Fig. 2. Various “lines” (or tangent lines) with different slopes for 𝑓(𝑥) = −𝑥  

Replace 𝑥 by 𝑥 + ℎ in Eq. (35) we obtain: 

𝑦(𝑥 + ℎ) = 𝑦(𝑥 ) + ℎ𝛼! 𝐷 𝑦(𝑥 ) + ℎ(2𝛼)!𝐷 𝐷 𝑦(𝑥 ) + ⋯    . (36)

Assuming the variation of 𝐷 𝐷 𝑦 is negligible in 𝑥 ≤ 𝑥 ≤ 𝑥  the truncation error can be 
put as 𝑒 ≈ 𝑘ℎ . 

Hence, to determine the function 𝑦(𝑥), which will be the solution of the initial value problem 
Eq. (1), may apply the following algorithm: 

𝑦 = 𝑦 + ℎ𝛼! 𝐷 𝑦(𝑥 = 𝑥 ),     0 < 𝛼 ≤ 1,    𝑚 = 0,1,2, …, (37)

where 𝛼 is a constant to be chosen in such a way that 𝛼 = max or min{𝑥, 𝑥 ∈ (0,1]} accordingly 
the curve is concave upward or downward i.e., > or < 0 at (𝑥 ,𝑦 ). 
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6. Convergence criteria 

A method is convergent if, for every ODE with a Lipschitz function 𝑓 and every fixed 𝑇, with 𝑇 = 𝑛.ℎ, it holds that: lim→ 𝑦 , − 𝑦(𝑇) = 0. (38)

Global error: 𝜀 = 𝑦 − 𝑦(𝑥 ) and 𝜀 = 𝑦 − 𝑦(𝑥 ). 
Local error: 𝑙 = 𝑦 − 𝑦(𝑥 ) where 𝑦 = 𝑦(𝑥 ) + ! 𝑓(𝑥 ,𝑦(𝑥 )).  
Therefore, local error definition implies the residual: 

𝑦(𝑥 ) = 𝑦(𝑥 ) + ℎ𝛼! 𝑓(𝑥 ,𝑦(𝑥 )) − 𝑙 . (39)

Now comparing with the Taylor series expansion Eq. (28), the local error for this proposed 
method is 𝑙 ≈ ( )!𝐷 𝐷 𝑦(𝑥 ). 

Thus, the global error recursion is given by: 

𝜀 = 𝜀 + ℎ𝛼! [𝑓(𝑥 ,𝑦(𝑥 )) + 𝜀 ] − ℎ𝛼! 𝑓(𝑥 ,𝑦(𝑥 )) + 𝑙 . (40)

Take norms and use Lipschitz condition: ‖𝜀 ‖ ≤ ‖𝜀 ‖ + ℎ𝛼! 𝐿[𝑓]. ‖𝜀 ‖ + ‖𝑙 ‖. (41)

Lemma. If {𝑎 }, 𝑎 = 0, be a sequence of non-negative numbers satisfying {𝑎 }, 𝑎 = 0, 𝑎 ≤ (1 + ℎ𝜇)𝑎 + 𝑐ℎ , for 𝜇 ≥ 0, then 𝑎 ≤ ℎ[(1 + ℎ𝜇) 𝑎 − 1], 𝑛 = 1,2, …. 
Proof. Standard result of sequence of real nos. 
Theorem 2. Prove that the global error 𝜀 , → 0 as ℎ approaches to zero. 
Proof. Assuming that the function 𝑓  is sufficiently differentiable, given ℎ  and a fixed  𝑇 = 𝑛.ℎ, let us consider 𝜀 , = 𝑦 , − 𝑡(𝑥 ). 
Applying the lemma to global error recursion, we get: 

𝜀 , ≤ 𝑐𝐿[𝑓]ℎ𝛼! 1 + ℎ𝛼! 𝐿[𝑓] ,    𝑚 = 0,1, …  , (42)

with: 𝑐 = max‖𝑙 ‖ℎ ≈ max‖𝐷 𝐷 𝑦‖/(2𝛼)!. (43)

Since: 

1 + ℎ𝛼! 𝐿[𝑓] ≤ 𝑒 ! [ ] ≤ 𝑒 [ ]. (44)

We have, for 𝑚 ≤ 𝑛: 

𝜀 , ≤ 𝑐𝐿[𝑓]ℎ𝛼! (𝑒 [ ] − 1). (45)
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Therefore: 

𝜀 , ≤ 𝐶(𝑇).ℎ𝛼! , (46)

which proves the convergence as: lim→ 𝜀 , = 0. (47)

Hence, the iteration converges invariably in keeping with expectation. 

7. Applications 

In order to assess the applicability of the proposed method, we have considered a number of 
fractional differential equations with initial conditions. The iteration procedure is carried out 
through computer simulation (MatLab 2015a) with a moderate value of the step length. 

For the computational purpose we consider the following fractional order initial value 
problems. 

Example 1. (Example – 4.1 [18]): 𝐷 ⁄ 𝑦 + 𝑦 = 𝑥 + 2𝑥 ⁄ ,    𝑥 > 0,    𝑦(0) = 0. (48)

Example 2. (Example – 4.3 [18]) with 𝑦(0) = 0: 𝐷 ⁄ 𝑦 = 𝑥𝑒 − 𝑥𝑦,    𝑥 ≥ 0,    𝑦(0) = 0. (49)

Example 3. (Eigen value problem: example – 5.4 [19]): (𝑇 𝑦)(𝑡) = 𝜆𝑦(𝑡),    𝑦(𝑎) = 𝑦 ,    𝑡 > 0,    𝑎 = 0,    𝜆 = 0.5,    𝑦 = 1,    𝛼 = 0.5. (50)

 
Fig. 3. Comparison of solutions between the analytical result and present analysis (Ex. 1) 

For numerical computation, in all of the above examples, we consider ℎ =  0.001,  𝛼 = 0.125 and 𝛼 = 1. The analytical solutions for the considered initial value problems 
(IVPs) are presented in Table 1 (for details see Refs. [18, 19]). Those results are compared with 
the approximate solutions obtained by using the proposed method. It has been observed that the 
present approximations (by using the iteration scheme Eq. (37)) are in high agreement with the 
results obtained by [18]. Figs. 3-5 represent the solution curves of the IVPs Eqs. (48)-(50) by using 
the present analysis and analytical results. It has also been noticed that this newly adopted method 
is identical with the analytical solutions up to two decimal places. 



ON THE CONCEPT OF A CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATION.  
SOUMEN SHAW, MOHAMED I. A. OTHMAN 

 ISSN ONLINE 2669-2465, KAUNAS, LITHUANIA 27 

 
Fig. 4. Comparison of solutions between the analytical result and present analysis (Ex. 2) 

 
Fig. 5. Comparison of solutions between the analytical result and present analysis (Ex. 3) 

Table 1. Analytical solutions of the IBPs 
Example IVP Solution 

Ex. 1 𝐷 ⁄ 𝑦 + 𝑦 = 𝑥 + 2𝑥 ⁄ ,    𝑦(0) = 0 𝑦 = 𝑥  
Ex. 2 𝐷 ⁄ 𝑦 = 𝑥𝑒 − 𝑥𝑦,    𝑦(0) = 0 𝑦 = 23 𝑥 ⁄ exp(−𝑥) 
Ex. 3 (𝑇 𝑦)(𝑡) = 𝜆𝑦(𝑡),    𝑦(𝑎 = 0) = 1,    𝑡 > 0,   𝜆 = 0.5,   𝛼 = 0.5 𝑦 = 𝑦 𝑒 ( ) /  

8. Conclusions 

With the help of the geometrical interpretation of fractional order derivatives for different 
values of the parameter 𝛼 ∈ (0,1] at a fixed point on a curve, in this paper, we developed a new 
numerical iterative method that can give an approximate solution curve of the fractional initial 
value problems. Here we use two different values of fractional derivatives to approximate the 
solution curve for the concave and convex parts. Purely depending upon geometrical  
interpretation, this type of works have not yet been reported on a fractional differential equation. 

During the decade, it has been established that several biological and physical aspects could 
be encompassed in the framework of a suitable fractional differential equation. We assert that the 
approach to the fractional calculus via fractional difference in combination with fractional 
Taylor’s series provides a method of approximation of the solution curve for IVPs in Leibniz’s 
sense. The proposed method could be fairly competent in this kind of problems. 
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