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Abstract. This article addresses an improvement of a classification procedure on cracked rotors 
through Deep learning based on convolutional neural networks (CNNs). At first, a cracked 
rotor-bearing system is modeled by the finite element method (FEM), then throughout its start-up, 
the related time-domain responses are calculated numerically. In the following, as a 
pre-processing stage, continuous wavelet transform (CWT) and Short-time Fourier transform 
(STFT) are applied on the three various health conditions, i.e. without crack, shallow-cracked, and 
relatively deep-cracked shafts. The plots of CWT’s coefficients and STFT’s in these various 
classes are used as the input dataset in Deep learning based on CNNs and the three classes are 
introduced as the output. AlexNet with 25 layers is employed as the network. The results of the 
testing phase demonstrated that not only this expanded method has a reasonable capacity in the 
classification of cracked and healthy rotors, but it also can classify cracked rotors with different 
crack depths with a negligible error. 
Keywords: cracked-rotor, deep learning, CNNs, FEM, CWT. 

1. Introduction 

In the course of a noticeable increase in energy consumption that is an ineluctable conclusion 
of the industrial revolution, effective maintenance of energy conversion appliances has become a 
favorite field in scientific investigations. To mention the importance of rudimentary faults 
identification in energy transformer instruments it is enough to say that delayed recognition of 
deficiencies can bring about catastrophic repercussions both in the labor force and cost. One of 
the most common machines in the energy field is the rotor system that normally operates at a high 
pace, and a large amount of high-price appurtenances are attached to it. A usual rotor system 
consists of a central rotating shaft, blade (turbine blade), engine motor, and supporters such as 
bearings. Rotating systems are suffering from a wide range of mechanical and electrical faults 
such as unbalance, crack, rotor to stator rub, misalignment, and things like these areas. Besides 
unbalancing and misalignment, crack accounts as a prevalent deficiency in the rotor system. 
Because of the nature of this defect, i.e. can result in breaking down and serious damages to other 
rotating parts such as blades, this mysterious imperfection should be realized in its early stages. 
Many factors can involve in creating a crack and this fault can be categorized with consideration 
of its angle with the shaft’s central axis, or its depth. 

In the present research, a Deep learning procedure based on CNNs is used in the classification 
of healthy and cracked rotor systems with disparate crack depths. As the pre-process step, 
continuous wavelet transform and Short-time Fourier transform are exerted and the saved 
scalograms and spectrograms are introduced as input to the training process, and finally, the 
supervised network classifies the plots according to the rotor’s health conditions in three 
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categories. As the authors of this paper know any other researcher has not been using CNNs with 
time-frequency plots as the training dataset in the classification of cracked rotor systems. 

2. Previous works 

During recent years many researchers have worked on the various crack identification 
processes from analyzing time-domain responses to more sophisticated methods such as 
time-frequency procedures. Crack identification methods can be divided into various scopes, but 
two comprehensive classes are local and global procedures. Although some local procedures such 
as NDT can distinguish cracks in static mode, their disabilities in online crack identification propel 
scientists in developing and applying global procedures such as signal processing [1].  

Sekhar and Prabhu investigated the transient responses of a cracked rotor when it was crossing 
through the first critical speed; the crack was assumed to be a transverse type. To model the 
breathing behavior of the crack, a simple hinge model was considered. Continuous wavelet 
coefficients were used in demonstrating various factors on crack’s condition such as depth, 
start-up acceleration, and unbalanced eccentricity. In the paper, it was claimed that due to the 
presence of a crack some sub-harmonic phenomena appeared before the first critical speed in 
wavelet coefficients’ plots [2]. 

In 2016, Sekhar et al. compared different time-frequency methods in distinguishing three 
various defects, i.e. crack, misalignment, and rotor to stator rub in the rotating system. To do this, 
Sekhar calculated time-domain responses of the modeled systems that were suffering the three 
faults, then processed the vibration signals when the systems were crossing across their first 
critical speeds utilizing Hilbert-Huang transformation (HHT), STFT, and CWT. Sekhar asserted 
that CWT is a reliable tool in analyzing noisy signals while HHT is a more rapid transformation 
in online monitoring [3]. 

In 2016, Söffker et al. compared an older procedure, model-based, and a newer one, signal 
processing based on crack detection in a rotating system. For the former one, the  
PI-observer-based model was applied; on the other hand, for the latter one, a procedure was 
exerted based on support vector machine (SVM) and wavelet transform. In the end, the results of 
the two methods were compared [4].  

Gómez et al. studied cracked rotors characteristics in both theoretical and empirical operation 
conditions. In the theoretical modeling, it was assumed that the system was a Jeffcott rotor (with 
a central rotating disk and with inflexible bearings). Noticeable variations in energy levels were 
observed at first, second, and third harmonics. On the other side, in experimental investigation, 
nine crack situations were exerted in the rotor. Comparing theoretical and experimental outcomes, 
it was asserted that merely components could be the evident sign of the crack in analyzing 
steady-state operation [5]. 

In experimental work, in 2019, Zhao et al. firstly used probabilistic principal component 
(PPCA) and variational mode decomposition (VMD) to reduce noise from the accumulated 
signals. In the next stage, feature vectors are extracted for two different systems, a cracked rotor 
system, and a rotating shaft with misalignment. At the final step, an optimized CNN was applied 
in classifying the systems [6]. 

Shah et al. experimented influences of a crack in two circumstances. Firstly, a cracked-rotor 
system was investigated when the system was suffering unbalancing too. Secondly, the same 
cracked system was balanced properly and its vibration signals were captured. These two 
conditions were applied to variation in vibration pattern, and the angle of phase and its value would 
be observed. The variations in vibration signals are caused by the identification of crack’s 
properties (i.e. its depth and its place). To have a more obvious vision, a wavelet energy package 
(WEP) was applied in the introduction of the crack’s location; in the steady-state operation, and 
was recommended as key factors in crack detection [7]. 

Rezazadeh and Fallahy applied a hybrid method in the classification of a transversal 
cracked-rotor system with various crack depths. In this article, the collected vibration signals were 
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de-noised by employing discrete wavelet transform (DWT), then feature vectors were made 
employing Relative Wavelet Energy (RWE) and Wavelet entropy (WE) concepts. These feature 
vectors were introduced as the input for a multi-layer Perceptron network. The testing results 
showed the trained supervised learning classifier had reasonable capacity in classifying various 
cracked shafts [8].  

In 2020, Prabhakar worked on the transient response (during its shut-down) of a slant-cracked 
rotor system. The vibration signals were collected when the system was passing its first critical 
speed, and to simulate vibration responses, a finite element method (FEM) for flexural vibrations 
was applied. To this purpose, a harmonically varying exciting torque plus an arbitrary unbalance 
force were employed on the modeled rotating system. In this work, Sub-harmonic frequency 
components with the same properties were revealed in the frequency spectra (FFT graph); in 
addition, in the case of slant crack, these peaks were located at the critical speed of the 
rotor-bearing system. To find the crack’s location, the fundamental mode shapes of the rotor 
systems were processed through wavelet transform. Clearly, at the location of the crack, a peak 
was perceived in the spatial variation of the wavelet transform’s outcomes [9]. 

In [10] Kushwaha and Patel prepared a comprehensive review on the crack detection 
procedures in the rotor system. In this work, all methods that have been used were categorized. 

Briefly, in condition monitoring of cracked systems time-frequency procedures revealed 
higher accuracy and also capacity, because in presence of a crack in a rotating system the creation 
of some nonlinear components is unavoidable. Time-domain processes are not able to reveal these 
phenomena especially in transient operations such as start-up or shut-down.  

3. Materials and methods 

3.1. Rotor-bearing system’s equation of motion 

In theoretical analysis, a common rotor system consists of a shaft, disk, and flexible bearings 
and is shown in Fig. 1. For the assumed system, the equation of motion can be introduced as: 𝑀 𝑞 − Ω 𝐶 𝑞 + 𝐾 𝑞 = 𝑄 , (1)

where in the above equation matrices 𝑀, 𝐶, 𝐾 are mass, damping, and stiffness matrices 
respectively; 𝑄 is the force vector and 𝑞, 𝑞, and 𝑞 are the displacement, velocity, and acceleration 
vectors ordinary. To obtain these vectors and matrices, the results of [1, 11] are used; in these 
sources, the finite element method was employed in calculating mass, damping, and stiffness 
matrix for a Timoshenko beam element.  

 
Fig. 1. Schematic of the assumed rotor-bearing system 

After obtaining the matrices, a transverse crack should be modeled on the shaft. The schematic 
location of crack is shown in Fig. 2. Existing a crack on the rotor-baring system changes the 
flexibility of the element containing the crack, so by employing the Strain energy method, the 
flexibility matrix of a cracked element can be achieved [12, 13]. In this study, a rotor system with 
4 degrees of freedom in directions 𝑋 and 𝑌 is assumed. 
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Fig. 2. FEM model of the rotor and crack’s location 

If the flexibility matrix of a healthy element is 𝐶 , then the total flexibility matrix of the 
element that is suffering crack 𝐶  can be introduced as the sum of the healthy element’s 
flexibility matrix and additional flexibility that is resulted from crack, in the form of: 𝐶 = 𝐶 + 𝐶 . (2)

Here 𝐶  contains the additional flexibility that is caused due to crack in an element and can 
be introduced as: 

𝐶 = 1𝐹  𝑐̅ 𝑟 0 0 00 𝑐̅ 𝑟 0 00 0 𝑐̅ /𝑟 𝑐̅ /𝑟0 0 𝑐̅ /𝑟 𝑐̅ /𝑟 . (3)

In the above equation, 𝑐̅ = 𝑐̅ ; the amount of 𝐹  is stated in [14]. The elements of 𝐶  are 
calculated from the relations that are introduced in [12], and also the obvious remarks that are 
stated in [15] and in the Wolfram Mathematica. Fig. 3 represents the variations of the elements of 
the matrix 𝐶  in various crack depths. From Fig. 3 it can be seen that parallel with an increasing 
in the crack depth, the amount of compliance matrix’s element experienced a rise, too. It should 
be mentioned that these elements are non-dimensional and only are related to the crack’s depth 
and can be used for all cracked-rotor systems with different mechanical and electrical properties. 
After calculating the flexibility matrix for a cracked element by multiplying the total flexibility 
matrix of the cracked element, i.e. 𝐶 , in a transformation matrix, 𝑇 , stiffness matrix for a 
cracked element can be obtained. Similarly, for a healthy element by multiplying the 
transformation matrix in 𝐶  the related stiffness matrix can be achieved [12].  

 
Fig. 3. Variation of non-dimensional compliance coefficients by increasing crack’s depth 

3.2. Crack breathing behavior 

One of the main aspects of a crack in a rotating shaft that separates it from the other common 
faults is the crack’s breathing behavior. A crack can breathe during its rotation due to its narrow 
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edge and shaft’s heavyweight, so a crack produces nonlinear phenomenon in the vibration 
responses where its analyzing can be somewhat difficult. During recent years, many investigators 
have been studying this component. In an early work that until now is authenticated, Papadopoulos 
assumed that crack’s breathing behavior can be explained by a truncated cosine series [16]. Since 
that, Darpe [17] modeled breathing behavior utilizing a concept entitled” crack closure line 
(CCL)”, or in a more sophisticated work, Helen Wu et al. investigated the breathing behavior of a 
cracked-rotor in consideration to crack’s location. Numerical analysis in Abaqus software was 
applied to the finite element method’s models. Wu stated that by replacing crack location its 
breathing mechanism can be changed noticeably [18]. In this work, the proposed method by 
Papadopoulos [16] is exerted in simulating the breathing behavior. 

3.3. Calculation vibration signals 

After computing the cracked element’s stiffness matrix and assembling it with the other 
elements’ stiffness matrices using the finite element method, the rotor system’s total stiffness 
matrix is obtained. To obtain the system’s responses during its start-up, also forming a dataset as 
the input of the supervised network, the system’s mechanical and operational conditions have been 
changed. For instance, the mass of disk is varying between 4 kg to 5 kg, or the initial acceleration 
in changing from 15 to 115 rad/s2. Other variables are shown in Table 1. It should be noted that 
because we intend to consider the system when passing its first critical speed, and before the 
second one, the parameters are selected so that the system does not reach its second critical speed. 
In addition, system responses are calculated up to 12 seconds from its initial start-up because for 
the lightest mode, i.e. a 4 kg-disk and the greatest angular acceleration, i.e. 115 rad/s2, this is the 
maximum time before the system reaches its second critical speed. 

Table 1. Mechanical properties of the rotor-bearing-disc system 
Property Amount Property Amount 

Shaft’s Young’s 
modulus 2.08e11 and 2.08e10 Pa Disc’s mass 4 to 5 kg 

Shaft’s density 7780 to 7200 kg/m3  Disc’s diametral 
moment of inertia 0.01546 

Shaft’s diameter 3.5 to 2 cm Disc’s eccentricity 1e-5 to 3e-4 
Shaft’s length 0.5 to 1 m Bearing’s damping 85 to 100 N/m2  

Initial acceleration 15 to 115 rad/s2  Bearing’s stiffness 1e5 and 1.2e5 N/m 

The system equation of motion (Eq. (1)) is solved by numerical Houbolt time-marching 
procedure with interval 0.001 in MATLAB during the system start-up with the mentioned 
parameters in the above table, and three different crack’s conditions, i.e. without crack, crack with 
relative depths 0.32𝑟, and 0.56𝑟 where 𝑟 is the shaft radius. As an illustration, the vibration signals 
for the initial acceleration equal to 15 rad/s2, the disc’s eccentricity 0.1e-5 m, disc’s mass 4.4 kg, 
shaft’s density 7780 kg/m3, damping ratio 100 N/m2 , bearing stiffness 1e5 N/m, shaft diameter 
2 cm, Young’s modulus 2.08e11 Pa, and shaft length 0.5 m are plotted in Fig. 4 for the three shafts. 

From Fig. 4 it can be seen that by increasing crack depth some sub-harmonic components 
appeared before and after the first critical speed. Also, for the relatively shallow crack depth  
(𝑎 = 0.32𝑟) these changes are not very clear in the time-domain figure and cannot be introduced 
as a reliable tool in distinguishing crack in rotor system. To cover this deficiency, many 
researchers have been introducing various methods such as Fourier transform, Short-time Fourier 
transformation, Hilbert-Huang transformation, and Wavelet transformation that have the efficient 
capacity in the detection of shallow cracks [10]; in current work, two of these procedures are 
applied. 
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a) 

 
b) 

 
c) 

Fig. 4. Vibration signals of a) healthy, b) cracked with depth 𝑎 = 0.32𝑟, c) cracked with depth 𝑎 = 0.56𝑟 

3.4. Deep learning 

A Machine learning procedure that applies the deep neural network is called Deep Learning. 
While by adding more layers to the old-fashioned single-layer neural network scientists were 
expected to witness great improvement in the neural networks’ performance, in the empirical 
application the accuracy of the neural network decreased comparatively. Deep learning overcame 
the deep neural network’s three major issues, i.e. vanishing gradient, overfitting, and 
computational load by exerting suitable learning rules. These three factors were considered as 
impenetrable barriers to the proper training of deep neural networks [19].  

The hidden layers in Deep structured learning can be changed with consideration of the input 
data and the desired output. One of the well-known Deep Learning architectures is convolutional 
neural networks (CNNs) that have been exerted to computer vision, machine vision, signal 
processing, and areas like these. CNNs are considered as powerful and effective tools in 
classifying visual imagery [20]. 

 
Fig. 5. Schematic of deep learning and its relationship to deep neural network and machine learning 

3.5. Pre-processing of vibration signals 

To have a more reliable classification procedure, raw vibration signals should be processed 
before these signals are located as input in a well-trained multi-layer CNNs. Considering the 
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special nature of the signals in current work where nonlinear components have a great influence 
on the signals, time-frequency transformations account as powerful tools in the pre-processing 
stage. One of the efficient time-frequency methods in processing transient signals is continuous 
wavelet transform (CWT). The CWT of a signal, 𝑥 𝑡 , is the integral of the signal multiplied by 
scaled and shifted versions of a wavelet mother function Ψ and can be defined by [21]: 𝐶𝑊𝑇 𝑎. 𝑏 =  𝑥 𝑡 1|𝑎|  Ψ 𝑡 − 𝑏𝑎 𝑑𝑡. (4)

In the above relation 𝑏 and 𝑎 are the shifting and scaling parameters, ordinary; 𝑡 is the time in 
second. On the other hand, to have a comparison between other time-frequency transformations, 
the STFT is applied to the signals represented in Fig. 4, too. Short-time Fourier transform is based 
on the Fourier transform; this procedure divides a high-length signal into short-length sectors with 
tantamount length and after that calculates Fourier transform on each segment [22]. The STFT of 
a signal 𝑥 𝑡  can be described as: 

𝑋 𝑓𝑏 =  𝑥 𝑡 𝑒 ℎ 𝑡 − 𝑏 𝑑𝑡, (5)

where ℎ(𝑡 − 𝑏) is the window function, and 𝑓 is the sampling frequency. Fig. 6 and Fig. 7 
represent STFT spectrograms and wavelet scalograms, respectively for the signals of Fig. 4. 
Daubechies 10 wavelet (db10) is selected as the Wavelet Mother function, also scales are limited 
from 1:256. For STFT, the frequency threshold is selected between 0 to 128 Hz. 

 
a) 

 
b) 

 
c) 

Fig. 6. STFT spectrograms of a) healthy, cracked with depths b) 𝑎 = 0.32𝑟, c) 𝑎 = 0.56𝑟 

Since the CNNs method is based on the features extraction from pictorial objects such as 
images, to have a successful classification procedure, firstly a high-sample database is required. 
Secondly, the high-resolution images should be introduced as the input for the training step. For 
these reasons, plots that have been drawn by employing the time-frequency domain 
transformations can be accounted as trustworthy inputs into CNNs. To do this, two separate CNNs 
are trained suitably with two different datasets, i.e. CWT scalograms and STFT spectrograms. 
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Three classes, i.e. without crack- Class1, cracked system with relative crack depth 0.32𝑟 – Class2, 
and cracked system with relative crack depth 0.56𝑟 – Class3 are considered. For each class 
100 samples are obtained from various rotor-bearing-disc systems by the parameters have been 
mentioned in Table 1. Finally, these two 300-figure sets (300 samples for scalogram and 
300 samples for spectrogram) are considered as the dataset.  

 
a) 

 
b) 

 
c) 

Fig. 7. CWT scalograms of a) healthy, cracked with depths b) 𝑎 = 0. 𝑎, c) 𝑟32  = 0. 𝑟56  

4. Results 

In current study, a 25-layer AlexNet network is employed as the network. The first layer is 
Image Input with a dimension 227×227×3, the 23th is Fully connected layer, and the last one is 
the Classification layer. In addition, Softmax is employed as the transfer function in the 24th layer 
and Max Pooling, ReLU, Dropout, and Convolution are applied in the middle layers. 

Among all samples (i.e. 300 for each scalogram or spectrogram) 85 % of them are allocated to 
the training and validation, also the remaining 15 % of the figures are assigned to the testing stage. 
The below table represents the other settings for the applied network in MATLAB. 

Table 2. Options for the AlexNet network 
Property Amount Property Amount 

Maximum number of Epoch 10 Iteration per Epoch 25 
Minimum batch size 10 Maximum iteration 250 

Learning rate 1e-4 Number of layers 25 

After training and then testing the CNNs-based network for spectrogram and scalogram figures 
as input, in the testing step, both trained networks revealed the same accuracy, 95.5 %. Fig. 8 
shows the confusion matrices as the results of the testing steps. 

To have an analysis, from the above figures, both networks could recognize cracked rotors 
from healthy ones, among 45 samples as the testing stage, the 30 cracked ones have distinguished 
properly, but two samples belonged to Class 2, cracked rotor with 𝑎 = 0.32𝑟, have classified as 
Class 3. This mistake can be stem from the fact that since some samples were obtained in the low 
initial accelerations and a system with low density in the shaft, the Scalogram and Spectrogram of 
these situations are similar to high initial acceleration and high-density plots. On the whole, the 
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quality of images plays an important role in CNNs. The main benefit of this procedure is that in 
many current processes in the classification, such as artificial neural network, Support vector 
machine, 𝑘-nearest neighbors (𝑘-NN) algorithm, and other methods like these areas, feature 
extraction, and feature selection are considered as the significant stages in the method 
effectiveness. Although this procedure can be heavy in the calculation, the graphics processing 
unit (GPU) can solve this issue; the default feature extraction method from images can result in a 
rational accuracy, 95.5 %. 

 
a) 

 
b) 

Fig. 8. Confusion matrices for the networks with a) spectrogram, b) scalogram figures as input 

5. Conclusions 

In this study, by applying Deep learning procedure rotor-bearing-disc is classified based on its 
healthy condition. To begin, the system is modeled employing the finite element method, and its 
mass, stiffness, damping, and force matrices are extracted; crack in the system is modeled by 
applying strain energy procedure and extra flexibility of the crack is added to the element that 
contains a crack. After assembling the local matrices and creating global matrices, the system’s 
equation of motion is solved by employing the numerical Houbolt time-marching method and the 
vibration signals are calculated during the system’s start-up and for several conditions, i.e. 
300 samples. As the pre-process procedure, Continuous Wavelet transform and Short-time Fourier 
transform are exerted to the signals and the related figures are saved as the training data to the 
Deep Learning process. AlexNet network with 25 layers based on convolutional neural networks 
is applied as the used network. By training 85 percent of the data as the training process and 
15 percent of the data as the testing stage, the results of the trained network are shown in the form 
of confusion matrices. The reasonable accuracy of the trained network, i.e. 95.5 percent approves 
that the trained network in both Scalogram and Spectrogram based input data has a great capacity 
in the classification of cracked rotors. For future studies, a test rig can be designed and the real 
datasets can verify the accuracy of the trained network. 
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