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Abstract. Vibratory technological equipment is widely used in various industries. The vast 
majority of existing vibratory machines are equipped by single- or double-mass oscillatory 
systems and inertial or electromagnetic vibration exciters. The novelty of the present study 
consists in development and investigation of the three-mass oscillatory system with crank 
excitation mechanism. Such a system can be effectively implemented in various designs of 
vibratory equipment, e.g., conveyers, separators, feeders, shakers, batchers, sieves, etc. Based on 
the mathematical model derived in the form of differential equations of the system’s motion, there 
are deduced the analytical expressions for determining its inertia-stiffness parameters ensuring the 
energy-efficient resonance operation mode. Using the solid model of the vibratory 
conveyer-separator designed in SolidWorks software, there is determined the input data for 
calculating the parameters of the oscillatory system. Based on the results of calculations, the 
numerical modelling of the system’s motion is carried out in MathCad software. In order to verify 
the correctness of the theoretical investigations, the simulation of the system’s motion is carried 
out in SolidWorks Motion software. The comparative analysis of the results of numerical 
modelling and computer simulation is performed, and the prospects of their implementation are 
considered. 
Keywords: vibratory technological equipment, oscillatory system, vibration exciter, 
mathematical model, resonance operation mode, numerical modelling, computer simulation. 

1. Introduction 

The problems of reducing the energy consumption of various technological equipment are 
currently of significant interest among the scientists and designers. One of the ways of improving 
the energy efficiency of vibratory machines consists in implementation of three-mass oscillatory 
systems ensuring the possibilities of operation in so-called “multi-frequency” and 
“inter-resonance” modes [1-3]. Herewith, the vibrations can be excited by electromagnetic 
vibrators [1], air-operated vibrators [2], inertial drives [3-6], eccentric-type and crank mechanisms 
[7-10]. Each type of vibration exciter has its specific advantages and drawbacks, as well as the 
areas of implementation. The problems of parametric synthesis and dynamic behavior analysis of 
various oscillatory systems with electromagnetic and inertial vibrators are thoroughly investigated 
in numerous publications, e.g. [1, 3-6], whereas the air-operated vibrators are not widely used in 
industrial vibratory equipment because of their design complexity and low efficiency [2]. 

The crank excitation mechanisms are effectively used for actuating single- and double-mass 
oscillatory systems of vibratory machines [7-10]. However, the problems of exciting the 
oscillations of three-mass systems with the help of crank mechanisms are currently of significant 
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interest. The novelty of the present paper consists in developing the technique of determining the 
inertia-stiffness parameters of the three-mass vibratory system excited by the crank mechanism, 
as well as modelling and simulation of its motion under near-resonance conditions. 

2. Mathematical model and technique of determining the inertia-stiffness parameters of the 
three-mass vibratory system with crank excitation mechanism 

The discrete three-mass vibratory system to be analyzed is presented in Fig. 1. The upper mass 𝑚ଵ and the intermediate mass 𝑚ଶ are connected by the spring 𝑘ଵଶ. The intermediate mass 𝑚ଶ is 
supported on the unmovable (stationary) base by two springs 𝑘௜௦ considered as vibration isolators. 
The excitation mechanism consists of the crank 1 hinged to the intermediated mass 𝑚ଶ, and the 
connecting rod 2 simultaneously hinged to the crank 1 and to the slider 3. The lower mass 𝑚ଷ is 
connected to the slider 3 of the crank mechanism by the spring 𝑘ଶଷ.  

Let us consider the case when the masses 𝑚ଵ, 𝑚ଶ, 𝑚ଷ oscillate translationally relative to one 
another due to the uniform rotation of the crank 1 described by the constant angular speed (circular 
frequency) 𝜔. The motion of the system can be completely described by the coordinates 𝑥ଵሺ𝑡ሻ, 𝑥ଶሺ𝑡ሻ  and 𝑥ଷሺ𝑡ሻ , which define the displacements of the masses 𝑚ଵ,  𝑚ଶ,  𝑚ଷ  from the 
corresponding equilibrium positions at any time 𝑡. 

 
Fig. 1. Three-mass vibratory system: 1 – crank; 2 – connecting rod; 3 – slider (piston) 

The differential equations of motion of the considered three-degree-of-freedom system can be 
written in the following form: 

⎩⎪⎨
⎪⎧𝑚ଵ𝑥ሷଵ + 𝑘ଵଶሺ𝑥ଵ − 𝑥ଶሻ = 0,𝑚ଶ𝑥ሷଶ + 𝑘௜௦𝑥ଶ + 𝑘ଵଶሺ𝑥ଶ − 𝑥ଵሻ + 𝑘ଶଷ ቈ𝑥ଶ − 𝑥ଷ − ቆ𝜀ଵ cosሺ𝜔𝑡ሻ + ට𝜀ଶଶ − 𝜀ଵଶ sinଶሺ𝜔𝑡ሻቇ቉ = 0,
𝑚ଷ𝑥ሷଷ + 𝑘ଶଷ ቈ𝑥ଷ − 𝑥ଶ + ቆ𝜀ଵ cosሺ𝜔𝑡ሻ + ට𝜀ଶଶ − 𝜀ଵଶ sinଶሺ𝜔𝑡ሻቇ቉ = 0,  (1) 

where 𝜀ଵ, 𝜀ଶ are the lengths of the crank and of the connecting rod, respectively. 
Let us assume that 𝜀ଶ ≫ 𝜀ଵ; this allows us to consider the periodic (harmonic) excitation of the 

vibratory system. In addition, let us neglect the stiffness of vibration isolators ሺ𝑘௜௦ = 0ሻ, because 
its value is considerably smaller than the values of 𝑘ଵଶ and 𝑘ଶଷ ሺ𝑘௜௦ ≪ 𝑘ଵଶ; 𝑘௜௦ ≪ 𝑘ଶଷሻ. In such a 
case, the system of differential Eq. (1) can be rewritten as follows: 

ቐ𝑚ଵ𝑥ሷଵ + 𝑘ଵଶሺ𝑥ଵ − 𝑥ଶሻ = 0,𝑚ଶ𝑥ሷଶ + 𝑘ଵଶሺ𝑥ଶ − 𝑥ଵሻ + 𝑘ଶଷሺ𝑥ଶ − 𝑥ଷሻ = 𝑘ଶଷ𝜀ଵ cosሺ𝜔𝑡ሻ ,𝑚ଷ𝑥ሷଷ + 𝑘ଶଷሺ𝑥ଷ − 𝑥ଶሻ = −𝑘ଶଷ𝜀ଵ cosሺ𝜔𝑡ሻ .  (2)
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In the case when the system is subjected to the harmonic force 𝐹 = 𝑘ଶଷ𝜀ଵ cosሺ𝜔𝑡ሻ, we assume 
the steady-state solutions to be as follows: 𝑥ଵ = 𝑋ଵ cosሺ𝜔𝑡ሻ ,     𝑥ଶ = 𝑋ଶ cosሺ𝜔𝑡ሻ ,     𝑥ଷ = 𝑋ଷ cosሺ𝜔𝑡ሻ, (3)

where 𝑋ଵ, 𝑋ଶ, 𝑋ଷ are the amlitude values of displacements of the corresponding oscillating masses 
that depend on 𝜔 and on the system’s parameters. 

Substitution of Eq. (3) into Eq. (2) leads to: 

ቐሺ−𝑚ଵ𝜔ଶ + 𝑘ଵଶሻ𝑋ଵ − 𝑘ଵଶ𝑋ଶ = 0,−𝑘ଵଶ𝑋ଵ + ሺ−𝑚ଶ𝜔ଶ + 𝑘ଵଶ + 𝑘ଶଷሻ𝑋ଶ − 𝑘ଶଷ𝑋ଷ = 𝑘ଶଷ𝜀ଵ,−𝑘ଶଷ𝑋ଶ + ሺ−𝑚ଷ𝜔ଶ + 𝑘ଶଷሻ𝑋ଷ = −𝑘ଶଷ𝜀ଵ.  (4)

System Eq. (4) represents three algebraic equations in the unknowns 𝑋ଵ , 𝑋ଶ , 𝑋ଷ . The 
determinant of the coefficients of 𝑋ଵ, 𝑋ଶ, 𝑋ଷ is equal to: ∆௑= 𝑘ଵଶଶ ሺ−𝑚ଷ𝜔ଶ + 𝑘ଶଷሻ + 𝑘ଶଷଶ ሺ−𝑚ଵ𝜔ଶ + 𝑘ଵଶሻ       −ሺ−𝑚ଵ𝜔ଶ + 𝑘ଵଶሻሺ−𝑚ଶ𝜔ଶ + 𝑘ଵଶ + 𝑘ଶଷሻሺ−𝑚ଷ𝜔ଶ + 𝑘ଶଷሻ = 𝑚ଵ𝑚ଶ𝑚ଷ𝜔଺       −ሾ𝑘ଵଶ𝑚ଷሺ𝑚ଵ + 𝑚ଶሻ + 𝑘ଶଷ𝑚ଵሺ𝑚ଶ + 𝑚ଷሻሿ𝜔ସ + 𝑘ଵଶ𝑘ଶଷሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻ𝜔ଶ. (5)

Equalizing the determinant ∆௑ in Eq. (5) to zero, let us derive the frequency (characteristic) 
equation, whose positive roots are the natural frequencies of the system’s oscillations: 

𝜔ଵ,ଶ = ඪ 𝑘ଵଶ𝑚ଷሺ𝑚ଵ + 𝑚ଶሻ + 𝑘ଶଷ𝑚ଵሺ𝑚ଶ + 𝑚ଷሻ ±±ට൫𝑘ଵଶ𝑚ଷሺ𝑚ଵ + 𝑚ଶሻ + 𝑘ଶଷ𝑚ଵሺ𝑚ଶ + 𝑚ଷሻ൯ଶ − 4𝑘ଵଶ𝑘ଶଷ𝑚ଵ𝑚ଶ𝑚ଷሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻ2𝑚ଵ𝑚ଶ𝑚ଷ . (6)

Setting the values of the natural frequencies, and substituting them into Eq. (6), let us derive 
the analytical expressions for determining the stiffness coefficients 𝑘ଵଶ and 𝑘ଶଷ: 

⎩⎪⎨
⎪⎧𝑘ଵଶ = 𝑚ଵሾ𝑚ଶሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻሺ𝜔ଵଶ + 𝜔ଶଶሻ ± 𝐻ሿ2ሺ𝑚ଵ + 𝑚ଶሻሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻ ,𝑘ଶଷ = 𝑚ଷሾ𝑚ଶሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻሺ𝜔ଵଶ + 𝜔ଶଶሻ ∓ 𝐻ሿ2ሺ𝑚ଶ + 𝑚ଷሻሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻ , (7)

where: 

𝐻 = ඨ𝑚ଶሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻ ቈ 𝑚ଶሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻሺ𝜔ଵସ + 𝜔ଶସሻ −−2൫𝑚ଶሺ𝑚ଶ + 𝑚ଷሻ + 𝑚ଵሺ𝑚ଶ + 2𝑚ଷሻ൯𝜔ଵଶ𝜔ଶଶ቉. (8)

Therefore, the input parameters for calculating the inertia-stiffness parameters of the 
three-mass vibratory system are following: the values of two natural frequencies 𝜔ଵ, 𝜔ଶ, and two 
masses 𝑚ଵ, 𝑚ଶ. The value of the mass 𝑚ଷ can be estimated taking into account the following 
assumptions: the radicand in Eq. (8) and the numerators in Eq. (7) must take positive values: 𝑚ଶሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻሺ𝜔ଵସ + 𝜔ଶସሻ − 2൫𝑚ଶሺ𝑚ଶ + 𝑚ଷሻ + 𝑚ଵሺ𝑚ଶ + 2𝑚ଷሻ൯𝜔ଵଶ𝜔ଶଶ > 0 ⇒       ⇒ 𝑚ଷ < 𝑚ଶሺ𝑚ଵ + 𝑚ଶሻሺ𝜔ଵଶ − 𝜔ଶଶሻଶ4𝑚ଵ𝜔ଵଶ𝜔ଶଶ − 𝑚ଶሺ𝜔ଵଶ − 𝜔ଶଶሻଶ, (9)𝑚ଶሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻሺ𝜔ଵଶ + 𝜔ଶଶሻ − 𝐻 > 0 ⇒    𝑚ଷ > 0. (10)
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To plot the frequency-response curves (or, so-called, amplitude-frequency characteristics) of 
the three-mass vibratory system, let us solve Eq. (4) for the unknowns 𝑋ଵ, 𝑋ଶ, 𝑋ଷ: 

𝑋ଵ = 𝜀ଵ𝑘ଵଶ𝑘ଶଷ𝑚ଷ𝜔ଶ∆௑ ,     𝑋ଶ = 𝜀ଵ𝑘ଶଷ𝑚ଷ𝜔ଶሺ𝑘ଵଶ − 𝑚ଵ𝜔ଶሻ∆௑ ,  𝑋ଷ = 𝜀ଵ𝑘ଶଷ𝜔ଶሺ𝑘ଵଶሺ𝑚ଵ + 𝑚ଶሻ − 𝑚ଵ𝑚ଶ𝜔ଶሻ∆௑ . (11)

3. Results of numerical modelling and computer simulation 

3.1. Design peculiarities of the vibratory machine 

The vibratory conveyer-separator was designed in SolidWorks software and implemented as 
an experimental prototype (see Fig. 2). It consists of the upper conveying-separating tray 1, 
intermediate frame 2 supported on the unmovable (stationary) base 6 by vibration isolators 4, and 
the crank excitation mechanism 5 installed between the intermediate frame 2 and the lower frame 
(disturbing body) 3. The movable members of the machine (upper tray 1, intermediate frame 2, 
disturbing body 3) are connected to one another by means of flat springs 7 and 8. 

In order to carry out further investigations, it is necessary to prescribe the input parameters 
using the machine’s solid model and experimental prototype: the mass of the tray 𝑚ଵ = 83.7 kg; 
the mass of the intermediate frame 𝑚ଶ = 62.1 kg; the first and the second natural frequencies 𝜔ଵ = 95 rad/s, 𝜔ଶ = 104 rad/s; the lengths of the crank and the connecting rod 𝜀ଵ = 0.019 m, 𝜀ଶ = 0.078 m. Substituting the input data into Eqs. (7-9), we can estimate the value of the lower 
mass 𝑚ଷ and calculate the values of the stiffness coefficients 𝑘ଵଶ, 𝑘ଶଷ: 0 < 𝑚ଷ < 0.894 kg; let us 
adopt 𝑚ଷ = 0.313 kg; 𝑘ଵଶ = 3.794∙105 N/m, 𝑘ଶଷ = 2.865∙103 N/m for the first case (see Eq. (7)), 
or for the second case (see Eq. (7)) 𝑘ଵଶ =  3.28∙105 N/m, 𝑘ଶଷ =  3.314∙103 N/m. In further 
investigations, let us accept the first case for the calculated values of 𝑘ଵଶ, 𝑘ଶଷ. 

 
Fig. 2. Vibratory conveyer-separator with crank excitation mechanism: 1 – upper conveying-separating 

tray; 2 – intermediate frame; 3 – lower frame (disturbing body); 4 – vibration isolators;  
5 – crank excitation mechanism; 6 – unmovable (stationary) base; 7, 8 – flat springs 

3.2. Numerical modelling of the system’s motion in MathCad software 

Using Eq. (11), let us plot the frequency-response curves (or, so-called, amplitude-frequency 
characteristics) of the considered three-mass vibratory system with the help of MathCad software 
(see Fig. 3). Based on the obtained results, it can be concluded that the resonance effects take place 
at the frequencies 𝜔ଵ = 95 rad/s, 𝜔ଶ = 104 rad/s, which correspond to the ones prescribed by the 
input parameters. Numerical solution of the differential Eq. (2) has been obtained with the help of 
the Runge-Kutta method using MathCad software taking into account the following initial 
conditions: 𝑥ଵሺ0ሻ = 0; 𝑥ଶሺ0ሻ = 0; 𝑥ଷሺ0ሻ = 0; 𝑥ሶଵሺ0ሻ = 0; 𝑥ሶଶሺ0ሻ = 0; 𝑥ሶଷሺ0ሻ = 0. As an example, 
the plot of forced-vibration response of the upper oscillating mass (time dependence of the mass’s 
displacement from its equilibrium position) is presented in Fig. 4. The vibratory system excited at 
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the forced frequency 𝜔 = 99.5 rad/s runs into the steady-state operation mode in 2-3 s after the 
starting. The maximal displacement of the upper oscillating mass from its equilibrium position, 
i.e., the amplitude of vibration of the conveying-separating tray, is equal to 5 mm. 

 
Fig. 3. Frequency-response curves (or, so-called, 

amplitude-frequency characteristics) of the 
considered three-mass vibratory system 

 

 
Fig. 4. Forced-vibration response of the upper 

oscillating mass (time dependence of displacement  
of the conveying-separating tray from  

its equilibrium position) 

3.3. Computer simulation of the system’s motion in SolidWorks software 

In order to verify the correctness of the results obtained by theoretical investigations and 
numerical modelling, let us carry out computer simulation of the vibratory system’s motion in 
SolidWorks Motion software. The corresponding solid model is presented in Fig. 5. It consists of 
the upper oscillating body 1 (𝑚ଵ = 83.7 kg), which is connected by the spring 7 (𝑘଻ = 𝑘ଵଶ = 
3.794∙105 N/m) with the intermediate oscillating body 2 (𝑚ଶ = 62.1 kg). The body 2 is supported 
by the spring 4 (vibration isolator) on the unmovable (stationary) base 6. The crank excitation 
mechanism 5 is attached to the body 2, and the hinge of its pusher is connected with the spring 8 
(𝑘଼ = 𝑘ଶଷ = 2.865∙103 N/m) joined to the lower oscillating body 3 (𝑚ଷ = 0.313 kg). All the other 
input simulation parameters correspond to the ones prescribed for numerical modelling: forced 
frequency (angular velocity of the crank rotation) 𝜔 = 99.5 rad/s; the lengths of the crank and the 
connecting rod 𝜀ଵ = 0.019 m, 𝜀ଶ = 0.078 m. The results of computer simulation are presented as 
the plot of forced-vibration response of the upper oscillating body (time dependence of the body’s 
displacement from its equilibrium position, Fig. 5), and are in satisfactory agreement with the 
results of numerical modelling (Fig. 4). 

 
Fig. 5. Simulation model of the vibratory system and the forced-vibration response of the  

upper oscillating body (time dependence of its displacement from the equilibrium position):  
1, 2, 3 – upper, intermediate, and lower oscillating body, respectively; 4 – vibration isolator;  

5 – crank excitation mechanism; 6 – unmovable (stationary) base; 7, 8 – springs 

4. Conclusions 

Based on the carried out investigations, the following conclusions can be drawn: 



DETERMINATION OF INERTIA-STIFFNESS PARAMETERS AND MOTION MODELLING OF THREE-MASS VIBRATORY SYSTEM WITH CRANK EXCITATION 
MECHANISM. VITALIY KORENDIY, OLEKSII LANETS, OLEKSANDR KACHUR, PETRO DMYTERKO, ROMAN KACHMAR 

12 VIBROENGINEERING PROCEDIA. MARCH 2021, VOLUME 36  

1) The three-mass oscillatory systems with crank excitation mechanisms are of significant 
interest among the researchers and designers of vibratory equipment because of their design 
simplicity, reduced energy consumption, improved possibilities of frequency and amplitude 
regulation in accordance with the technological requirements etc. 

2) The simplified diagram of the three-mass vibratory system has been considered; the 
differential equations describing the motion of the oscillating masses have been derived; the 
analytical expressions allowing determination of the inertia-stiffness parameters of the system 
have been deduced; the frequency-response dependencies have been proposed. 

3) Prescribing the input parameters obtained on the basis of solid modelling of the vibratory 
conveyer-separator in SolidWorks software and implementing it as an experimental prototype, the 
numerical and computer simulation of the system’s motion has been carried out; the results of 
theoretical investigations (numerical modelling) have been compared with the results of computer 
simulation, and the conclusion about their satisfactory agreement has been drawn. 

Prescribing the masses 𝑚ଵ =  83.7 kg, 𝑚ଶ =  62.1 kg, and the natural frequencies  𝜔ଵ =  95 rad/s, 𝜔ଶ =  104 rad/s, there have been determined the values of the lower mass  𝑚ଷ = 0.313 kg, and the stiffness coefficients 𝑘ଵଶ = 3.794∙105 N/m, 𝑘ଶଷ = 2.865∙103 N/m. The 
oscillations of the three-mass vibratory system of the conveyer-separator have been excited by the 
crank mechanism characterized by the lengths of the crank and the connecting rod 𝜀ଵ = 0.019 m, 𝜀ଶ = 0.078 m. The numerical modelling and computer simulation showed that at the forced 
frequency 𝜔 = 99.5 rad/s the amplitude of vibration of the upper tray reaches 5 mm. 

The results of numerical modelling and computer simulation can be used in further 
investigations on the subject of the present paper while analyzing all the other kinematic 
parameters of the masses’ oscillations, in particular, the velocity and acceleration of the tray, 
which characterize the conveying speed and the conveying regime (detached (lifted-off) or 
non-detached) for different types of products (bulky, loose, piecewise etc.). 
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