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Abstract. Sinusoidal parameter estimation for determining frequency position and amplitude is 
challenging for noisy short vibration signals, e.g. from machines or human vibrations. In this 
paper, we propose the “Trimmed Window Discrete Fourier Transform” (TWDFT) estimator, 
which uses for every frequency a one-point discrete Fourier transform (DFT) to determine the 
corresponding spectral amplitude. To avoid leakage effects, it cuts the time interval so that it 
corresponds to an integer number of period durations. To evaluate the estimator performance, we 
compare it with relevant estimators such as the Cramer-Rao lower bound (CRLB) and the spectral 
spline interpolation applied on a noisy mono-frequent test signal with a fractional frequency. For 
the estimated parameters, the mean squared errors (MSE) are calculated and compared as a 
function of the signal-to-noise ratio (SNR). The advantages of the TWDFT estimator can be seen 
over the whole SNR range. The TWDFT estimates are better than the fast Fourier transform (FFT) 
starting at a SNR of –6 dB. At a SNR of 30 dB, the estimator meets the real value of the frequency 
and reaches similar results as the CRLB. The application of the TWDFT estimator as a short-time 
analysis on a vibration signal of a tram gearbox shows a significantly more differentiated 
time-frequency analysis compared to a short-time Fourier transform (STFT). 
Keywords: Frequency and amplitude estimation, aperiodic and multi-frequency signals, DFT, 
noise, Cramer-Rao lower bound, signal segmentation, tram gearbox, structure-borne noise, 
predictive maintenance. 

1. Introduction 

The estimation of the correct frequencies and amplitudes of spectral information is necessary 
for realizing a frequency analysis and estimate the signal power (amplitude) of multi-frequency 
signals.  Such estimators are essential in vibration-based machine diagnostics [1, 2]. Kinematic 
damage frequencies, e.g. from rolling bearings and gears, are investigated to detect a specific 
damage. Thereby a more differentiated diagnosis can be realized based on the exact frequency 
position with respect to time. Last but not least more effective countermeasures for damage 
prevention can be done. 

In literature, a large number of estimation methods for the frequency position and amplitude 
are available after performing a DFT or FFT, for example the interpolation or iterative 
interpolation between 3 to 5 discrete neighbouring spectral lines [3-13]. Further scientific works 
solve the estimation problem by means of iterative optimization methods [14-20] and still others 
use model based methods, e.g. by estimating the order of the model [13, 21, 22]. In case of 
multi-frequent and noisy signals, a DFT-based iterative approximation algorithm can be applied 
for the detection of spectral components [23]. Thereby a model order estimation should be carried 
out to determine the relevant number of frequencies with a certain risk that undetected frequencies 
can be interpreted as noise components [13]. Other approaches such as the Chirp-Z transform 
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(CZT) or the ZoomFFT (ZFFT) are narrow-band analysis techniques [24-26], which are 
computational efficient and estimate therefore the spectrum during the spectral calculation process. 
The ZFFT realizes the same frequency resolution as the standard FFT, even if it is calculated based 
on a shorter time signal segment. The short signal segment is generated from the original signal 
by a simple decimation, which reduces the maximal bandwidth around a selectable centre 
frequency. Both CZT and ZFFT achieve an improvement in frequency estimation, but are limited 
in terms of frequency resolution and they can only calculate a small portion of the entire spectrum 
around the centre frequency [27, 28]. 

Another approach for spectrum estimation uses integer periodic segments of mono-frequent 
signals. The segment length is optimized by an iterative search for one instantaneous specific 
signal frequency [29] followed by an FFT. These methods are used to analyse harmonic power 
signals [30-32].  

However, the problem generally lies in the time-frequency resolution when performing a 
time-frequency analysis, such as the short-time Fourier transform (STFT). A low frequency 
resolution is realized due to the short signal segments, so that a sinusoidal parameter estimation is 
required to improve the time-frequency correspondence [1]. Large signals are thereby split into 
many small segments, which are subjected to a discrete Fourier transform (DFT) or fast Fourier 
transform (FFT) to calculate the amplitude spectrum. Typically, these short segments reduce the 
resolution in the frequency domain, so that a deviation occurs in the calculation of the frequency 
position and the corresponding amplitude with respect to the true sinusoidal parameters [33]. In 
the frequency domain, if there is an interesting frequency within the resolution interval, it becomes 
impossible to calculate it. Furthermore, in most cases the occurring and random frequencies are 
not a multiple of the frequency resolution ∆𝑓 in the amplitude spectrum, which is not practical. In 
Eq. (1), the distance ∆𝑓 between two spectral lines is described as the reciprocal value of the signal 
duration 𝑡: 
∆𝑓 1𝑡 . (1)

 

 
a) 

 
b) 

Fig. 1. a) Mono-frequent signals (𝑓  4.2 Hz, 𝑓  = 280 Hz) with integer periods (red, 𝑁  400),  
fractional number of periods (blue, 𝑁  280), fractional number of periods with Hanning window  

(green, 𝑁  280) and the Hanning window itself (black); b) corresponding amplitude 
 spectra of the three signals (red, blue, green) and the real signal frequency (black) 

Another source of inaccuracy are the aperiodic properties of finite and multi-frequency signals. 
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This non-integer “abort” of the signal periods leads to a smearing of the amplitude spectrum in 
the so called leakage effect [33]. Thereby the amplitude calculation is not correct since the missing 
components are spread to neighbouring spectral components. Nevertheless, the use of various 
window functions reduces the leakage effect. For this purpose, an exemplary data set for the 
visualisation of the mentioned signal theoretical basics is presented in Fig. 1. The blue signal is 
non-windowed and it has a fractional number of periods. After applying the FFT algorithm the 
frequency 𝑓 = 4.2 Hz is not computed correctly with regard to its position and amplitude. The 
reasons for this are the limitations due to the signal time and the leakage effect. In comparison, 
the same signal is evaluated using the Hanning window (green), which is suitable for a large 
number of cases. The calculation of the left and right amplitudes for the same signal frequency is 
more accurate. Nevertheless, a reduction of the leakage effect around the frequency of 4 Hz is 
observed. This is recognizable by the lower side lobes (from 2 Hz to 6 Hz), which is associated 
with the broadening of the main lobe. 

If the mono-frequency signal has an integer period (Fig. 1(a), red signal), the calculation of the 
amplitude and the frequency in Fig. 1(b) is exact since the reciprocal value of the signal duration 
(𝑡 ≈  1.43 s, at a sampling frequency 𝑓  = 280 Hz and a sample number 𝑁 = 400) is an integer 
divider of the searched signal frequency. The leakage effect does not occur because the frequency 𝑓 corresponds to a multiple of the discrete frequency resolution Δ𝑓. For multi-frequency signals 
only one fundamental frequency and its harmonics form the multiple of the discrete frequency 
step.  

The main contribution of this article is the introduction of a new estimator for sinusoidal 
parameters and its test on real noisy multi-frequency vibration signals of a tram gearbox for 
accurate time-frequency analyses. For this we propose to overcome these resolution problems by 
increasing the resolution in the frequency domain together with a frequency-dependent integer 
periodic signal trimming. The article is divided into three main parts. In chapter 2, the approach 
for estimating the frequency and amplitude of aperiodic and multi-frequency signals is presented. 
By using a uniform data set, a simulation study is presented in chapter 3 to investigate the influence 
of the window functions on the estimated results concerning frequency and amplitude. For this 
purpose, the mean squared error (MSE) of the developed estimator is compared with conventional 
estimators. These are, e.g. the Cramer-Rao lower bound (CRLB) [3-6], [27, 28] and [34, 35], 
which represents the lower limit for the MSE of an estimator and the spline interpolation of at 
least two spectral lines. In chapter 4, the estimator is applied to real vibration signals of a tram 
gearbox to evaluate its performance in practice. For this purpose we compare 2 time-frequency 
analyses, where one is based on STFT and the other is based on short-time TWDFT. To validate 
the estimation results, the time-dependent courses of the tooth mesh frequencies in the 
spectrograms are compared with the courses of the tooth mesh frequencies calculated from speed 
measurement data and gear teeth number. Finally, we provide a summary and an outlook. 

2. TWDFT: trimmed window discrete Fourier transform 

In this section, we introduce a novel method for sinusoidal parameter estimation based on a 
frequency-dependent integer periodic signal trimming. After its introduction, we study its features 
as a basis for further investigations. 

2.1. Frequency-dependent integer periodic signal trimming 

Based on the DFT algorithm and its mathematical expression with a signal length of 𝑁 in 
Eq. (2), a method for estimating the spectral components and the amplitudes of multi-frequency 
aperiodic signals is presented: 
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𝑋 𝑘 𝑥 𝑛 𝑒 ,      𝑘 0, 1, 2, … ,𝑁 − 1. (2)

The window length 𝑁 is selected for every 𝑘th frequency line in a manner that in the trimmed 
signals of 𝑥 𝑛  are always 𝑘-dependent integer periods (Fig. 2). In this way, the variable window 
length 𝑁 is a function of 𝑘 and depends therefore on the frequency 𝑓. 

 
Fig. 2. Schematic diagram of the Trimmed Window Discrete Fourier Transform (TWDFT) approach 

Subsequently, the DFT algorithm is applied on a frequency-dependent sample number 𝑁 . In 
Eq. (3-10) the derivation of 𝑁  is described. First, the existing frequency-dependent number of 
periods 𝑃 ,  is determined: 𝑃 , 𝑓𝑁∆𝑡, (3)

where ∆𝑡 is the sampling time – this is the time between the acquisition of two samples. In the 
following step, the number of integer periods 𝑃  of the corresponding frequency is determined 
by rounding (Gaussian brackets): 𝑃 , 𝑃 , . (4)

The frequency-dependent signal duration 𝑡  is derived by dividing the number of integer 
periods 𝑃  by the corresponding frequency: 

𝑡 𝑃 ,𝑓 . (5)

The theoretical number of samples 𝑁 ,  associated with 𝑡  is determined by dividing 𝑡  by 
the sampling time ∆𝑡 as follows: 𝑁 , 𝑡∆𝑡. (6)
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Since the 𝑁  can only be a positive integer, 𝑁  is determined by rounding 𝑁 , : 

𝑁 𝑁 , ⌊𝑓𝑁∆𝑡⌋𝑓∆𝑡 . (7)

The calculation of 𝑁  for integer periods is not sufficient to calculate an exact amplitude for 
the fractional frequency 𝑓 = 4.2 Hz from the example in Fig. 1. However, in order to be able to 
perform an evaluation between two spectral lines, the domain of 𝑘 has to be increased according 
to Eq. (2). Therefore, if the desired frequency resolution ∆𝑓  is known, the domain of 𝑘  is as 
follows: 𝑘 0, … ,𝑁 − 1∆𝑓  , (8)

where 𝑘  is the index of the frequency. Then the frequency 𝑓 results in: 

𝑓 𝑘 ∆𝑓 1𝑡 𝑘 ∆𝑓 1𝑁∆𝑡 . (9)

The additional term 1 ⁄ 𝑡 in Eq. (9) indicates that the signal cannot contain whole periods of 
frequencies smaller than 1 ⁄ 𝑡 Hz. For example, a signal with a duration of 𝑡 = 1 s will not contain 
a whole period of a signal component with a frequency 𝑓 < 1 Hz. 

With respect of Eq. (7) and Eq. (9), the calculation of 𝑁  is as follows: 

𝑁 𝑘 ∆𝑓 𝑁∆𝑡 1𝑘 ∆𝑓 ∆𝑡 1𝑁 . (10)

 
Fig. 3. Section of the frequency-dependent sample number 𝑁  from a signal  

with 280 samples and a desired frequency resolution of ∆𝑓  = 0.01 Hz 

Fig. 3 shows 𝑁  from a signal with 𝑓  = 280 Hz and 𝑁 = 280 like the blue signal from Fig. 1(a) 
with a desired frequency resolution of ∆𝑓  = 0.01 Hz. In order to calculate an adjusted signal 
length, also for fractional frequencies according to Eq. (10), ∆𝑓  is set to 0.01 Hz. It can be seen 
that for integer frequencies (e.g. 1 Hz, 2 Hz, etc.) the complete sample number (𝑁 = 280, “Upper 
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Limit”) is always used since these frequencies are already represented in the signal by integer 
periods. For fractional frequencies, the sample number is trimmed down to 𝑁  = 140 as the “Lower 
Limit”, so that the signal is available as a whole-period signal corresponding to a specific 
frequency. The lower frequency limit can be determined according to Eq. (1), because no 
frequency can be estimated below it. The upper frequency limit is predefined according to the 
sampling theorem – for frequencies near the upper frequency limit, 𝑁  is close to 𝑁. The “Points 
of Discontinuity” are therefore discussed in more detail in subsection 2.3. 

2.2. Substitution of the continuous frequency 𝒇 

To calculate the discrete Fourier spectrum of a sampled signal 𝑥[𝑛], the Fourier spectrum is 
approximated by neglecting the small terms according to Eq. (11), so that only 𝑁 frequency values 
are derived from 𝑁 sample: 

𝑋 𝑓 = 𝑥[𝑛]𝑒 ∆ ≈ 𝑥[𝑛]𝑒 ∆ . (11)

For DFT calculation, only 𝑁  equidistant samples 𝑘𝑓 /𝑁  (where 𝑘 = 0,…, 𝑁 − 1 ) of the 
Fourier spectrum 𝑋 𝑓  are determined in the interval [0, 𝑓 ] . If the continuous variable 𝑓 in 
Eq. (11) is replaced by the discrete variable 𝑘𝑓 /𝑁, the result is the usual expression for the DFT 
in Eq. (2) [33]. By an exponent comparison of Eq. (11) and Eq. (2), it can be seen that: 

𝑓∆𝑡 = 𝑘𝑓𝑁 ∆𝑡 = 𝑘𝑁 . (12)

Solving Eq. (12) for 𝑘 leads to: 𝑘 = 𝑓𝑇  𝑁 = 𝑓∆𝑡𝑁,      𝑇 = 1 ⁄ 𝑓 = ∆𝑡, (13)

where 𝑁 is frequency-dependent and becomes 𝑁 : 𝑘 = 𝑓∆𝑡𝑁 . (14)

Therefore, the original variable 𝑘 in the exponent of the Euler formula differs from the variable 𝑘 in the TWDFT approach. Accordingly, the complete expression for the TWDFT is given in 
Eq. (15), with respect to Eq. (2), (9), (10) and (14): 

𝑋 𝑘 = 𝑥[𝑛]𝑒 ∆ = 𝑥[𝑛]𝑒 ∆  
            = 𝑥[𝑛]𝑒 ∆ ∆

∆ ∆∆ ∆ . 
(15)

2.3. Special features 

In the following section the points of discontinuity in Fig. 3 are discussed in more detail and 
their consequences for the amplitude spectrum are analysed. For this purpose, the blue simulated 
signal from Fig. 1 is considered again. For reasons of visualization, 𝑓  is set to 180 Hz. The signal 
duration remains at one second. The input vector of the DFT or FFT algorithm for calculating the 
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spectral amplitude has the same length for each frequency line. In the TWDFT approach 
(Fig. 4(a)), the number of samples is different for each frequency. The discontinuities in the 
number of samples result in lateral peaks to the main lobe in the spectrum. 

In Fig. 4(a), there are six further amplitude spectra shown depending on the FFT algorithm. 
The difference between the three dotted spectra is the length of the input vectors. Thereby, the 
more the original signal is shortened, the greater the main lobe width of the signal frequency  𝑓 = 4.2 Hz. For the three dashed spectra, the original signal is padded with zeros until the length 
of the input vector of 1024 samples is filled to interpolate the signal spectrum without adding any 
additional spectral information [33]. 

In Fig. 4(a), the amplitudes of the lateral peaks have short input vectors (red and cyan arrows). 
These amplitude values are based on the corresponding FFT spectra having the same length of the 
input vectors. The drop of the amplitude values of the TWDFT spectrum beside the frequency  𝑓 = 4.2 Hz and the length of its input vectors complies with the full sample number. These 
amplitude values also correspond to the green FFT spectrum. In this example, the red spectrum 
indicates the upper limit of the amplitude height. The green spectrum marks the lower limit of the 
amplitude spectrum. This means that the TWDFT amplitude spectrum is a kind of locus. Thereby 
the lateral peaks never reach the main lobe. For higher frequencies, the lateral peaks are smaller, 
because of smaller differences in the sample numbers at the discontinuities (Fig. 4(b)). 

 
a) 

 
b) 

Fig. 4. a) Relationship between the variable window length 𝑁  and the lateral peaks beside the 
frequency 𝑓 = 4.2 Hz; b) influence of the variable window length on two neighbouring  

frequencies (𝑓  = 4.2 Hz, 𝑓  = 7.8 Hz) of a multi-frequency signal 

Fig. 4(b) illustrates the amplitude spectrum based on TWDFT of a multi-frequency signal with 
two neighbouring frequencies (𝑓  = 4.2 Hz, 𝑓  = 7.8 Hz). Both frequencies are calculated with 
sufficient accuracy. Nevertheless, it should be mentioned that the distance between two 
neighbouring frequencies has a limit according to Eq. (1). The influence of the variable window 
length 𝑁  on this distance has be taken into account. 

3. Simulative study 

In this chapter, the proposed estimator is compared to state of the art estimators in different 
scenarios. Within this simulation study, always the same real and noisy mono-frequency 
sinusoidal signal is used. Its mathematical description is given by Eq. (16). To verify the 
robustness of the parameter estimation under realistic conditions, an additive white Gaussian noise 
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(AWGN) is added to the signal. The technical quality of the noisy signal is expressed by the signal-
to-noise ratio (SNR): 𝑥 𝑛 = 𝑎 𝑆𝑁𝑅 sin 2𝜋𝑓𝑛 𝑤 𝑛 . (16)

The calculation of SNR in decibels is as follows: 

𝑆𝑁𝑅 = 10 log 𝑎 ,𝑎 , dB = 20 log 𝑎 , 𝑎 , dB. (17)

Eq. (16) and Eq. (17) have the following properties: 
– Signal amplitude 𝑎 𝑆𝑁𝑅  as a function of SNR 
– Variable SNR, where the effective value of the noise 𝑎 ,  remains constant and the 

effective value of the signal 𝑎 ,  increases continuously 
– Signal frequency 𝑓 = 4.22 Hz 
– 𝑁 = 280 with 𝑛 = 0,…, 𝑁 − 1, 𝑓  = 280 Hz 
– AWGN respectively 𝑤 𝑛  with 𝑎  = 1 
At the beginning of the article, it is described that the proposed approach is suitable for 

multi-frequency signals. At this point, it is decided to use a mono-frequency simulation signal, 
because this estimation approach is also applicable for mono-frequency signals. Furthermore, the 
automated evaluation of spectra has to be kept simple by using an easily understandable example. 

3.1. Windowing functions 

First, the influence of the window types (Hamming, Hanning, Triangle, Welch, Rectangle) on 
the estimation error of the TWDFT is investigated. The windowing itself is applied after the signal 
trimming and before the calculation of a complex spectral component at a certain frequency. For 
first considerations, the pure sinusoidal signals, without AWGN, are considered (Fig. 5). 

 
a) 

 
b) 

Fig. 5. Comparison between the 5 window functions used in the Trimmed Window Discrete Fourier 
Transform (TWDFT) approach; a) section of the amplitude spectra; b) detail view of the section 

The comparison of the window types in Fig. 5(a) shows that the rectangular window has the 
narrowest main lobe and the largest side lobes. The frequency of 𝑓 = 4.22 Hz and the amplitude 
of 𝑎  = 1 is not exactly reached, but the discontinuities are relatively small. The Welch window 
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has a narrow main lobe, low discontinuities and an acceptable frequency estimation. Nevertheless, 
a compromise has to be found because its amplitude is significantly higher than those of the others 
are. The results for the Hamming and Triangle windowing functions are almost identical.  

To evaluate the estimation quality depending on the window type, the MSE is used: 

𝑀𝑆𝐸 = 1𝑛 𝑥 − 𝑥 . (18)

The MSE indicates how much a point estimator spreads around the value to be estimated, 
where 𝑥  is the estimation, 𝑥  is the true value and n is the total population. Finally, the MSE is 
mapped as a function of the variable 𝑆𝑁𝑅 . Special attention is paid to the CRLB [3-6], [27, 28] 
and [34, 35]. It represents the lower limit for the MSE of estimators. The estimator is efficient if 
its MSE is smaller than the MSE of other estimators or if the MSE reaches the CRLB.  
Accordingly, the calculations of the CRLB for the estimated frequency 𝑓  and the estimated 
amplitude 𝑎 are given by Eqs. (19-20): 

𝑣𝑎𝑟 𝑓 124𝜋 𝑁 𝑁 − 1 𝑆𝑁𝑅 , (19)𝑣𝑎𝑟 𝑎 𝑎 𝑁 = 2𝑎 ,𝑁  , (20)

where: 

𝑆𝑁𝑅 = 𝑎 ,𝑎 ,  . (21)

 

 
a) 

 
b) 

Fig. 6. Frequency estimation a) Cramer-Rao lower bound (CRLB)  
and mean squared error (MSE); b) estimated and real frequency 𝑓 = 4.22 Hz;  

both as a function of the signal-to-noise ratio in dB (𝑆𝑁𝑅 ) of the window types 

Fig. 6 illustrates the influence of the window functions on the estimation error. The desired 
frequency resolution of the TWDFT algorithm is ∆𝑓  = 0.01 Hz. For averaging the estimated 
noisy frequency values, the total population is 𝑛 = 20,000 (values per data point in Fig. 6). The 
logarithmic MSE depending on the 𝑆𝑁𝑅  with respect to Eq. (18).  
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In Fig. 6(b) the real frequency and the estimated frequency are shown as a function of the 𝑆𝑁𝑅 . In the upper range up to 𝑆𝑁𝑅  = –15 dB no information for an estimation is available. In 
this range, the interpretation is not possible because the effect of the noise on the amplitude 
spectrum is too strong. Noise and signal amplitudes lead to an incorrect estimate between –15 dB 
and –6 dB. From –6 dB, an asymptotic behaviour is observed, where the errors of the main lobes 
are the main factors, caused by the influence of the estimators themselves [36]. 

The frequency estimator with the Hamming window already exceeds the CRLB at  𝑆𝑁𝑅 = 30 dB, which means that the estimated frequency matches the real frequency (𝑀𝑆𝐸 = 0). 
For frequency estimation, the Hamming window has a better influence than the other window 
types as shown in Fig. 5(b). From approximately 𝑆𝑁𝑅 = 10 dB this estimator is very close to the 
signal frequency. Fig. 7 gives the influence of the window functions on the amplitude estimation. 
The CRLB is a horizontal line according to Eq. (20), since the noise amplitude is always kept 
constant. 

 
a) 

 
b) 

Fig. 7. Amplitude estimation a) Cramer-Rao lower bound (CRLB)  
and mean squared error (MSE); b) estimated and real amplitude;  

both as a function of the signal-to-noise ratio (SNR) of the four window functions 

As already shown in Fig. 5 and finally in Fig. 7(a), the Welch window has large errors in 
comparison to the other window functions. The increase of its MSE at 𝑆𝑁𝑅 = 20 dB results from 
the growing difference between the estimated and the real amplitude in Fig. 7(b). The Triangle 
window performs as the best among the compared windowing functions. In general, the better the 
leakage effect is suppressed, the better the amplitude is estimated. For the TWDFT algorithm, we 
will therefore adopt the Hamming window. It gives the best frequency estimation and has similar 
results for amplitude estimation to the Triangle window. 

3.2. Comparison with state of the art estimators 

To assess the MSE of the frequency and amplitude estimation of the TWDFT estimator, we 
compare it to established state of the art estimators. Fig. 8 shows the comparison by using the 
example data set from Eq. (16).  

Comparing Fig. 1(b) to Fig. 8, the graphs “FFT” and “win FFT” remain unchanged. In contrast, 
“Spline win FFT” shows a good approximation to the real frequency and its amplitude. 
Nevertheless, the estimation results are not as good as those of the TWDFT estimator. 

For the evaluation and comparison of the estimation error under the influence of noise, the 
MSE is displayed against the variable 𝑆𝑁𝑅 . For averaging the estimated noisy frequency values, 
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𝑛 is set to 20,000 values. Fig. 9(a) and (b) gives the frequency estimation and Fig. 10(a) and (b) 
shows the amplitude estimation. 

 
Fig. 8. Comparison of the four amplitude spectra of the sinusoidal signal  

without additive white Gaussian noise (AWGN); with detail view 

 
a) 

 
b) 

Fig. 9. Frequency estimation a) Cramer-Rao lower bound (CRLB),  
mean squared error (MSE); b) the estimated and real frequency 𝑓 = 4.22 Hz;  
both as a function of the signal-to-noise ratio (SNR) of the four estimators 

“FFT” and “win FFT” have almost identical MSE values, due to the fixed frequency resolution ∆𝑓 = 1 Hz in the amplitude spectrum. Because the other two estimators offer a higher frequency 
resolution ∆𝑓 = 0.01 Hz, their values for the MSE are lower. Nevertheless, “TWDFT” achieves 
the real frequency value compared to “Spline win FFT” at lower noise. “Spline win FFT” do not 
achieve this and stagnates. To evaluate the error of the amplitude estimators, the MSE (Fig. 10(a)) 
and the real and estimated amplitudes (Fig. 10(b)) are examined as functions of the 𝑆𝑁𝑅 . 

All estimators, with the exception of TWDFT, show high MSE values even at a small SNR 
(starting at –6 dB) resulting from large amplitude differences between the real and estimated 
amplitudes (Fig. 10(b)). The MSE of “TWDFT" remains low over all the considered SNR  
range.  
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The range before 𝑆𝑁𝑅 = –6 dB is unsuitable for evaluation, because the noise component in 
the spectrum is too high. Nevertheless, "FFT" shows a lower MSE as the CRLB, resulting from 
the addition of frequency and noise amplitudes, therefore the estimated amplitude is close to the 
real amplitude. The cause is that the AWGN covers all frequencies in the spectral range like an 
offset. At the windowed estimators “TWDFT”, “Spline win FFT” and “win FFT”, the sum of the 
frequency and noise amplitudes is too large to be below the CRLB, since the window always raises 
the main lobes, see Fig. 1(b). According to Eq. (18), this leads to a larger MSE.  

From 𝑆𝑁𝑅 = –6 dB to the end of the range, it behaves similar to Fig. 7(a). The better the 
estimator eliminates the leakage effect, the better estimation results are achieved at a higher SNR. 

 
a) 

 
b) 

Fig. 10. Amplitude estimation a) Cramer-Rao lower bound (CRLB), mean squared error (MSE);  
b) estimated and real amplitude; both as a function of the signal-to-noise ratio (SNR) of the 4 estimators 

4. Application to the vibration signal of a tram gearbox 

In order to evaluate the performance of the novel frequency estimator, we apply it to real data 
acquired from vibrations of a tram gearbox. Vibration signals give information about gear meshing 
anomalies as well as the speed during operations to perform predictive maintenance. An accurate 
estimation of spectral components is therefore of a big interest. 

4.1. Measurement dataset 

The measurement dataset consists of the structure-borne sound (acceleration) and the motor 
speed (Fig. 11). The structure-borne sound was detected by an IEPE accelerometer of type KS80 
in vertical measuring direction. The sensor was screwed in a gearbox housing borehole for an 
eyebolt near the gearbox output shaft. The measuring time is 10 seconds at a sampling rate of 
51.2 kHz. The maximum tram speed is 50 km/h [2]. 

The gearbox has two stages, therefore it has two tooth mesh frequencies. By multiplying the 
motor speed (RPM) by the number of teeth (z1, z4), the theoretical courses of the first and second 
tooth mesh frequency is calculable. We use these calculations to evaluate the estimation results of 
the two spectrograms in Fig. 12.  

4.2. Short-time TWDFT versus STFT 

Short-time analyses of vibration signals offer a detailed spectral evaluation in the context of a 
time-frequency analysis. It provides information about the time dependence of frequency 
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components of a vibration signal. In Fig. 12 short-time analyses based on the TWDFT-estimator 
and a STFT are compared and performed using the vibration signal from Fig. 11. 

 
a) 

 
b) 

Fig. 11. a) Vibration signal of a tram gearbox at a speed of 50 km/h, b) schematic of the gearbox structure 
and the measuring locations of the acceleration sensor (S) and the motor speed sensor (RPM) 

 
a) 

 
b) 

Fig. 12. a) Time-frequency plot based on the Trimmed Window Discrete Fourier Transform (TWDFT) 
estimator, b) Time-frequency plot based on the STFT (single windows with FFT) 

Fig. 12 shows the time-frequency representation of the tram gearbox acceleration signal as a 
colour map. Fig. 12(b) is computed on the basis of a short-time Fourier Transform (STFT). Here 
the FFT algorithm is applied to single signal parts. Fig. 12(a) is computed on the basis of a 
short-time TWDFT (STTWDFT). The theoretical courses of the first and the second tooth mesh 
frequency (𝑓  ,𝑓  ) is calculated on the basis of the motor speed from Fig. 11. The 
comparison between the calculated und the FFT-based estimated tooth mesh frequencies shows 
impressively that the second tooth mesh frequency (𝑓  = 968 Hz) in Fig. 12(b) is shifted 
further to the top side of the calculated tooth mesh frequency. This is because of the frequency 
resolution ∆𝑓 =  64 Hz according to Eq. (1) and the associated stair-like appearance of the 
frequencies. Also the amplitudes of the harmonics of the first tooth mesh frequency  
(𝑓  = 383 Hz) are much weaker than in Fig. 12(a). By analysing the signal sequence between 
the 8th and 10th second in Fig. 11, it can be seen that the frequencies in Fig. 12(a) do not disappear 
in the noise and the harmonics are better formed than in Fig. 12(b). Similarly, special operation 
processes of the gearbox can be detected, e.g. the start of the braking process, which results in 
higher contact forces and vibrations between the gears. 

5. Conclusions 

Frequency and amplitude estimation is particularly challenging for noisy signals that are 
present in short time intervals. In this contribution, we propose a novel estimator the TWDFT for 
aperiodic and multi-frequency noisy signals and compared it to classical estimators as well as with 
the Cramer-Rao lower bound (CRLB). The estimator is based on the DFT calculation, at one 
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frequency-point followed by a segmentation of the input time domain signal in such a way, that 
its length is an integer number of periods corresponding to this frequency. The windowing of the 
signal by a Hamming window reached thereby the best estimation results. 

The estimation error was evaluated by the mean squared error (MSE). A mono-frequency 
signal has been selected as simulation data set for the evaluation. To investigate the robustness of 
the estimator under the influence of noise, an additive white Gaussian noise (AWGN) was added 
to the signal. The MSE is mapped using the signal-to-noise ratio (SNR) from –15 dB to 40 dB. 

Compared to other estimators, excellent results are obtained in spite of a big noise range. 
TWDFT estimates better than FFT from an SNR of –6 dB. At an SNR of 30 dB, the estimator 
reaches the real value of the frequency and at higher SNR values it falls under the CRLB. Applying 
the TWDFT estimator as a short-time analysis to a vibration signal of a tram gearbox shows that 
significantly more differentiated analyses of the frequency components over time can be 
performed in comparison to the short-time Fourier transform (STFT). 

The realized estimator has therefore significant advantages considering its reduced sensitivity 
to signal noise and uses a relative short signal to reach a good quality of estimation. It is therefore 
especially suitable for application in embedded low-power systems for condition monitoring. 
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