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Abstract. Power spectral density of horizontal ground displacement of large and recent events in 
earthquake-prone Latin America is analyzed. The results confirm -in a larger region of the world- 
that strong motion horizontal displacement is a narrowband process, which was previously 
demonstrated solely on a very limited area: the State of California. Nonetheless, those limited and 
previous results proved to be important in seismic base isolation; particularly, in the solution of 
the problem of large displacements at the structure base. This is a current problem for which more 
expensive techniques than passive control are presently being implemented, as active or hybrid 
control; therefore, it is emphasized that a solution exists within simple base isolation, and it is 
based on ground displacement narrowbandness. 
Keywords: ground displacement, spectral characterization, Latin American earthquakes, base 
isolation, frequency content, base displacement. 

1. Introduction 

Records of ground seismic displacement have not attracted much awareness because in 
dynamic analysis of conventional fixed structures, or the vast majority of buildings, ground 
acceleration records are the important signals [1-3]. However, in dynamics of base-isolated 
structures, ground displacement can be a more important seismic record than the acceleration one 
[4-7]. 

Base isolation is a very successful anti-seismic technique [1, 4, 8] that has proved great 
performance indeed during real earthquakes [9, 10]; nevertheless, it has a problem, that one of 
large base displacements which is a side effect of the technique. The large base displacement 
problem (LBD problem) can be explained and tackled considering the relative displacement of the 
base [11, 12] or studying the absolute base displacement [4, 13]; when considering relative 
displacement the problem is normally or has been more lately called isolator displacement demand 
[14, 15]. 

The LBD problem has been solved, or it has been shown that the absolute base displacement 
can be reduced to well under ground displacement levels [4]. It has been suggested that the 
reduction in absolute base displacement implies a reduction in relative base displacement because 
a) the latter is simply equal to the first minus the ground displacement record (𝑢௕ሺ𝑡ሻ − 𝑠ሺ𝑡ሻ) which 
is set or fixed (at least in a strong motion by strong motion basis) and b) the before-reduction 
absolute displacement levels are larger than the ground displacement ones (𝑢௕ ൐ 𝑠)  [4]. 
Nevertheless, this idea or suggestion has not been demonstrated yet; thus, actual relative or isolator 
displacement mitigation will be discussed in this work as an extension of the application of the 
results. 

Now, this solution of the LBD problem was based on an important hypothesis regarding the 
modeling of the seismic input. This hypothesis in turn was based on a frequency-domain 
characterization of actual strong motion ground displacement, which was established through the 
analysis of the power spectral density (PSD) of displacement records of four (4) large California 
earthquakes (moment magnitude above 7.0) [4]. Subsequent research or broader results were 
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necessary in the context of Northern America, and next ten (10) California strong-motion events 
were analyzed [16]; these later spectral results corroborated the previous and limited-in-number 
ones; nevertheless, there is still the geographic limitation, or the fact that the earthquakes analyzed 
were confined or associated solely to the Californian section of the Pacific and North American 
plates boundary. Thus, results on a broader region of the lithosphere are still necessary. 

In this work, broader results are presented, which are from strong motion events associated 
with the Nazca, South American, Cocos, Caribbean, North American and Pacific plates; that is, 
the spectral content of ground displacement of 8 very large Latin American earthquakes is studied 
(2 events with magnitude above 8); more exactly, the PSD of the critical horizontal-component 
record of the closest station to epicenter is analyzed. The results would let us state –on a much 
wider geographical base– that horizontal ground displacement is a narrow-band process. One 
important point and also an enhancement relative to previous research, is that seismic stations in 
this larger region of the world are newer or have broad-band sensors; therefore, concerns on the 
low and high frequency noise levels associated with seismic records are reduced, and this point is 
discussed in the last Section. 

The narrow-band main result shall be important by itself, but apart from scientific importance, 
the results will also corroborate that the engineering problem of large base displacements in 
isolated structures can be solved [4] within simple passive control. More expensive and complex 
solutions to the LBD problem or the displacement demand in isolated buildings are presently being 
proposed: active control [6, 17], semiactive control [18], hybrid control with mangnetorheological 
dampers [19], tuned mass dampers [12, 20] and the inerter or gyromass [21]. In addition, it is 
pointed out that the study of seismic ground displacement is important also in engineering of 
submerged tunnels, pipelines and long-span structures [22, 23]. Finally, it is also noted that the 
suggested solution of the LBD problem is based on a linear model of the isolation system; 
nonetheless, there are nonlinear models [24] which require advanced numerical methods for the 
structural response [25].  

2. Method and analysis of seismic base isolation application 

The procedure to obtain the main results of this investigation are presented first, which are 
broader ground displacement power spectral density results; secondly, the extension of their 
application to mitigating the relative base displacement in isolated structures is explained; this 
motion is actually the isolator deformation or displacement, which is important in the engineering 
and construction of real isolation systems. 

2.1. Methodology 

Eight very large and very recent Latin American events are shown in Table 1; a quarter of 
which with a moment magnitude above 8.0, and all occurred in this decade. The fact that the 
earliest or oldest earthquake is just from 10 years ago would not in general imply much regarding 
the issue of noise in seismic records, but in Latin America the difference is in that most active 
sensors are newer; thus, the low-frequency noise problem is limited, as it will be discussed later 
on. The table includes the name of the closest-to-epicenter station in each case, which were also 
the chosen stations in the previous work [16]; moreover, from the usual two horizontal-component 
records provided by each instrument, the one with the largest peak displacement is selected in the 
study.  

The power spectral density (PSD) function of the selected displacement signals are obtained 
by means of a periodogram technique which is a nonparametric method to estimate spectral 
density. All 8 signals are corrected records and available in this form in public seismic databases, 
as strongmotioncenter.org by the USGS. Formally, the plots are estimates of periodogram PSD of 
samples of ground displacement after regarding the underlying stochastic process as wide-sense 
stationary; a rectangular window has been used in all cases to alleviate the leakage phenomenon. 
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Table 1. Large and recent Latin American events and analyzed stations 
Event Date Magnitude, 𝑀௠ Station 
Haiti 1/12/2010 7.0 Presa Sabenta 

Maule (Chile) 2/27/2010 8.8 Constitución 
Sierra Cucapá (México) 4/4/2010 7.2 Bond’s Corner 

Coquimbo (Chile) 9/16/2015 8.3 Pedregal 
Ecuador 4/16/2016 7.8 Otavalo 

Chiloé (Chile) 12/25/2016 7.6 Espejo Luna 
Valparaíso (Chile) 4/24/2017 6.9 Torpederas 
Puebla (México) 9/19/2017 7.1 Unam 

2.2. Extension of the applications to reduce isolator displacement 

As previously indicated, one application of the initial PSD results was in the reduction of the 
absolute base displacement in isolated structures; in fact, the mitigation was successful or to well 
under ground displacement levels [4]. Nonetheless, the physical design and construction of an 
isolation system is more concerned with the relative displacement than with the absolute one; this 
is mainly because the width of the moat and the flexibility of service connections depend on that 
isolator displacement (displacement demand) which is established by the dynamic design of the 
system or by seismic codes.  

This relative displacement problem is a current issue in Earthquake Engineering; in fact and 
as explained previously, more complex and expensive solutions to this LBD problem have 
recently been proposed [17-21]; thus, the spectral content of seismic ground displacement should 
be revisited; moreover, the narrow-band results must be confirmed in larger regions of the world, 
and as importantly, the aim or application must be on the control of relative base displacement 
this time around. 

With this last objective in mind, for further work and for expanding the application of the PSD 
results, we propose as solution to the isolator (relative) displacement problem to make use of the 
frequency-domain concept of relative transmissibility from the field vibration isolation of 
mechanical engineering. The hypothesis is that if the absolute transmissibility function made 
possible quite good reductions in absolute base motions [4], good levels of isolator displacement 
mitigation can be as well attained if the relative transmissibility is considered. This function is not 
new; however, the concept is not at all as widespread as its absolute counterpart: whereas this can 
be found in all undergraduate textbooks on Mechanical Vibrations, the relative transmissibility 
does not appear in most textbooks on the subject; this is because isolator clearance is not a big 
concern in mechanical engineering, and also because absolute transmissibility is associated not 
only with displacement isolation but also with force isolation whereas the relative transmissibility 
applies only for displacement attenuation [26]. As a matter of fact, if we consider the most popular 
textbooks (English language or worldwide) on mechanical vibrations, the book by Thomson [27] 
is the only one that has the notion although indirectly rather than as a direct presentation as found 
in a more advanced or professional references as the Harris’ Shock and Vibration Handbook [26]. 
In these very few references in which the concept appears, it is established that if the system of 
Fig. 1 is excited by a stationary harmonic displacement of the support, 𝑠, the relative displacement 
of the structure, 𝑥, is also harmonic with the same frequency 𝜔, as shown in the figure where 𝑋 
and 𝑆 are the amplitudes of mass and ground motions, respectively; more importantly, the relative 
transmissibility is the ratio of these harmonic amplitudes, and is further defined by [26, 27]: 

𝑇௥ = 𝑋𝑆 = 𝑟ଶඥሺ1 − 𝑟ଶሻଶ + ሺ2𝜁𝑟ሻଶ, (1)

where 𝑟 is the frequency ratio and 𝜁 damping factor. 
As it is proposed herein, the optimization of 𝑇௥ can or must be the basis of a design procedure 
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of base-isolation systems when the relative LBD problem is a concern, or its control is an  
objective, in the full design process of isolated structures. Now, the idea is based on the seismic 
input being narrow band, which is validated in this paper, and the methodology will be similar to 
the one published previously to solve the absolute LBD problem [4]. All this is currently the 
subject of further research work, and we emphasize that the proposal or idea of making use of 
relative transmissibility is original. Two additional comments or annotations, the proposal will be 
valid under both, near-field and far-field conditions, and the displacement demand problem in the 
isolation technique is not exclusive of civil buildings; structures as electric substation transformers 
and nuclear power plants do have the same issue under seismic load [28, 29], which can further 
expand the applications of the spectral results presented. 

 
Fig. 1. Standard one-degree-of-freedom system under harmonic motion of support 

3. Ground displacements power spectral density results 

The PSD function of the selected strong-motion displacement signals is shown in Fig. 2; it 
includes the corresponding horizontal component or angular information. These results confirm 
the narrow-band characteristic previously noticed in the works by Morales [4, 16]; note that the 
plot range 0-1.5 Hz is already a very slender spectral range. As in the previous works, the narrow 
band is similar in all cases, except for the Maule event which is justified later; in other words, the 
energy below 0.025 Hz is close to zero, the peak value is between 0.05 and 0.18 Hz, and above 
0.40 Hz the spectral content is negligible; the 0.025 Hz frequency is marked by the vertical dashed 
line, in all PSDF figures. In addition, the mean value of the peak-power frequency is 0.10 Hz, 
which is below but close to the 0.13 of the previous two works [4, 16]. 

A discussion is in order regarding the problem of low frequency, or long period, noise levels 
associated with strong motion records [30] because this can be severe for frequencies below  
0.1 Hz. However, in this regard this work also presents an enhancement relative to previous 
spectral results: most seismic stations in Latin America are newer or these have broad-band 
sensors; therefore, the low-frequency noise problem is very limited. This can be proven, the 
low-cut frequency in the processing of all records is between 0.02 and 0.06 Hz (mean value equal 
to 0.03 Hz) which is below the frequencies in which we are observing rich spectral content; in 
other words, it was assumed in the processing or by the analysts, that the signal-to-noise ratio was, 
in general, problematic for frequencies below 0.03 Hz, or periods above 30 s. As an example, most 
important records of the 1995 Northridge event (California) had a low processed frequency of 
0.1 Hz. 

The Maule at Constitución PSD is distinct because liquefaction was widespread on the rupture 
zone; in particular, several types of liquefaction occurred in the small city of Constitución [31]. It 
is important to note that the same type of spectral content was noticed in a site of the previous 
work that also suffered liquefaction; that is, peaks in the PSD functions around 0.3 Hz rather than 
around 0.1 Hz, which is the case in a normal or most of the records analyzed [16]. 

𝑘 

𝑐 
𝑚 

𝑠 = 𝑆cos𝜔𝑡 𝑥 = 𝑋𝑐𝑜𝑠(𝜔𝑡 + 𝜙) 
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b) 

 
c) 

 
d) 

 
e) 
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h) 

Fig. 2. Power spectral density of ground displacement 

4. Conclusions 

Strong-motion records on a much broader area of the lithosphere have been analyzed. It can 
be concluded or it is confirmed that horizontal ground displacement is practically a narrow-band 
process; this is based on the analysis of 8 very large earthquakes (2 events with magnitude above 
8) in the vast Latin American region. These results corroborate previous ones, and that the absolute 
LBD problem in isolated structures can be solved by vibrations analysis in the frequency domain. 

Moreover, a proposal has been presented to extend the application of the further and broader 
results to control the isolator displacement or deformation, which from an engineering or 
construction point of view, is more important than the control of the absolute base displacement; 
this is because the relative displacement is the one having direct impact on the seismic gap or the 
unusable and costly space between structure and moat walls, and on the expense of flexible utility 
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connections and size of the isolators. This is a present-day problem for which more expensive 
techniques than simple base isolation are being implemented, as active and hybrid control, and 
also complex inertial additions as tuned mass dampers and inerters. 

The lowest frequency of the band for this set can be established as 0.025 Hz; it had previously 
been set as 0.049 Hz for strong-motion records in a limited region or the State of California, USA; 
this difference or presence of lower dominant frequencies in some events is the result of geological 
diversity, which in a whole continent is richer than in a single state of a country. 
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