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Abstract. Based on the topology and mathematical model of the three-phase voltage source PWM 
rectifier with LCL filter, the resonance produced by the LCL filter and the design method of filter 
parameters is analyzed. For the resonance problem of the LCL filter, a direct power control 
strategy of the LCL PWM rectifier based on power damping feedback is proposed. The 
double-loop control structure is constructed for the inner loop power and outer loop current. The 
virtual voltage source is constructed as equivalent to power damping in the power loop. The power 
loop of the output is adopted as a command value in the input current loop, and the current loop 
is designed to use deadbeat control to ensure the accuracy of current tracking. SVPWM is 
introduced in this novel direct power control method to generate PWM signals to drive the rectifier 
power switch and achieve a fixed switching frequency. The experimental results show that this 
proposed control method can achieve the unit power factor operation of the rectifier while it’s 
suppressing the resonance, and the system has a better dynamic and static performance. 
Keywords: direct power control, active damping, LCL filter, PWM rectifier. 

1. Introduction 

Three-phase PWM rectifiers use the single inductor as a filter because the harmonics are 
generated when the power device is switched. To make the system have better filtering effect, the 
inductance value is increased. However, the larger the inductance value is, the larger the inductor 
volume is, and the system costs expensive. Moreover, it will cause the system to degrade in 
dynamic performance and reduce the response speed of the current loop. The LCL filter has the 
same total inductance as the single inductance filter, and the impedance value of the LCL filter is 
inversely proportional to the frequency of the current flowing through it. The higher the frequency 
is, the smaller the impedance is, which effectively bypasses the high-frequency harmonic 
components and therefore has better switching harmonic suppression capability [1-6]. Since the 
LCL filter produces a resonant peak due to its increases capacitance and front inductance, the 
resonance must be damped. To resolve this problem, many scholars propose a passive damping 
method and an active damping method [7-10]. Active damping has lower energy loss than passive 
damping and is suitable for high-power systems. 

The common control methods for the PWM rectifier include voltage directional control, model 
predictive control (prediction of voltage or current), repetitive control, and so on [11-15]. The 
direct power control (DPC) method directly controls the input power of the PWM rectifier, which 
has the advantages of high efficiency, fast response, good dynamic and static performance. 
Moreover, it can realize unit power factor operation [16]. In the traditional direct power control 
methods, hysteresis comparator and switch table are adopted. Some methods have the optimized 
double switch table control with enhanced power control and omit the virtual flux direct power 
control of voltage sensor [17]. However, the above methods are still unable to fix the switching 
frequency, which is not conducive to the design of the AC side filter. The changing switching 
frequency will increase the switching loss [18]. At the same time, improper selection of the 
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switching signal will cause power loss control. For grid voltage sensorless control of pulse width 
modulation (PWM) rectifier under unbalanced network, a closed-loop virtual-flux (VF) estimator 
is provided to enhance the filtering capability and improve robustness against load variation [19]. 
Its new idea of an adaptive method can further developed for online frequency estimation. With 
the direct power control (DPC) scheme, an application of the smooth variable structure filter 
(SVSF) in the direct power control (DPC) scheme to estimate the instantaneous feedback power 
and negative-sequence (NS) currents [20]. This new concept of the direct power scheme is 
modified to cover the injected power to the unbalanced power grid as well. 

At present, the main idea of conventional direct power control is to use Space Vector Pulse 
Width Modulation (SVPWM) to realize fixed-frequency direct power control. However, the direct 
power control of constant frequency is seldom studied in the LCL-PWM rectifier. The main reason 
is that the direct power control has no inner current loop, so the existing active damping method 
cannot be used. In [21], the idea of direct power control with the current loop and the existing 
active damping method is proposed, but it needs to be added to the extra sensors, and the system 
is less stable at the same time. According to reference [22], the dynamic characteristics of the 
PWM rectifier largely depend on the control strategy of the current loop. For the grid-connected, 
pulse-width-modulator-driven voltage source converters, a novel near-optimal finite-control-set 
model predictive control (NOP-MPC) algorithm is adopted to progressively synthesize finite sets 
of virtual voltage vectors (VVs) for the control optimization stage [23]. However, with this  
method, effects of computational delay, pulse-width modulation delay, and dead-time should be 
considered and compensated.  

A novel direct power control method is proposed based on the instantaneous power theory. 
The outer power loop’s current inner loop is constructed. The damping power constructed by 
subtracting the network side current and capacitance current from the power loop is output as the 
input command value of the current loop. At the same time, the current loop is controlled without 
a beat to ensure the good dynamic performance of the system. Finally, the required PWM switch 
signal is obtained after adjustment. In this method, the resonant is damped while the switching 
frequency is fixed, and the response speed of the system is improved by the direct control of the 
current. Finally, the system simulation model is built to verify its effectiveness. 

2. The principle of DPC method based on power damping feedback 

The traditional direct power control strategy uses a hysteresis comparator and a switch table 
to select the switch signal. Although this method can realize the tracking of active and reactive 
power, the switching frequency is not fixed, which will increase the switching loss. At the same 
time, the change of switch frequency makes the connection inductor difficult to design, and the 
load voltage fluctuates greatly when the load is disturbed. Based on the instantaneous power 
theory, in this paper, the double-loop control structure is established as shown in Fig. 1. The outer 
loop adopts the power loop, where the direct power control of the PWM rectifier can be realized 
by the setting of instantaneous active and reactive power. The control strategy of the current loop 
determines the dynamic performance of the system to a large extent. If active damping is carried 
out in the current loop, the system is of poor stability. In this paper, the power damping is 
constructed in the power loop to suppress resonance, and the current loop is controlled without a 
beat to ensure the tracking accuracy so that the system has a better dynamic performance. 

The system is mainly composed of the power control part, power damping part, and current 
control part. The reference value of active power 𝑝∗ is obtained from the dc side voltage, and the 
reference value of reactive power 𝑞∗ = 0 to realize the unit power factor state operation of PWM 
rectifier. After subtracting the reference value from the instantaneous active power 𝑝 and reactive 
power 𝑞, and then subtracting the active damping power 𝑝ௗ and 𝑞ௗ into PI, the current command 
values 𝑑 and 𝑞 components are obtained. After comparing with the actual detected network side 
current, the desired PWM command signal is finally obtained by the PI regulator and 𝑑𝑞 inverse 
transformation. 
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Fig. 1. DPC system block diagram based on power damping feedback 

It can be seen from Fig. 1 and instantaneous power theory as follow: 

൜𝑝 = 𝑒ௗ𝑖ଵௗ + 𝑒௤𝑖ଵ௤,𝑞 = 𝑒ௗ𝑖ଵ௤ − 𝑒௤𝑖ଵௗ, (1)

where 𝑝 is the active power on the grid side, 𝑞 is the reactive power on the grid side, when the 
three-phase grid voltage is balanced, axis 𝑑  coincides with the grid voltage 𝑒 , and 𝑒௤ =  0,  𝑒ௗ = ඥ3 2⁄ 𝑒௠, 𝑒௠ is the voltage amplitude of the grid phase. 

Eqs. (1) can also be expressed as follow: 

𝑖ଵௗ = ට23𝑝𝑒௠ ,     𝑖ଵ௤ = ට23 𝑞𝑒௠ . (2)

3. The power feedback loop active damping resonance suppression in LCL-PWM rectifier 

The LCL filter has a better attenuation for the high-frequency harmonic current than the L 
filter. But because of the addition of the capacitors, the current control system of the rectifier is 
converted from the first to the third, and it has a harmonic point. It needs to be dumped in the 
harmonic peak. If only the influence of the harmonic voltage of bridge arm of the LCL-PWM 
rectifier on each current is studied, then the equivalent circuit of the LCL filter is shown in Fig. 2. 
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Fig. 2. Equivalent circuit of single-phase LCL filter 
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The transfer function from AC voltage 𝑢ሺ𝑡ሻ to grid-side current 𝑖ଵሺ𝑡ሻ of the PWM rectifier can 
be obtained from Fig. 2. 

𝐺ሺ𝑠ሻ = 𝐼ଵሺ𝑠ሻ𝑈ሺ𝑠ሻ = 1𝐿𝐿ଵ𝐶𝑠ଷ + ሺ𝐿 + 𝐿ଵሻ𝑠. (3)

LCL filter parameters are set as: 𝐿 = 1 mH, 𝐿ଵ = 0.5 mh and 𝐶 = 3 F. The Bode graph of 𝐺ሺ𝑠ሻ 
is shown in Fig. 3. 

 
Fig. 3. Bode plot of LCL filter 

According to Eq. (3), the resonant frequency of the LCL filter is obtained as follow: 

𝑓௥௘௦ = 12𝜋ඨ𝐿ଵ + 𝐿𝐿ଵ𝐿𝐶 . (4)

At the resonance place, the impedance of the filter is close to zero, which will destroy the 
stability of the system, so the resonance must be damped. In this paper, the outer loop power and 
inner loop current are controlled by two loops, and various LCL filter active damping methods 
can be adopted for both loops. However, the dynamic characteristics of the PWM rectifier in 
literature [24] largely depend on what kind of current inner loop control strategy is adopted. If the 
active damping strategy is adopted in the current loop, the dynamic performance of the system 
will be poor. 

The damping power has a direct effect on the power and reactive power. The traditional passive 
damping is shown in Fig. 4. To clearly show the effect of series resistors of capacitors on the 
damping effect caused by LCL filters, the parasitic resistors are ignored. 
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Fig. 4. Equivalent circuit with passive damping 
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According to Fig. 4, the transfer functions of 𝑢 and 𝑖ଵ in passively damped capacitor series 
resistors can be obtained as follow: 𝐺ଵௗሺ𝑠ሻ = 1ሺ𝐿 + 𝐿ଵሻ𝑠 ቀ 𝐿ଵ𝐿𝐿ଵ + 𝐿 𝐶𝑠ଶ + 𝐶𝑅ௗ𝑠 + 1ቁ. (5)

The curve of the Bode diagram at 𝑅ௗ = 0.1, 0.4, and 0.7 are respectively shown in Fig. 5. 

0.1dR =

0.7dR =

0.4dR =

0.1dR =

0.4dR =

0.7dR =

 
Fig. 5. Bode plot of passive damping at different values 

To achieve the same effect as Fig. 5, the equivalent circuit is shown in Fig. 6. 𝑘ௗ𝑖஼ is equivalent 
to a controlled voltage source, where 𝑘ௗ is the feedback coefficient of the capacitor current 𝑖஼. 
This equivalent voltage source provides effective damping at the resonant frequency of the LCL 
filter. 
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Fig. 6. Passive damping diagram of the equivalent voltage source 

Transfer function 𝐺ଶௗሺ𝑠ሻ of 𝑢 and 𝑖ଵ is obtained as follow: 

𝐺ଶௗ = 1(𝐿ଵ + 𝐿)𝑠 ቀ 𝐿ଵ𝐿𝐿ଵ + 𝐿 𝐶𝑠ଶ + 𝐶 ቀ𝑅ௗ + 𝑘ௗ 𝐿𝐿ଵ + 𝐿ቁ 𝑠 + 1ቁ. (6)

Let 𝑅ௗ = 0, the equivalent circuit is shown in Fig. 7. 
Transfer function 𝐺ଷௗ(𝑠) of 𝑢 and 𝑖ଵ is obtained as follow: 
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𝐺ଷௗ(𝑠) = 𝐼ଵ(𝑠)𝑈(𝑠) = 1𝐿𝐿ଵ𝐶𝑠ଷ + 𝐿𝑘ௗଶ𝐶𝑠 + (𝐿 + 𝐿ଵ)𝑠. (7)
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Fig. 7. Active damping diagram of the equivalent voltage source 

 
Fig. 8. Bode Plot of LCL filter with active damping 

Let 𝑘ௗ = 0.7, the Bode diagram of 𝐺ଷௗ(𝑠) is shown in Fig. 8. In the amplitude-frequency 
characteristic, it can be seen that the resonance peak has been suppressed, and the low-frequency 
gain section has no attenuation and the active damping is realized. At the same time, the system 
has a sufficient positive gain margin and a positive phase margin, and the system is stable. 

To obtain the equivalent power of the LCL-PWM rectifier for the DPC control, the expected 
controlled voltage source 𝑘ௗ𝑖஼ is multiplied by the grid side current to obtain the amount of power. 
After the consolidation, the damping components 𝑝ௗ  and 𝑞ௗ  of active and reactive power are 
obtained as follow: 

ቊ𝑝ௗ = 𝑘ௗ൫𝑖஼ఈ𝑖ଵఈ + 𝑖஼ఉ𝑖ଵఉ൯,𝑞ௗ = 𝑘ௗ൫𝑖஼ఉ𝑖ଵఈ − 𝑖஼ఈ𝑖ଵఉ൯, (8)

where, 𝑖஼ఈ, 𝑖஼ఉ, 𝑖ଵఈ, 𝑖ଵఉ are component on axis 𝛼-𝛽 of 𝑖஼ and 𝑖ଵ. Active damping is achieved by 
subtracting 𝑝ௗ and 𝑞ௗ from the active and reactive control loops, respectively.  

On the other hand, the LCL filter is required to consume a certain amount of reactive power, 
so the alternating current needs to make up for the lack of energy in the filter capacitor. 
Considering that the grid side inductance of 𝐿ଵ  is low, it’s an approximation that the filter 
capacitor voltage is equal to the power grid voltage, which is a non-reactive power 𝑞஼ that has to 
be used by a capacitor: 𝑞஼ = 𝜔𝐶𝑒ோெௌଶ = 12𝜔𝐶𝑒ଶ. (9)
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4. The current loop tracking control mode in LCL-PWM rectifier 

While the power loop achieves damping resonance suppression, the current-free deadbeat 
control is introduced to achieve faster tracking control of the current and the system has the good 
dynamic performance. The mathematical model of the LCL-PWM rectifier switching function 
under grid voltage balancing can be derived from the switching mathematical model of equations 
and L-PWM: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝑅ଵ𝑖ଵ(𝑡) + 𝐿ଵ 𝑑𝑖ଵ(𝑡)𝑑𝑡 + 𝐿 𝑑𝑖(𝑡)𝑑𝑡 + 𝑅𝑖(𝑡) = 𝑒(𝑡) − ሾ𝑢ௗ௖(𝑡)𝑠௞(𝑡) + 𝑢ே଴(𝑡)ሿ,𝑖ଵ(𝑡) = 𝑖(𝑡) + 𝐶 𝑑𝑢௖(𝑡)𝑑𝑡 ,𝐶ௗ 𝑑𝑢ௗ௖(𝑡)𝑑𝑡 = ෍𝑖௞(𝑡)𝑆௞(𝑡) − 

𝑢ௗ௖(𝑡)𝑅௅ ,
𝑢ே଴(𝑡) = −𝑢ௗ௖(𝑡)3 ෍𝑆௞(𝑡),

 (10)

where, 𝑢ௗ௖, 𝑅௅ and 𝐶ௗ are the DC side voltage, DC side resistance and energy storage capacitance 
of the rectifier respectively. 𝑆௞ is the switching function of the rectifier. When 𝑆௞ = 0, the lower 
bridge arm switch is on and the upper bridge arm switch is off. When 𝑆௞ = 1, it is the opposite. 𝑘 = 𝑎, 𝑏, 𝑐. 

For the convenience of analysis, Eq. (10) is rearranged as follow: 

𝐿ଵ 𝑑𝑖ଵ௞𝑑𝑡 + 𝐿 𝑑𝑖௞𝑑𝑡 = 𝑒௞ − 𝑅ଵ𝑖ଵ௞ − 𝑅𝑖௞ − 𝑢ௗ௖ ൬𝑆௞ − 13෍𝑆௞൰. (11)

If the LCL-PWM realizes the deadbeat control, the line side current and the rectifier AC side 
current respectively realize the instruction tracking within one cycle: 

⎩⎪⎨
⎪⎧𝑑𝑖ଵ௞𝑑𝑡 = 𝑖ଵ௞(𝑇 + 1) − 𝑖ଵ௞(𝑇)𝑇௦ = 𝑖ଵ௞∗ − 𝑖ଵ௞𝑇௦ ,𝑑𝑖௞𝑑𝑡 = 𝑖௞(𝑇 + 1) − 𝑖௞(𝑇)𝑇௦ = 𝑖௞∗ − 𝑖௞𝑇௦ .  (12)

At the time 𝑇, the grid side current and the rectifier AC side current command value are given 
as 𝑖ଵ௞∗  and 𝑖௞∗ . At time 𝑇 + 1, the two currents can be expressed as 𝑖ଵ௞(𝑇 + 1) and 𝑖௞(𝑇 + 1). 

On the other hand, the sampling frequency of LCL-PWM is much higher than that of the 
three-phase power source. The three-phase PWM duty cycle 𝑑௞ can be expressed by the switching 
function equivalent 𝑆௞ in one sampling period (𝑇~𝑇 + 1). Rearranging Eqs. (10) and (3-12), it is 
obtained as follow: 𝑑௞ = 1𝑢ௗ௖ ൤𝑒௞ − 𝑖௞ ൬𝑅𝑇௦ − 𝐿𝑇௦ ൰ − 𝑖௞∗ 𝐿𝑇௦ − 𝑖ଵ௞ ൬𝑅ଵ𝑇௦ − 𝐿ଵ𝑇௦ ൰ − 𝑖ଵ௞∗ 𝐿ଵ𝑇௦൨ + 12. (13)

Considering the delay of PWM control, it needs to add 𝜔𝑡 to Δ𝜃 = 2𝜋𝑓𝑇௦ in the coordinate 
transformation to improve the accuracy of control current. 

5. The system controller design in LCL-PWM rectifier  

In this paper, the double loop control structure of power outer loop and the current inner loop 
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is adopted. The power loop ensures the good dynamic performance of the system. The current 
loop directly controls the current on the grid side to ensure the current quality of the grid side. To 
eliminate the resonance of the LCL filter, the instantaneous power tracking signal is obtained by 
subtracting the power damping link from the active and reactive power commands. Since the 
active current and the reactive current have the same structure, the design method and parameters 
are the same, and the active current is taken as an example for design, which is also applicable to 
the reactive current. The control model of active current is shown in Fig. 9. 
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Fig. 9. Structure diagram of the current control loop 

In Fig. 9, the 𝐾௉ூ is the current PI regulator proportional coefficient, 𝑇ூூ is the integral time 
constant, 𝐾௖ is the PWM rectifier gain, 𝑡଴ is the rectifier dead time, and 𝐾ூ் is the delay of the 
rectifier due to control cycle, sampling, and program calculation. The transfer function of the LCL 
filtering link is obtained as follow: 𝐺௅஼௅(𝑠) = 1𝑠ଷ𝐿ଵ𝐿𝐶 + 𝑠(𝐿 + 𝐿ଵ). (14)

From Fig. 9, if the power consumption is not counted, let 𝐾௖ = 1, 𝑡଴ = 0, and the current loop 
is a 5th-order system. Therefore, the method of reference [25] can be used to reduce the order. 
The pole configuration calculation control parameters are performed. The current loop is replaced 
by the equivalent time constant first-order inertial link 𝑇ூ, and the control block diagram of the 
power loop is shown in Fig. 10. 
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Fig. 10. Structure diagram of the power control loop 

In Fig. 10, 𝑒௠ is the grid phase voltage amplitude, 𝐾௉௉ is the power PI regulation coefficient, 𝑇ூ௉ is the integration time constant, and 𝑇௉் is the power loop delay total time constant. The power 
loop controller parameter design is similar to the current loop. The power loop is represented by 
the first-order inertia link of the equivalent time constant 𝑇௉, and the DC side voltage loop control 
block diagram can be obtained as follow. 
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Fig. 11. Structure diagram of DC-link voltage control loop 

In Fig. 11, 𝐾௉௎ is the voltage PI regulation coefficient. 𝑇ூ௎ is the integration time constant. 𝑇௎் is the total time constant of the voltage loop delay, and 𝑇௎ is the DC side voltage filter time 
constant, 𝑇௎் = 𝑇௎ + 𝑇௉ . The open-loop transfer function of voltage control is designed as a 
typical third-order system: 
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ቐ𝐾௉௎ = 𝐶ௗ2𝑇௎் 𝑈ௗ௖∗ ,𝑇ூ௎ = 4𝑇௎்.  (15)

6. Experimental and results analysis 

The experimental platform of the PWM rectifier system based on LCL filtering is built, shown 
in Fig. 12, to verify the effectiveness of the control method proposed in this paper and to compare 
it with the traditional direct power control. The experimental parameters are as follows:  𝐿ଵ = 1 mh, 𝐿 = 0.5 mh, LCL filter capacitor 𝐶 = 3 μf, three-phase grid AC voltage 220 V, 
frequency 50 Hz, LCL-PWM rectifier DC side voltage is 600 V, including the switching 
frequency of 12 kHz. 

 
Fig. 12. The experimental platform for PWM rectifier with LCL filter 

DC voltage waveform of two control methods for the three-phase LCL filter PWM rectifier is 
shown in Fig. 13. It can be seen that the adjustment time of the DC side voltage of the two control 
methods is 0.03 s and 0.1 s respectively, and the DC of LCL-PWM DPC based on power feedback 
is significantly shortened. After reaching the steady-state, the DC side voltage fluctuation is very 
small, basically stable after 0.04 s and 0.13 s respectively. 

 
Fig. 13. DC Side Voltage waveform comparison between LCL-PWM DPC and traditional DPC 

One phase of the AC side three-phase voltage is taken as an example, the proposed direct 
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power control can realize in-phase voltage and current on the grid side, shown in Fig. 14. Since 
the current loop adopts the deadbeat control, the current can achieve accurate tracking and the 
current distortion on the grid side is small. The transition can be smooth. The system has good 
dynamic characteristics.  

 
Fig. 14. Grid side voltage-current waveform of the proposed DPC method 

 
a) LCL-PWM DPC based on power  

damping feedback 

 
b) Traditional direct power control 

 
Fig. 15. Gird side current harmonic of two control methods 

 
Fig. 16. DPC active power and reactive power based on power damping feedback 
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Harmonic analysis of the grid side currents of the two control methods as shown in Fig. 15, 
the THD value of the two control methods is 1.08 % and 4.85 % respectively. It can be seen from 
Fig. 15 that the proposed direct power control method has a lower harmonic distortion rate. And 
the odd harmonic components are small and there is less pollution to the grid. 

The active and reactive power on the grid side is shown in Fig. 16. It is obvious that, the 
instantaneous active power and the reactive power on the grid side follow the command value, 
and the power tracking is realized. It can be seen from Fig. 16 that the instantaneous reactive 
power is substantially zero after the system reaches a steady-state. The unit power factor operation 
is achieved. 

7. Conclusions 

Because of the limited applications of the traditional single-inductance PWM rectifier, a new 
direct power control strategy based on power damping feedback for the LCL filter PWM rectifier 
is proposed in this paper. The traditional power loop is changed into the current inner loop and the 
power outer loop. The power damping is introduced into the power loop to suppress the resonance 
of the LCL filter. With the application of deadbeat control, the inner loop current is directly 
regulated to generate PWM waves. The experimental results show, compared with the traditional 
direct power control, the proposed DPCl method has more flexible reactive power control, which 
suppresses the resonance of the filter. The system has a better dynamic and static performance by 
fixing the switching frequency. 
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