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Abstract. Functional electrical stimulation of the spinal cord can evoke limb movement in 
patients with motor dysfunction caused by injury or pathology. Research question: However, the 
adjustment function of micro-stimulation signal parameters in the spinal cord on the motion of 
hind limbs about rodents has not been identified. The amplitude, frequency and pulse width of the 
spinal cord micro-stimulation signal were adjusted to quantitatively analyze the changes of the 
joint angles when the hindlimb produced extension and flexion responses. When the rat’s 
extension and flexion responses are induced, the optimal stimulus signal amplitudes are 40 µA 
and 90 µA respectively. At the same time, the optimal stimulation signal frequency range is 
(35±5) Hz and the best pulse width of the stimulation signal is 200 µs. The results can provide a 
further reference for the development of spinal cord stimulator for hindlimb regulation. 
Keywords: intraspinal micro-stimulation, amplitude, frequency, pulse duration, joint angle, gait 
analysis. 

1. Introduction 

Intraspinal micro-stimulation (ISMS) induces movement by directly stimulating the ventral 
motor circuit of the spinal cord to recruit more motor units [1, 2]. In recent years, intraspinal 
micro-stimulation has been used as a treatment method for spinal cord injury and successfully 
induced limb movement [3-6]. Studies have shown that parameters such as electrode structure, the 
position of spinal cord stimulation, frequency and amplitude of stimulation signal are key factors 
determining the motor output [7-9], and adjusting the frequency, amplitude and pulse width of 
micro-stimulation signals in the spinal cord can change the intensity of muscle contraction  
[10-13]. A typical muscle is made up of hundreds or even thousands of fibers arranged as 
functional clusters of motor units [14]. As the intensity of the stimulus increases, the activated 
motor unit increases, resulting in an increase in the output force [15]. In healthy and paralyzed 
muscles, the linear relationship between the intensity of the current and the generation of the force 
has been described [15-17]. The relationship between force and frequency indicates that the 
increase in stimulus frequency leads to an increase in muscle strength, while high frequency leads 
to muscle fatigue [18]. With the increase of pulse duration, lower stimulation intensity is required 
to activate the surrounding motor nerves and achieve the required force output [19]. However, 
pulse duration may affect muscle tone, leading to muscle fatigue [20]. Many studies have shown 
that the parameters regulating stimulation signal have an effect on hind limb movement, for 
example, the effects of pulse frequency and duration on muscle torque and fatigue have been 
studied [21], the exact mapping between the parameters of spinal cord micro-stimulation signal 
and the changes in joint angles induced by hind limb movement in rats is still unclear. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2021.21595&domain=pdf&date_stamp=2021-01-31
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2. Materials and methods 

2.1. Experimental rats and stimulating electrodes 

All protocols involving the use of animals in this study were approved by the Institutional 
Animal Care and Use Committee of Nantong University, China (Approval No. 20190225-008) on 
February 26, 2019. A total of 6 Sprague-Dawley rats (8 weeks, both sexes, weighing 220-250 g) 
were purchased from the Experimental Animal Center of Nantong University (License No. SYXK 
(Su) 2017-0046). After intraperitoneal injection of 10 % chloral hydrate (4 mL/kg), the hair of the 
back and right hindlimb was removed after anesthesia, and 75 % rubbing alcohol was used to 
sterilize T13-L3 of the segment of the spine. The skin was cut along the spine to expose the spinal 
cord. All experiments were acute. Stimulating electrode used tungsten electrode (produced by 
Microprobes company, United States); The electrode model for WE30030.5A3, 0.081 mm 
diameter of axle, cutting-edge 2-3 microns in diameter, 0.5 mΩ impedance. 

2.2. Stimulation signal and location 

The stimulation signal parameters are set by master-9 pulse stimulator (Israel A.M.P.I. 
company). The number of repetitions of stimulation pulses 𝑁 is 40. The stimulus isolator (Iso-flex, 
Israel A.M.P.I.) adjusts the amplitude of the stimulus current. The research group has applied 
functional electrical stimulation technology to complete the determination of the core area of 
hindlimb motor function in rats [22]. The rats were placed on a fully automatic stereotactic device 
(51700, Stoelting, USA), the spinal cord was fixed with a rat spinal adapter, and electrodes, 
assisted by the stereotactic device, were implanted into the core functional areas of extension and 
flexion.  

2.3. Data collection and processing 

Machine vision module OpenMV Cam M7 was used to capture the right hindlimb movement 
of rats. According to the posterior limb skeleton of the rat (Fig. 1(a)), the sagittal motion model of 
the posterior limb of the rat was established (Fig. 1(b)). Five self-made color labels were attached 
to the anterior superior iliac spine, hip, knee, ankle and the top of the fifth bone of the posterior 
limb according to the motion model. All the color labels were operated by the same person. 

 
a) Skeleton and color label of hindlimb 

 
b) Schematic diagram of skeleton model of hind limb 

Fig. 1. Schematic diagram of rat hind limb skeleton and model of sagittal plane motion 

The machine vision module OpenMV CAM was fixed on a square block and placed 10 cm 
away from the right hind limb of the rat (in this way, the color label of each joint of the hind limb 
of the rat could be identified optimally). Meanwhile, the module was connected to a personal 
computer, and the coordinate information of the color label was collected in real time by using 
OpenMV IDE. Before recording the posterior limb movement, the angle baselines of the hip, knee 
and ankle before and after stimulation were recorded respectively.  
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According to the coordinate information of each joint, the vector of the hip pointing to the 
anterior superior iliac spine is defined as 𝐴, the vector of the hip pointing to the knee joint is 
defined as �⃗�, the vector of the ankle pointing to the knee joint is defined as 𝐶, and the vector of 
the ankle pointing to the fifth extension bone is defined as �⃗�. The angle of each joint is defined as 
the angle formed between the joint and the adjacent proximal and distal joint positions. The 𝜃  of 
the hip joint includes angle between the anterior superior iliac spine and the knee joint, as shown 
in Eq. (1). The 𝜃  of the knee joint includes angle between the hip joint and the ankle joint, as 
shown in Eq. (2). The 𝜃  of the ankle joint includes angle between the knee joint and the tip of the 
fifth extension bone, as shown in Eq. (3): 

𝜃 = cos 𝐴�⃗�𝐴 �⃗� , (1)

𝜃 = cos �⃗�𝐶�⃗� 𝐶 , (2)

𝜃 = cos 𝐶�⃗�𝐶 �⃗� . (3)

According to the definition of each joint angle, the position coordinate information of each 
joint is converted into the corresponding joint angle by using the custom processing code. For 
each animal, we quantified the changes in joint angles (starting from the initial angle) in the 
extension and flexion responses of the hind limbs of rats at different stimulation parameters. 
Taking the response of the extension as an example, the data collection and processing process 
are shown in Fig. 2. The variables selected the range from baseline angle before the stimulation 
to the maximum angle of joint formation at the time of the stimulation. Finally, the bar chart of 
mean and standard deviation (mean ±SD) of different joint angles of six rats under different 
stimulation parameters was drawn. 

 
a) Color label recognition and data collection  

of Open MV IDE 

 
b) Data processing and simulation  

of processing software 
Fig. 2. Data collection and processing of hind limb in rats 

2.4. Statistical analysis 

The least square regression analysis by MATLAB was performed to analyze the correlation 
between the mean angular change of hip, knee and ankle joints and stimulation signal parameters. 
The value of the determination coefficient 𝑅  is shown in Eq. (4): 

𝑅 = 𝑆𝑇 = ∑ 𝑓 − 𝑦∑ 𝑦 − 𝑦 , (4)
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where: 𝑇 = 𝑆 + 𝐸, 𝑇 is the total sum of squares; 𝑆 is the sum of regressive squares; 𝐸 is the sum 
of squared residuals; 𝑌 is the actual value; 𝐹 is the predicted value; 𝑦 is the average of the actual 
values. 𝑅  determines how close the correlation is, and the closer it gets to one, the more relevant 
the dependent variable is to the independent variable.  

The results were statistically analyzed by SPSS software for one-way ANOVA comparison of 
different joint angles under the different parameters of the stimulation signal. 𝑃 < 0.05 on both 
sides was set as statistically significant difference.  

2.5. Results and analysis 

First, the angle of each joint about normal rats walk on four legs were measured, the initial 
angle of the hip is 97.1°± 6.2°, the initial angle of knee is 76°±16°, the initial angle of ankle is 
101°± 9.8°. After data processing, the values of angles exceeding the maximum range were deleted 
to obtain the trend diagram between the following angular changes in joints and stimulation 
parameters. To determine the mapping relationship between single parameter and hindlimb 
motion, other parameters were kept unchanged. 

2.6. Regulation of hindlimb movement by stimulus signal amplitude 

To study the influence of amplitude on various joints during the extension and flexion of hind 
limbs of rats, the frequency and pulse width were set as 33.33 Hz and 200 μs. 

When hind limbs produce the extension response, the amplitude of each stimulus current is set 
as 10, 15, 20, 25, 30, 35, 40, 45 and 50 μA, respectively. The variation trend of the mean angular 
change corresponding to the hip joint, knee joint and ankle joint of rats with the amplitude of 
stimulation current is shown in Fig. 3(a). When the stimulation current is in the range of 10-40 μA, 
the angular change value of the hip joint increases with the increase of the stimulation amplitude. 
After that, the amplitude of the stimulation current continued to increase while the angular change 
value of the hip joint begins to decrease. When the stimulation amplitude is in the range of 
10-45 μA, the angular change value of the knee joint showed an upward trend. Until the amplitude 
of the stimulation current is greater than 45 μA, the angular change of the knee joint begins to 
decrease. The angular change value of the ankle joint continues to increase in the range of 
10-40 μA, and with the amplitude of the stimulation increased, the angular change value of the 
ankle joint begins to decrease.  

When hind limbs produce flexion response, the threshold current required is larger than the 
threshold current that produces the extension response. The amplitude of each stimulation current 
is set to 20, 30, 40, 50, 60, 70, 80, 90, and 100 μA. The average change of the angles of the hip, 
knee, and ankle of the hind limbs with the amplitude of the stimulation current is shown in 
Fig. 3(b). When the stimulation current is in the range of 20-90 μA, the average angular change 
of hip joint and knee joint on the rising trend; after reaching the extreme value, the stimulation 
current continues to increase, while the average angular change of hip joint and knee joint begins 
to decrease. The average angular change value of the ankle joint increases significantly in the 
range of 20-80 μA. The stimulation current is continuously increased, but the angle change of the 
ankle joint shows a downward trend. 

In order to obtain the optimal range of stimulation current, the linear regression analysis is 
performed on the different current and average angular change value of each joint. It can be 
concluded that in the extension response, when the current is within the stimulation current range 
of 15-40 μA, the average angular change value of the hip joint has an optimal linear regression 
model 𝑦 = 5.6269 + 0.4202𝑥 with the determination coefficients 𝑅 = 0.9704 and 𝑝 = 0.0003 
(Fig. 3(a1)). When the stimulation current range is in 15-40 μA, the average angular change value 
of knee joint has the best linear regression model 𝑦 = 12.6421 + 0.4686𝑥 with the determination 
coefficient 𝑅 =  0.9831, 𝑝 =  0.0001 (Fig. 3(a2)). When the stimulation current range is in 
15-40 μA, the average angular change value of the ankle joint has the best linear regression model 
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𝑦 =  7.4073 + 0.2605 𝑥  with the determination coefficients 𝑅 =  0.9711 and 𝑝 =  0.0003 
(Fig. 3(a3)).  

When a flexion response is produced in the right hind limb of a rat, the average angular change 
value of hip joint has the best linear regression model 𝑦 =  2.7437 + 0.1085 𝑥  with the 
determination coefficient 𝑅 = 0.9514, 𝑝 = 0.0000 (Fig. 3(b1)) in the stimulation current range 
of 20-90 μA. The average angular change value of knee joint has the best linear regression model  𝑦 = 6.2747 + 0.0746𝑥 with the determination coefficient 𝑅 = 0.9903, 𝑝 = 0.0000 (Fig. 3(b2)) 
in the current range of 20-90 μA. The average angular change value of the ankle joint has the best 
linear regression model 𝑦 = 4.5894 + 0.1007𝑥 with the determination coefficient 𝑅 = 0.9862, 𝑝 = 0.0000 (Fig. 3(b3)) in the current range of 30-90 μA. 

 
a) a1) a2) 

 
a3) 

b) b1) b2) b3) 
Fig. 3. a) Trend graph of the change in the average value of the joint angular change value of the hind 

limbs of rats with the amplitude of the stimulation current during the extension response: a1) optimal linear 
regression model of hip joint and stimulation current in extension response, a2) optimal linear regression 
model of knee joint and stimulation current in extension response, a3) optimal linear regression model of 

ankle joint and stimulation current in extension response; b) trend graph of the change in the average value 
of the joint angular change value of the hind limbs of rats with the amplitude of the stimulation current 
during the flexion response: b1) optimal linear regression model of hip joint and stimulation current in 
flexion response, b2) optimal linear regression model of knee joint and stimulation current in flexion 

response, b3) optimal linear regression model of ankle joint and stimulation current in flexion response 

2.7. Regulation of frequency of stimulus signals on hindlimb movement.  

When studying the effect of frequency on the joints of hind limbs during extension and flexion, 
the pulse width is 200 μs, and the current values are 40 μA in the extension response and 90 μA 
in the flexion response, respectively. 

In the extension response, the frequency of each stimulation signal is set to 20, 25, 30, 35, 40, 
45, and 50 Hz, respectively. The average angular change of the hip, knee and ankle of the hind 
limbs of the rats with the frequency of the stimulation signal is shown in Fig. 4(a). In the whole 
stimulation frequency range of 20-50 Hz, the average angular change value of each joint increases 
with the increase of frequency.  

When the hind limbs of the rat produce the flexion response, the average angular change value 
of the hip, knee and ankle joints with the frequency of the stimulation signal is shown in Fig. 4(b). 
In the whole stimulation frequency range of 20-50 Hz, the average angular change value of each 
joint increases with the increase of frequency. 

In the extension response, the average angular change value of the hip joint has the optimal 
linear regression model 𝑦 = 3.8827 + 0.1474𝑥 with the coefficient of determination 𝑅 = 0.9651, 
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𝑝 = 0.0001 (Fig. 4(a1)) when the frequency range is in 20-50 Hz. The average angular change of 
the knee joint is in the frequency range of 20-40 Hz, the optimal linear regression model  𝑦 =  10.5291 + 0.2882𝑥  with the coefficient of determination 𝑅 =  0.9828 and 𝑝 =  0.0010 
(Fig. 4(a2)). The average angular change of the ankle joint is in the frequency range of 30-50 Hz, 
and has the optimal linear regression model 𝑦 =  8.8348 + 0.1782𝑥  with the coefficient of 
determination 𝑅 = 0.9688, 𝑝 = 0.0024 (Fig. 4(a3)). 

In the flexion response, the average angular change of the hip joint can be obtained an optimal 
linear regression model 𝑦 = 3.9315 + 0.2368𝑥 with the determination coefficient 𝑅 = 0.9460, 𝑝 = 0.0011 (Fig. 4(b1)) in the frequency range of 25-50 Hz. The average angular change of the 
knee joint has the optimal linear regression model 𝑦 = 4.4306 + 0.1088𝑥 with the determination 
coefficients 𝑅 =  0.9828, 𝑝 =  0.0086 (Fig. 4(b2)) in the frequency range of 30-45 Hz. The 
average angle change of the ankle joint has the best linear regression model 𝑦 = 7.7389 + 0.0734𝑥 
with the coefficient of determination 𝑅 = 0.9469, 𝑝 = 0.0269 (Fig. 4(b3)) in the frequency range 
of 30-45 Hz. 

 
a) a1) a2) a3) 

 
b) 

 
b1) 

 
b2) 

 
b3) 

Fig. 4. a) Trend graph of the change in the average value of the joint angular change value of the hind 
limbs of rats with the frequency of the stimulation current during the extension response; a1) optimal linear 

regression model of hip joint and frequency in extension response; a2) optimal linear regression model  
of knee joint and frequency in extension response; a3) optimal linear regression model of ankle joint and 

frequency in extension response; b) trend graph of the change in the average value of the joint angular 
change value of the hind limbs of rats with the frequency during the flexion response;  

b1) optimal linear regression model of hip joint and frequency in flexion response;  
b2) optimal linear regression model of knee joint and frequency in flexion response;  
b3) optimal linear regression model of ankle joint and frequency in flexion response 

2.8. Regulation of pulse width of stimulation signals on hindlimb movement 

When studying the effects of pulse width on the joints of hind limbs during extension and 
flexion response, the frequency is set to 33.33 Hz, and the current values are 40 μA in the 
extension response and 90 μA in the flexion response, respectively. 

In the extension response experiment, the pulse width of each stimulation signal is set to 100, 
125, 150, 175, 200, 225, 250, 275, and 300 μs, respectively. The average angular change value of 
the hip, knee and ankle joint of the rats with the pulse width is shown in Fig. 5(a). In the entire 
pulse width range of 100-300 μs, the average angular change of the hip and knee joints increases 
with the increase of the pulse width. The average angular change values of the ankle begin to 
decrease after the pulse width is greater than 275 μs.  



STUDY ON THE REGULATION FUNCTION OF SPINAL CORD MICRO-STIMULATION SIGNAL PARAMETERS ON HIND LIMB MOVEMENT IN RATS.  
LEI MA, ZIQIANG LI, XIAOYAN SHEN, XIONGHENG BIAN, ZHILING LI, JIAHUAN SHEN 

1030 JOURNAL OF VIBROENGINEERING. JUNE 2021, VOLUME 23, ISSUE 4  

In the flexion response, the pulse width is set to 100, 125, 150, 175, 200, 225, 250, 275 and 
300 μs. The average change values of the angles of the hip, knee and ankle joint with the pulse 
width are shown in Fig. 5(b). When the stimulation pulse width is in 100-300 μs, the angular 
change of the hip joint shows an upward trend; the average angular change of the knee joint has 
decreased after the pulse width reaches 250 μs, and the average angle change of the ankle joint 
has begun to decrease after the pulse width reaches 275 μs. 

 
a) 

 
a1) 

 
a2) 

 
a3) 

 
b) 

 
b1) 

 
b2) 

 
b3) 

Fig. 5. a) Trend graph of the change in the average value of the joint angular change value of the hind 
limbs of rats with the pulse width of the stimulation current during the extension response; a1) optimal 
linear regression model of hip joint and pulse width in extension response; a2) optimal linear regression 
model of knee joint and pulse width in extension response; a3) optimal linear regression model of ankle 

joint and pulse width in extension response; b) trend graph of the change in the average value of the joint 
angular change value of the hind limbs of rats with the pulse width during the flexion response;  

b1) optimal linear regression model of hip joint and pulse width in flexion response;  
b2) optimal linear regression model of knee joint and pulse width in flexion response;  
b3) optimal linear regression model of ankle joint and pulse width in flexion response 

In the extension response, the average angular change of the hip joint has the optimal linear 
regression model 𝑦 =  0.9470 + 0.0588𝑥  with the determination coefficient is 𝑅 =  0.9615,  𝑝 = 0.0194 (Fig. 5(a1)), when the pulse width is in the range of 125-200 μs. The average angular 
change of the knee joint is in the range of 125-200 μs. It has the best linear regression model  𝑦 = –0.4514 + 0.1034𝑥 with the determination coefficient 𝑅 = 0.9787, 𝑝 = 0.0107 (Fig. 5(a2)). 
The average angular change of the ankle joint is in the range of 125-225 μs. It has the best linear 
regression model 𝑦 =  6.2859 + 0.0417 𝑥  with the determination coefficients 𝑅 =  0.9838,  𝑝 = 0.0009 (Fig. 5(a3)).  

In the flexion response, the average angular change of the hip joint is in the pulse width range 
of 150-225 μs, with an optimal linear regression model 𝑦 =  –0.9341 + 0.0491𝑥  with the 
determination coefficient 𝑅 = 0.9860, 𝑝 = 0.0070 (Fig. 5(b1)). The average angular change of 
the knee joint is in the range of 175-250 μs, it has the best linear regression model  𝑦 = 5.4492 + 0.0170𝑥 with the determination coefficient 𝑅 = 0.9954, 𝑝 = 0.0023 (Fig. 5(b2)). 
The average angular change of the ankle joint is in the range of 150-250 μs, it has the best linear 
regression model 𝑦 =  3.3210 + 0.0243𝑥  with the coefficient of determination 𝑅 =  0.9824,  𝑝 = 0.0010 (Fig. 5(b3)). 
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3. Discussions 

It is studied that the relationship between the amplitude, frequency and pulse width of the 
stimulus signal and the changes in the angles of the joints of the hind limbs of rats. When changing 
the amplitude of the stimulus signal, combining the angular change of each joint with the trend 
graph of the amplitude of the stimulus signal can get the best linear model of the change in the 
angle of each joint. It can be determined that the optimal stimulus amplitude of the extension 
response is 40 μA, and the optimal stimulus amplitude of the flexion response is 90 μA. 

Under the condition of determining the amplitude of the stimulus signal, it was found that 
during the frequency range of 10-20 Hz, the hind limbs rarely produced completed hind limb 
movements, so the experimental data during the frequency range of 10-20 Hz was not put into the 
trend chart for analysis [23]. When the stimulus signal is high frequency, especially when it is 
greater than 50 Hz, the hind limbs exhibit ankylosing response, the speed becomes faster, and the 
changes in the angle of each joint increase significantly, but the gait coordination of SCI rats after 
functional reconstruction is not consistent with these two aspects, so the high-frequency range 
angle change values are discarded. By synthesizing the trend graph of the angle change value and 
frequency of each joint and the best linear model, it can be concluded that the optimal frequency 
of the stimulus signal can be determined at 35 Hz ± 5 Hz. 

For the stimulation parameter of pulse width, short pulse width can reduce the stimulation of 
sensory nerves, but at a certain threshold current, too short pulse width will affect the recruitment 
of muscle fibers, and in the experiment, the hind limbs showed spasm. Here, the intensity/duration 
relationship between the threshold amplitude 𝐼 and the pulse duration 𝑑 of the rectangular pulse 
is approximately hyperbola 𝐼 − 𝑟 𝑑⁄ = 𝑘, where 𝑘 is a constant and 𝑟 is a horizontal asymptotic 
value [18]. This relationship indicates that as the pulse duration increases, a lower stimulus 
intensity (𝐼) is required to activate the surrounding motor nerves to achieve the required force 
output. Longer pulse width will penetrate deeply into the subcutaneous tissue, causing pain. The 
pulse duration increased to approximately 600 μs has been shown to result in greater force 
generation. After that, the closer to the base intensity value 𝐼, the longer pulses do not necessarily 
result in greater force generation [24]. In conclusion, combining the trend graph of the angular 
change value of each joint and the optimal linear regression model, the pulse width can be 
determined as 200 μs. 

4. Conclusions 

In this paper, the mapping relationship between the amplitude of the spinal cord 
micro-excitation signal and the changes of joint angles of hindlimbs in rats was explored. The 
angle changes of the hip joint, knee joint and ankle joint of the rat's hind limbs under different 
stimulation current amplitudes were analyzed, and it was found that there is a strong correlation 
between them. The angle changes of each joint are positively related to the current amplitude. 
Combining this relationship and the mechanism of neural control, the best range of stimulation 
current for the response of rats was (40 ± 5) μA, and the best exciting current range for flexion 
response was (80 ± 10) μA. Analyzing the data, it can be seen that the production of joint angles 
is coordinated and consistent. The establishment of the amplitude, frequency and pulse width of 
the stimulus signal provides a reference for the further development of spinal cord stimulator for 
posterior limb regulation. 
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