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Abstract. Considering the difficulty in the diagnosis of compound faults in rolling bearings, the 
paper combines Intrinsic Time-scale Decomposition (ITD) and Singular Value Decomposition 
(SVD) for extracting the characteristics of compound faults from rolling bearings. Rotational 
components obtained from ITD decomposition are denoised according to Singular Value 
Decomposition algorithm; signal is reconstructed by denoised rotational components; at last, 
characteristics of compound faults of rolling bearings are extracted by Hilbert spectrum envelope 
of reconstructed signal. In validation, the paper has made a comparative study on the proposed 
ITD-SVD method and conventional one based on ITD algorithm and PCA method, and the result 
shows that ITD-SVD method works better on noise control and thereby provides more precise 
extraction of characteristic frequency of compound faults from rolling bearings of aero-engine. 
Keywords: rolling bearings, ITD, compound faults, SVD, characteristic extraction. 

1. Introduction 

It is of great significance to make fault diagnosis of rolling bearings, one of the important and 
vulnerable parts in large-sized rotary machines like aero-engine [1]. As vibration signal of rolling 
bearings are nonlinear and non-stationary [2], conventional time domain [3, 4] and 
frequency-domain analysis [5, 6] is difficult to extract compound fault signal. Time-frequency 
domain analysis can provide both time domain and frequency domain information and has been 
widely applied to the fault diagnosis of rolling bearings [7]. Typical time-frequency analysis 
consists of wavelet transform [8], short-time Fourier transform [9], Hilbert Huang transform [10], 
Empirical Mode Decomposition (EMD) [7, 11] and so on. As proved by the studies on engineering 
practice, faults of rolling bearings are present as compound faults in most of cases and 
characteristic extraction has been proved to be far more difficult than signal fault’s [12]. Tang 
proposed the extraction method based on improved harmonic wavelet packet decomposition [13]; 
Hu proposed a resonance demodulation method based on correlative peak and applied it to the 
characteristic extraction of compound faults in rolling bearings [14].  

In 2006, FREI, et al provided a self-adaptive time-frequency method, the Intrinsic Time-scale 
Decomposition, which works by dividing the sum of nonlinear and non-stationary signal into 
several proper rotation components (PRC) and single trend components [15]. ITD algorithm 
avoids envelope errors and is proved to be clearly superior to EMD in terms of fringe effect, end 
effect and calculating speed, which earns it a place in the fault diagnosis of rolling bearings. Zhang 
combined ITD, fuzzy entropy and Gath-Geva (GG) clustering algorithm to determine the fault 
type of rolling bearings [16]. Guan et al. denoised PR components of greater correlation with ITD 
and the filtering algorithm of multi-scale morphology, and took a further step to extract the 
characteristic frequency of faults [17]. Yu put forward the diagnosis method combining ITD 
algorithm and average combination difference morphological filtering (ACDIF) [18]. Zhang 
decomposed signal with ITD algorithm when studying single fault of rolling bearings, and 
proceeded to fault diagnosis with the PR components of larger kurtosis [19].  

Singular Value Decomposition (SVD) comes up as a nonlinear filtering method and is capable 
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to effectively improve the SNR of signal [20]. The noise of signal can be effectively eliminated in 
such a way that singular value can be decomposed by Hankel matrix and proper values are chosen 
and reconstructed. Cheng et al. suggested the combination of EMD and singular value methods 
for denoising of radar signal [21]. Cui brought forward the single fault diagnosis method based on 
the decomposition of singular value and local characteristic scale decomposition [22]. 

The application of fault diagnosis to ball bearing has been widely promoted by scholar 
researches home and abroad. While the more researches are mainly concentrated on single fault 
rather than compound faults at present [1]. Meanwhile, A real aero-engine fault mode is usually 
compound [1] considering that intercoupling between faults. The compound faults characteristic 
extraction is far more difficult than single fault, with the addition of many signal analysis methods 
(including Hilbert transform etc.) and is effective for single fault rather than compound faults, 
which leads to the particular difficulty to extract rolling bearing compound faults characteristics 
based on vibration signal in aero-engine.  

In view of above, the paper has combined ITD algorithm and SVD method to study the 
characteristic extraction and fault diagnosis in the early stage of compound faults in rolling 
bearings. To validate the effectiveness of method, the paper has made a comparative study on 
ITD-SVD and usual methods based on ITD algorithm in extracting characteristics of rolling 
bearings (scheme A: proper rotation components obtained after ITD decomposition are 
reconstructed without single trend components; scheme B: ITD is combined with maximum 
kurtosis).  

2. Algorithms 

2.1. ITD algorithm  

ITD algorithm aims to represent a complex signal with the sum of some proper rotation 
components (PR) and the one of a residual trend term. Given 𝑋  is vibration signal; 𝐿, baseline 
signal operator; 𝐿𝑋 , baseline extraction operator, replaced by 𝐿 ; 𝐻, extraction operator of proper 
rotation component; 𝐿 , residual trend component; 𝐻 , rotational component, and specific process 
of ITD algorithm is shown in Fig. 1. 

 
Fig. 1. ITD algorithm diagram 
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1) Vibration signal 𝑋  is represented as: 𝑋 = 𝐿𝑋 + 1 − 𝐿 𝑋 = 𝐿 + 𝐻 . (1)

2) Figure out 𝑋 , all the extreme points of 𝑋  and related time 𝜏 , in which (𝑘 = 1, 2,…, 𝑀), 𝑀 represents the number of extreme points. Linear gain parameter 𝛼 is within 0 < 𝛼 < 1, with 
0.5 as a usual option [19]: 𝐿 = 𝛼 𝑋 + 𝜏 − 𝜏𝜏 − 𝜏 𝑋 − 𝑋 + 1 − 𝛼 𝑋 ,      𝑘 = 1,2, … ,𝑀 − 2. (2)

3) Linear transformation is performed between adjacent extreme points, as shown in Eq. (3): 𝐿𝑋 = 𝐿 = 𝐿 + 𝐿 − 𝐿𝑋 − 𝑋 𝑋 − 𝑋 ,      𝑡 ∈ 𝜏 , 𝜏 . (3)

4) Replaces 𝑋  with 𝐿  and repeat the step 1-3 until 𝐿  becomes a monotonic function or 
constant. Given the number of iterations is 𝑝 , 𝑋  can be represented as Eq. (4) after ITD 
decomposition: 

𝑋 = 𝐻 + 𝐿 = 𝐻 + 𝐻 + 𝐿 𝐿 = 𝐻 𝐿 + 𝐿 = 𝐻 + 𝐻 +⋅⋅⋅ +𝐻 + 𝐿 . (4)

2.2. SVD algorithm  

As for the rotational component signal 𝐻 = 𝐻 , 𝑖 = 1, 2,…, 𝑁 after ITD decomposition, 
build a Hankel matrix 𝐻′: 
𝐻 = ℎ ℎ ⋯ ℎℎ ℎ ⋯ ℎ⋮ ⋮ ⋮ℎ ℎ ⋯ ℎ . (5)

Singular value decomposition of 𝐻′ is as follow: 𝐻 = 𝑈𝑆𝑉 . (6)

In the Eq. (6), 𝑈 and 𝑉 is orthogonal matrix; 𝑉 , transposed matrix of 𝑉; 𝑆, diagonal matrix 
composed by singular value. Singular value bears the following relation: 𝜎 > 𝜎 >. . . > 𝜎 ≫𝜎 > 𝜎 > 𝜎  (in which ≫ means being much greater than). 𝜎  represents the 𝑘th singular 
value obtained by decomposition, 𝑘 = 1, 2,…, 𝑟. 𝑟 is the order of matrix 𝐻′. 

As the singular value of each subsequent term after the term 𝑘 + 1 is significantly smaller than 
previous 𝑘′ singular values [23], the singular values of term 𝑘 + 1 − 𝑟 can be regarded as the 
singular value to noise component [24]. That means the key to denoising of singular value lies in 
the option of k, the number of reconstructed terms. As in the Hankel matrix, the vectors of one 
row lag behind the previous row with only one data point, a sick nature can be observed in the 
Hankel matrix without noise signal due to the correlation of adjacent rows: the previous 𝑘′ 
singular values are larger and present obvious mutation in some point, while the singular values 
after that are close to zero. On the contrary, the singular values with noise signal show no 
correlation between adjacent rows, namely without obvious mutation, but present a parallel line 
close to lateral axis. For that, difference spectrum of singular value is introduced to determine 
mutation point 𝑘. It describes the variation of sequence. As the value of difference sequence is 
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large, the literature [25] has defined difference spectrum 𝑑  as: 𝑑 = 𝜎 − 𝜎 ,       𝑞 = min(𝑁 − 𝑛 + 1,𝑛) − 1. (7)

Given: difference spectrum sequence 𝑑 = 𝑑 ,𝑑 , … ,𝑑 , in which singular values of first 𝑘 
terms are the ones corresponding to signal and from 𝑘 + 1 to the last term, the singular values 
correspond to noise. For that, the 𝑘th element 𝑑  is the maximum peak of difference spectrum 
sequence. Choose the first 𝑘 singular values to build a new diagonal matrix 𝑆′ and rebuild original 
signal 𝐻′′: 𝑘 = argmax 𝑝𝑒𝑎𝑘(𝑑 ),     𝑖 = 1,2, . . . , 𝑞 , (8)𝐻′′ = 𝑈𝑆′𝑉 . (9)

2.3. ITD-SVD  

In this paper, a study has been made to probe into the characteristic extraction and fault 
diagnosis of compound faults from rolling bearings in aero-engines. The specific ITD-SVD 
algorithm is shown in the scheme D in Fig. 2. The scheme A in Fig. 2 refers to rebuilding signal 
with rotational components obtained from ITD algorithm (directly eliminate residual trend terms); 
scheme B refers to selection of characteristic signals according to rotational components 
associated with maximum kurtosis; scheme D refers to ITD-SVD algorithm proposed in this paper. 

 
Fig. 2. Method flow diagram 
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and specific process is shown as follow: 
Step 1: vibration signal is decomposed into several PR components and residual trend 

components based on ITD algorithm; 
Step 2: each rotational component is denoised based on singular value difference spectrum 

algorithm; 
Step 3: vibration signal is reconstructed with rotational components denoised; 
Step 4: reconstructed signal is subjected to envelope analysis based on Hilbert envelope 

spectrum; characteristics of compound faults are extracted and fault identification is studied.  

3. Characteristic frequency of rolling bearings  

As each fault type of rolling bearings is relative to its characteristic frequency [26], it is feasible 
to identify the type of fault according to characteristic frequency of bearings. Eqs. (10-14) are 
relevant to the rotational frequency of device and characteristic frequency of inner and outer ring, 
rolling element and holder of rolling bearing respectively: 

𝑓 = 𝑓60, (10)𝑓 = 12 × 𝑍 × 1 + 𝑑𝐷 cos𝛼 × 𝑓 , (11)𝑓 = 12 × 𝑍 × 1 − 𝑑𝐷 cos𝛼 × 𝑓 , (12)𝑓 = 𝐷2 × 𝑑 × 1 − 𝑑𝐷 cos 𝛼  × 𝑓 , (13)𝑓 = 12 × 1 − 𝑑𝐷 cos𝛼 × 𝑓 , (14)

where 𝑓  represents rotational speed; 𝑓  for rotational frequency; 𝑓 , 𝑓  and 𝑓  for the 
characteristic frequency of inner ring, outer ring, rolling element and holder; 𝑍 for the number of 
rolling elements; 𝑑 for diameter of bearings; 𝐷 for pitch diameter; 𝛼 for the angle between stress 
direction of rolling elements and vertical line of rollaway of inner and outer rings.  

4. Characteristic extraction of compound faults in rolling bearings 

All experimental data included in this paper is obtained from rotor-rolling bearing 
experimental rig, as shown in Fig. 3. The rig is composed by adjustable motor, spin axis, rotor 
plate, ball bearing, bearing seat and integrated electronic control system. Fig. 4 is the diagram of 
compound fault of bearings, in which Fig. 4 are relative to compound faults of inner and outer 
rings, outer ring and rolling elements, inner and outer rings and rolling elements. Bearing damage 
was made by wire cutting of electric discharge as a simulation in the test and the cutting depth is 
0.2 mm. The specific geometrical parameters of rolling bearings are shown in Table 1, in which 𝑍 represents for the number of rolling elements; 𝑑 for bearing diameter; 𝐷 for pitch diameter; 𝛼 
for the angle between stress direction of rolling elements and vertical line of rollaway of inner and 
outer rings. 

Table 1. Rolling bearing geometrical parameters 𝑍 𝑑 𝐷 𝛼 
7 9.6 36 0 

Acceleration sensors were fixed to 3 different positions around bearing seat (including 
horizontal and vertical positions, as shown in Fig. 3 with an aim to compare the sensibility of 
ITD-SVD algorithm to the installation direction and position of sensors. Firstly, when compound 
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faults occurred in outer and inner ring and rolling elements of rolling bearings, we randomly took 
the vibration acceleration signal collected by sensors in vertical direction as a case for analysis. 
Rotational speed 𝑓  is 1869 r/min and rotational frequency 𝑓  31 Hz. According to Eqs. (10-14), 
characteristic frequencies of rolling bearings are shown in Table 2. 

 
Fig. 3. Aero-engine rotor-rolling bearing experimental rig 

 
Fig. 4. Compound faults of rolling bearing 

Table 2. Fault characteristic frequency-rotational speed 1869 r/min 
 Feature frequency 

Fault types 𝑓  (Hz) 𝑓  (Hz) 𝑓  (Hz) 𝑓  (Hz) 𝑓  (Hz) 
Outer ring, inner ring and rolling element 

compound faults 31 11.4 138.1 79.9 54.2 

4.1. Scheme A: (shown in Fig. 2, marked by blue) 

According to scheme A, vibration signal is broken up by ITD algorithm, with residual trend 
components eliminated and then signal is reconstructed based on the obtained PR components. 
Extract characteristics of compound faults based on reconstructed signal and make fault diagnosis, 
and the result is shown in Fig. 5. Fig. 5(a) is the time domain waveform of original signal and 
Fig. 5(b) is Hilbert envelope spectrum; Fig. 5(c) is the time-domain waveform of rotational 
components after ITD decomposition; Fig. 5(d) and (e) is the time-domain waveform of 
reconstructed rotational components and Hilbert envelope spectrum.  

It can be found from the analysis of Fig. 5(d)-(e) that no matter the direct envelope analysis of 
vibration signal or ITD-based algorithm, it is impossible to effectively extract characteristic 
frequency of rolling bearings according to Hilbert envelope spectrum of reconstructed rotational 
components (without residual trend components), which means it cannot effectively determine the 
type of faults. 

4.2. Scheme B (shown in Fig. 2, marked by green) 

Vibration data of Section 4.1 was reused to facilitate comparative analysis. According to 
scheme B, kurtosis of each rotational component (obtained by ITD decomposition) was calculated 
and the one with maximum kurtosis was regarded as optimal rotational component, based on 
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which characteristics of compound faults were extracted. The kurtosis of each rotational 
component is shown in Table 3. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Fig. 5. Compound faults feature extraction of rolling bearing – scheme A 

It can be found from Table 3 that PR2 is chosen as optimal rotational component according to 
the principle of maximum kurtosis. To reduce the influence of noise in signal, we took the 
self-correlation function of PR2 and extracted the characteristics of compound faults of rolling 
bearings with the Hilbert envelope spectrum of self-correlation function. The result is shown in 
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Fig. 6. Fig 6(a) and (b) is the self-correlation function of PR2 rotational component and Hilbert 
envelope spectrum. 

Table 3. Kurtosis coefficient 
 PR components 

Index PR1 PR2 PR3 PR4 
Kurtosis 2.9061 3.6492 3.4704 3.4116 

 

 
a) 

 
b) 

Fig. 6. Compound faults feature extraction of rolling bearing – scheme B 

As shown in Fig. 6(b), ITD algorithm is combined with kurtosis and a distinct 820 Hz 
frequency component can be observed in the Hilbert envelope spectrum of optimal rotational 
component associated with maximum kurtosis. This frequency component is consistent with the 
15-time frequency (820/15 = 54.7 Hz) of characteristic frequency (54.2 Hz) of rolling elements in 
rolling bearings. It can be observed from scheme B that faults occurred in rolling elements, but 
this scheme cannot effectively extract the characteristic frequency of inner and outer rings, which 
means the combination of ITD algorithm and kurtosis unable to make effective judgment of 
compound faults of rolling bearings.  

4.3. Scheme C (shown in Fig. 2, marked by yellow) 

Vibration data of Section 4.1 was used (compound faults occurred in outer and inner ring and 
rolling elements) to facilitate comparative analysis. The PCA method is used to realize data fusion 
(the two channels vibration data in the horizontal and vertical direction is selected). To reduced 
noise, the autocorrelation function is selected. The results obtained by Hilbert envelope spectrum 
analysis are shown in the Fig. 7. Among them, Fig. 7(a) is the time domain signal after PCA, 
Fig. 7(b) is the autocorrelation function of Fig.7(a), and Fig. 7(c) is the Hilbert envelope spectrum 
of Fig. 7(b). 

By analyzing Fig. 7(c), it can be concluded that: in Hilbert envelope spectrum can only find 3 
times frequency (166 Hz) and 15 times frequency (820 Hz) of rolling element fault characteristic 
frequency (54.2 Hz) by using PCA method, while the inner ring and outer ring feature frequency 
cannot be find. In other words, scheme C (PCA) cannot accurately identify compound fault 
diagnosis types of rolling bearings. 

5. Characteristic extraction of compound faults based on ITD-SVD 

To address the difficulty in extracting compound faults of rolling bearings, it is crucial to 
effectively reduce the noise component in signal. SVD can filter out noise component while 
reserving the impulse nature of signal to the most extent. For that, the combination of ITD and 
SVD algorithms can serve the characteristic extraction of compound faults in rolling bearings. 
Firstly, original vibration signal is decomposed by ITD algorithm into proper rotation components 
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which are denoised with difference spectrum of singular value; secondly, vibration signal is 
reconstructed from denoised proper rotation components; finally, characteristics of compound 
faults are extracted with Hilbert envelope spectrum of reconstructed signal. Specific process of 
ITD-SVD algorithm is shown in scheme D, Fig. 2.  

 
a) 

 
b) 

 
c) 

Fig. 7. Compound faults feature extraction of rolling bearing – scheme C 

5.1. Characteristic extraction of compound faults in rolling bearings  

To make a comparative analysis with the scheme A/B/C in Section 4.1-4.3 in terms of the 
effect of characteristic extraction, the characteristic extraction basic on ITD-SVD algorithm took 
the same vibration data as Section 4.1. The result is shown in Fig. 8, in which Fig. 8(a1)-(a4) is 
the denoised rotational component by SVD (obtained by ITD algorithm, as shown in Fig. 5(c)); 
Fig. 8(a5) is the reconstructed time-domain after denoising (based on Fig. 8(a1) to (a4)); Fig. 8(a6) 
is the Hilbert envelope spectrum of reconstructed signal.  

After analyzing Fig. 8(a6) and comparing it with Fig. 5(e), 6(b) and 7(c) we can find that: 
Based on the ITD-SVD (scheme D) algorithm, the frequency components of 138 Hz and 

284 Hz, 820 Hz were observed to have larger amplitude in Hilbert envelope spectrum. It can be 
found from the analysis that these frequencies are relative to the characteristic frequency 
(138.1 Hz) of inner ring faults, the difference of 4-time frequency of characteristic frequency 
(79.9 Hz) of outer ring and inversion (31 Hz) ((284+31)/4 = 78.8 Hz), and the 15-time frequency 
(820/15 = 54.7 Hz) of characteristic frequency of faults in rolling elements. These frequency 
characteristics are consistent with the type of compound faults of rolling bearings. That means the 
proposed ITD-SVD algorithm can effectively extract the characteristics of compound faults of 
rolling bearings and precisely determine the type of faults.  
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5.2. Different installation positions of sensors 

To analyze the sensibility of ITD-SVD algorithm to installation direction and position of 
sensors, we have chosen the vibration acceleration signal collected by the sensors of horizontal 
direction in section 4.1 (sensors in vertical direction). Rotation speed 𝑓  remains 1869 r/min and 
frequency 𝑓  is 31 Hz. Characteristic frequency of outer ring, inner ring, rolling elements and 
holder is 79.9 Hz, 138.1 Hz, 54.2 Hz and 11.4 Hz respectively. The result is shown in Fig. 9, in 
which Fig. 9(a) is the time domain waveform of vibration acceleration signal; Fig. 9(b) is the 
Hilbert envelope of original signal; Fig. 9(c) is the rotational components of acceleration signal; 
Fig. 9(d1)-(d4) is the time domain waveform of denoised rotational component by ITD-SVD; 
Fig. 9(d5) is the reconstructed time-domain after denoising (based on Fig. 9(d1)-(d4)); Fig. 9(d6) 
is the Hilbert envelope spectrum of reconstructed signal; fig. 9(d7) is the partial zoom view of 
Hilbert envelope spectrum of reconstructed signal.  

   
a1)  

    
a2)  

 
a3) 

 
a4) 

 
a5) 

  
a6) 

Fig. 8. Compound faults feature extraction of rolling bearing – scheme D-vertical direction 
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(79.9 Hz) of outer ring fault and 15-time frequency (805/15 = 53.6 Hz) of characteristic frequency 
(54.2 Hz) of faults in rolling elements. As the characteristic frequency of faults in rolling elements 
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is modulated by rotational frequency of holder, there is the difference between the 15-time 
frequency of fault characteristic frequency of rolling elements and rotational frequency of holder, 
794 Hz (805-11.4 = 793.6 Hz).  

It can be concluded from the comparison of Fig. 7 and Fig. 8 that with ITD-SVD algorithm, 
we can effectively extract the characteristic frequency of compound faults of rolling bearings no 
matter sensors are installed in horizontal or vertical direction, and thereby identify the fault type. 
That means ITD-SVD algorithm is insensitive to installation direction of sensor. 
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d7) 

Fig. 9. Compound faults feature extraction of rolling bearing – scheme D-Horizontal direction 

5.3. Other compound faults 

To further validate the effectiveness of ITD-SVD algorithm, we will study the characteristic 
extraction of other compound faults in rolling bearings based on ITD-SVD next. Compound faults 
of outer and inner rings (sensors were fixed vertically), outer ring and rolling elements (sensors 
were fixed horizontally) were randomly chosen for the study based on ITD-SVD algorithm and 
the result is shown in Fig. 10. Fig. 10(a1)-(b1) shows the time domain waveform of vibration 
signal; Fig. 10(a2)-(b2), the Hilbert envelope spectrum of original vibration signal;  
Fig. 10(a3)-(b3), time domain waveform of reconstructed signal with ITD-SVD; Fig. 10(a4)-(b4), 
Hilbert envelope spectrum of reconstructed signal; Fig. 10(a5)-(b5), partial zoom of Hilbert 
envelope spectrum of reconstructed signal; Fig. 10(a1)-(b5), compound faults of outer and rolling 
elements.  

Figure out the characteristic frequencies of different compound faults according to  
Eqs. (10-14). The result is shown in Table 4. 

From the analysis of Fig. 10(a5), we can find some distinct frequency components, like 129 Hz, 
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589 Hz and 24 Hz in the Hilbert envelope spectrum based on ITD-SVD algorithm. These 
frequency components are relative to 2-time and 9-time frequency (589/9 = 65.4 Hz) of outer-ring 
characteristic frequency 65 Hz, the sum of 2-time frequency of inner-ring characteristic frequency 
112 Hz and inversion 25 ((241-25)/2 = 108 Hz), which is consistent with the state of compound 
faults of inner and outer rings. 
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a5) 

 
b5) 

Fig. 10. Compound faults feature extraction of rolling bearing – scheme D: outer ring and inner ring 
compound fault (a1-a5); outer ring and rolling element compound fault (b1-b5) 

From the analysis of Fig. 10(b5), we can find some distinct frequency components, like 53 Hz 
and 240 Hz in the Hilbert envelope spectrum based on ITD-SVD algorithm. It can be found from 
the analysis that these frequency components are relative to the 3-time frequency (240/3 = 80 Hz) 
of fault characteristic frequency (52.6 Hz) of rolling elements and that (77.5 Hz) of outer-ring. 
The result is consistent with the state of compound faults of rolling elements and outer ring. 

Table 4. Fault characteristic frequency and related parameters 
Fault types Sensor 

position 
𝑓  

(r/min) 
𝑓  

(Hz) 
𝑓  

(Hz) 
𝑓  

(Hz) 
𝑓  

(Hz) 
𝑓  

(Hz) 
Outer ring and inner ring 

fault Vertical 1515 25 9.3 112 65 44 

Outer ring and rolling 
element fault Horizontal 1813 30 11 134 77.5 52.6 

That is to say the proposed ITD-SVD algorithm can precisely and effectively extract 
characteristic frequencies of different compound faults in rolling bearings and thereby determine 
the type of faults.  

6. Conclusions 

ITD algorithm is combined with difference spectrum of SVD to extract characteristic 
frequencies of compound faults in rolling bearings and then determine the type of faults. The result 
indicates that: 

1) With ITD-SVD algorithm, no matter sensors are installed horizontally or vertically, we can 
still effectively the characteristic frequencies of compound faults in rolling bearings and precisely 
determine the fault type.  

2) Meanwhile, the algorithm can make precise diagnosis on characteristics of different 
compound faults, which means the algorithm is insensitive to the type of compound faults. 
However, traditional ITD algorithm (combination of reconstructed rotation components, ITD and 
kurtosis) and PCA combined with autocorrelation are unable to make effective extraction of 
characteristic frequency of compound faults in rolling bearings. 

3) As computation is rather slow due to a large dimension of Hankel matrix, it is more suitable 
for off-line data analysis and treatment. 
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