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Abstract. In this paper, the vibration behavior features are extracted from the combination
between Wavelet Transform (WT), and Finite Strip Transition Matrix (FSTM) of skew composite
plates (SCPs), with variable thickness, and intermediate elastic support. Although, the results of
this technique and based on the previous work done by the authors, that show the method can
reflect the vibration behavior of the composite plates. Due to the method's difficulty in terms of,
a lot of calculations with a large number of iterations these results may not be good choices for
quick and accurate vibration behavior extracting. Thus, the new deep neural network (NN) is
designed to learn and test these results carrying out by extracting vibration behavior features that
reflect the important and essential information about the mode shapes in SCP. The results give
high indications about the proposed technique of deep learning is a promising method, particularly
when the type structures are complicated and the ambient environment is variable.

Keywords: free vibration, deep learning, wavelet transform (WT), variable thickness plates, skew
composite plates (SCPs), BFRP.

Nomenclature

SCP/SCPs  Skew composite plate/plates

IES Intermediate elastic support

SP/SPs skew plate/plates

WT/WTs Wavelet transform/transforms

FSTM Finite strip transition matrix

BCs boundary conditions

CWT Continuous wavelet transform

MSE Mean square error

a,b Length and width of the plate

h(y) Plate thickness as a function of y

h,, hy, Plate thickness at y = 0 and y = b, respectively

hok Distance from the middle-plane of the plate according to h, to the bottom of the
hoen layer

m, = ph,, mass density per unit area of the plate

p Dynamic load function

w,(x,y,z) deflection at any point (x, y)

D Plate flexural rigidity

Qk Plane stress transformed reduced stiffness coefficients of the lamina
E Young’s modulus

Eiq Longitudinal Young’s moduli parallel to the fiber orientation
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E,, Transverse Young’s moduli perpendicular to the fiber orientation
Giq Goq Plane shear modulus of elasticity
Q Number of terms used in series solution
N Number of strips
W(x,y,z) Time-dependent deflection at any point (x, y)
M, The normal bending moment at the boundary
Xm Classical beam functions in the x-direction
Y, A series solution in the y-direction
Kr Elastic restraint coefficient
T Translational stiffness per unit length
W(&,n,t)  Shape function
Y:(m) Unknown function to be determined
X;(® Chosen a priori, the basic function in -direction
V12, Uz Poisson’s ratio
p Density per unit area of the plate
W Natural frequency (rad/sec)
&n = u/a and v/b, respectively, non-Dimensional variables
¢ Skew angle
4 = a/b, plate aspect ratio
A = (hy — hy)/h,, (h,), plate tapered ratio
h(Mw?a* ! 2 . .
0 (%) , non-dimensional frequency parameter (NDFP)
D yn Predicted non-dimensional frequency parameter (PNDFP)
n Number of deep NN data
dw,/on The slope at the boundary
rho Material density

1. Introduction

The importance of to use of composite materials in many fields of technology, such as
aerospace industries, marine engineering, and civil engineering is due to special features, e.g. high
strength/weight ratio and corrosion resistance property, particularly under the effects of the harsh
environment. Although the structures are made of these types of materials have some drawback
are subject to matrix cracks, fiber breakage, and delamination. These invisible faults can lead to
catastrophic structural failures [1-4].

Other major modes of failure of fiber-reinforced polymer (FRP) have a temperature, bending,
tensile, stress, impact failure, and failure of the installation, etc. These types of failures are
complicated and are not easy to assets, mostly when subjected to associate effects of multiple
factors [5-7].

The user of an active system of structural health monitoring (SHM) to observe the safety and
potential damage detection in composite plates are essential and most seriously. The function of
SHM is consists of three main sub-functions, including system identification, features extraction
for algorithms for detection and prediction, and reliability and risk evaluation [8-19].

The vibration behavior of composite structures is the traditional method for the intelligent
detecting the defects in the composite. The mode shapes of the structure are one of the essential
tools in Structural health monitoring (SHM) in the last decades, where, extracted the vibration
response of composite structure for each damage type and position and analysis based on the
variance in vibration parameters. In recent years, different techniques to extract the natural
frequencies of composite plates have become a field of great interest in the scientific society
[20-34].

To find the mode shapes for different boundary conditions with IES, numerical methods or
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experimental methods must be used. Some researchers have been interested in the vibration of
multi-span plates using different approaches. In previous works, Altabey [35, 36] used the FSTM
as one of the common use of semi-analytical approaches to extract vibration response of basalt
FRP laminated variable thickness rectangular plates with IES, and he tried to improve the results
accuracy and by the way, decrease the calculations efforts due to a large number of iterations by
combined his method with artificial neural networks (ANNs) and response surface (RS) methods.

In the present research, the new deep NN is designed to predict the vibration behavior of SCPs
with variable thickness and IES with a different elastic restraint coefficient (K;) and four cases of
boundary conditions (BCs) of plate edges, namely SSSS, CCCC, SSFF, and CCFF. The plate is a
rectangular SCP with variable thickness function h(y), the locations of the IES is at mid-line of
the presented plate, and the plate was manufactured from basalt fiber reinforced polymer (BFRP)
by using five symmetrically layers with the stacking angle [45°/—45°/45°/—45°/45°] as shown in
Fig. 1. First, review the illustrated results of the utilized method by the combination of these WT
and FSTM methods (WT-FSTM) to convergence the studies by checking the agreement with the
results available in the literature. Second, the trained deep NN is used to predict the outcome of
the extracted vibration behavior of SCPs from WT-FSTM at certain values of elastic restraint
coefficients (Kr) for IES, and then it is subsequently used to predict the vibration behavior for
different levels of elastic restraint coefficients (K;) for IES. The results are predicted from the
deep NN model are in very good agreement with the WT-FSTM results. Hence, the results give
high indications about the proposed technique of deep learning is a promising method.

.'.. '.'. . .\
..~".. N
il H
(Y - h,
Elastic Support ‘l’

hy — h,
Y hoy=h+ 20D,

Fig. 1. The geometry of rectangular SCP with variable thickness and IES
2. Model overview

The composite plate material has corresponding elastic and shear modulus values are shown
in Table 1.

Table 1. Model property
E11 (GPa) | E5, (GPa) | vy, | vy | Gi5 (GPa) | G,y (GPa) | tho kg/m3
96.74 22.55 03] 0.6 10.64 8.73 2700

The normalized partial differential equation of vibration behavior for the plates system
illustrated in Fig.1 under the assumption of the classical deformation theory in terms of the plate
deflection w, (x, y, t) using the non-Dimensional variables & and 7 related to the skew coordinate
system (u, v, ¢) defined by u = xsec(¢), v =y — xtan(¢), and & = %» n= %, and after some
derivation, the governing equation can be written as follows:
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1 92h3
Yo o5 Weses — 43 (sing)ih3h® (MWeggy + vB* 2 (cos*$) angn) 53
+2[%;(co 2¢) (TI) Wee, + 287,03 () (3sin®¢ + cos® ) Wiy
a 92h?
+2B*(cos?¢) 6757]) o — 2B (singcos? ) TEU)WEU )
— 4%, (sing)h* (M Wiy + B*(vtan?¢p + 1)cos4¢%ngn)wﬂn
3(n)

ﬁ4h3(77) nnmm 4ﬁ l/)4(Sln¢COSZ¢) Wf’?"l _th(ﬂ)hz(C054¢)th:

Dy,+2D D D
where Y, = ’l’z {D12*2Deq) 12; 66)» Y3 = D16 Yy = D_26
22 22 22

Since the treatment of IES conditions are the main objective of this paper we presented it in
more detail. The line of the IES y = b/2, the displacement must vanish and the normal moment
must be continuous, i.e.

2w, 93w, 02w, 23w,

K -2 — : )
T™Wo = '(l)3 9x3 ay lpS axzay l/)4- axayz ( )
aWO 6W0
dy 9y ’ (3)
n=1"/2 n=1%/2
where: 1, = g—:;, Y, = %’ Wy = D16 £, 1y = 222 Ky = Tb/zb g = (Dlz+242D66)

3. Determination of vibration behavior using WT and FSTM

In This section, the mode shapes of the SCP will be extracted using a new method by combined
between the WT and FSTM methods with an adjusting frequency parameter, in order to improve
the estimated accuracy of extracting by optimized the WT entropy for adjusting frequency
parameter.

3.1. Continuous wavelet transform (CWT)

Continuous wavelet transform (CWT) is a convolution process of the data sequence with a set
of continuous scaled and translated versions of the mother wavelet (MW) 1(t). The translating
process is a smoothing effect over the length of the data sequence to localize the wavelet in time
domain x(t), whereas the scaling process is compressing or stretching of analyzed wavelet which
indicates various resolutions. The stretched wavelet is used to capture the slow changes; while the
compressed wavelet is used to capture abrupt changes in the signal. The trade-off of enhancing
resolution is between increased computational cost and memory by computing wavelet
components and multiplying each component by the correctly dilated and translated wavelet,
resulting in the constituent wavelet of the analyzed signal [37-45].

The 1(t) is stretched or squeezed through varying its dilation parameter s and moved through
its translation parameter 7 (i.e. along the localized time index 7):

1 t—1
Yso (t) = ﬁ (T)' TER, S$>0. (4)

Let x(t) be the system shape function response of FSTM, where t denotes time. CWT of a
function x(t) € L*(R), where L*(R) is the set of square-integrable functions is denoted as W ,
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and defined as:

t—1

W = @5 O = = [ 3@ .9 (55 e ©

where the wavelet scale s and the period 7 are used to adjust the frequency and time location.
W, shows how closely 1 ; (t) correlated with x (t). By inverse CWT, the signal x(t) can be
regenerated as:

1 [*T® e dsdrt
X(t) = g ) VVS,‘L’ 1ps,‘t ? (6)

For a plate striped in the ¢-direction by divided into N discrete longitudinal strips spanning
between supports as shown in Fig. 1, the free-response equation for one striped beam system may
be assumed in the form:

x(t) = Xi (DY, (e . (7

The WT of Eq. (7) is:

J5

= - XY, (). " (Spw)e . ®

|VVSQ.T |

The logarithm of Eq. (8) gives:

In|W, | = jor +1n (@Xi(f)n(n)lw*(sown). ©)

By using the straight line of the slope of the logarithm of WT modulus, we can be obtained the
natural frequency of the system and it is given by:

arg(Wy) = wr = o arg(W,,.) = o (10)

The plot of % Arg (WSO,T) is constant in the time domain and is equal to the natural frequency
. The non-dimensional frequency parameter (NDFP) (Q) are addressed in the form:

2.4 1/2
0= (MR (n
0™22

4. Deep neural networks (NNs)

Recently, deep learning, which is a network with multiple hidden layers of neurons, has also
been applied in solving and identifying the ordinary and partial differential equations [46, 47].

Deep neural networks (NNs) are one of the artificial intelligence (Al) algorithms used for
solving advanced non-linear problems [48]. The networks are consist of computational nodes that
connected together to create one individual network, each node is processing a calculation on input
and sends the result to output connections, and maybe a node output is an input to one other node
or more.

In this section, we use the outcome of the results in Section 3 of vibration behavior of SCP
extracted by WT-FSTM at certain values of elastic restraint coefficients (Kr) to obtain the training
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data and to predict the vibration behavior for different levels of elastic restraint coefficients (Kr)
not included in the results.

The proposed deep NN architecture connection is presented in Fig. 2. The steps of the NDFP
() prediction can be described through the following steps in Table 2.

8(xt)

Wo (x,,t)

Wo (x,.t)

Wo(xi—ptl

Wo (x;,t)

Fig. 2. The architecture of the proposed deep NN for the NDFP (Q) prediction

Table 2. The steps of deep NN training to predict NDFP (Q)
NN steps Step remark
Data Extract the training data from the WT-FSTM of the SCP at certain values of elastic

collecting | restraint coefficients (Ky)
Divide the extracting data into three groups of data, the first one will be used for
Training training in MS-NN for mode shapes A; prediction of SCP, and the second group of a

model dataset will be used for training in W-NN for predicting deflection w, (x, t), this
network without hidden layers
The last part of the data will use to test the trained model in the training model. If the
Testing model is well-trained, the predicted results by the W-NN and MS-NN will be

model convergence to the real value. The training performance of suggested Deep NN is
presented in Fig. 3
The response MS-NN will be used to predict the A; under random deflection w, (x, t).
W-NN will be used to predict the w, (x, t) at any location coordinate x along with the
SCP including the IES location presented in Section 2

Prediction
response

It is important for the NN designer to check his proposed deep NN performance is suitable or
not from the formula of mean square error (MSE):
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MSE =Zw (12)

Therefore, only one global minimum for performance index based on the features of the input
vectors, but the minimum local minimum of a function at finite input values, and it cannot be
omitted when attaching deep NN. Therefore, we can judge on accuracy a local minimum, if it has
a low closer range to global minimum and low MSE. Anyway, the designer must be selected as a
suitable method to solve this problem in order to descent the local minimum with momentum.
Momentum allows a network to respond not only to the local gradient but also to recent trends in
the error surface. Without momentum, a network may get stuck in a shallow local minimum. Fig. 3
shows the performance curves of training with three groups for learning data.

107 ¢

—Train
~——Validation

Mean Squared Error (mse)

. L .
0 2 4 6 8 10 12 14 16
16 Epochs

Fig. 3. Training performance of proposed NN
5. Results and discussion

In this section, after reviewing the results available in the literature, the approach of WT-FSTM
are used to extract the vibration behavior of SCP with variable thickness are presented in Section 2
at certain values of elastic restraint coefficients (Ky) for IES, on the other hand, to provide the
active training data to proposed deep NN, in order to extract the influence of the IES on the natural
frequencies with different elastic restraint coefficients (K;) of such plates.

5.1. Convergence study and accuracy

The importance for review of presented work results with the results available in the literature
in order to validate the accuracy and reliability of the proposed technique. In this subsection, the
WT-FSTM technique has been applied on a CCCC variable thickness SP with § = 0.5,
A =(0, 0.2, 0.4, 0.5) and ¢ = (30°, 45°, 60°), and then the convergence between the results in
Fig. 4 with the results from FSTM [35] will be done.

As shown in the Fig. 4, after convergence, we can see clearly generally, that the results of the
presented method WT-FSTM in excellent agreement with the other accurate methods in references
[23-26, 35]. On the other hand, we can see the effects of plate Skew angles (¢), tapered ratio (A)
and aspect ratio () on the NDFP (Q) it has been increased with increasing of the ¢, 8, and Q, in
all methods WT-FSTM and the methods in the literature.

5.2. Proposed method (WT-FSTM) results
In the present study, the numerical computations using the WT-FSTM approach is applied to
extract vibration behavior. Due to the method difficulty in terms of, a lot of calculations with a

large number of iterations these results may not be good choices for quickly and accurate vibration
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behavior extracting, the new deep NN is designed to learn and test these results carrying out by
extracting vibration behavior features that reflect the important and essential information about
the mode shapes in SCP. The proposed method target achieved using only two different K in
computations of the NDFP ((1), the first one is located at K; = 50 the second is Ky = 750,
respectively. The first six frequencies are presented in Table 3, the NDFP (£2) has been computed
with different values of skew angle (¢) at aspect ratio (§ = 0.5), and tapered ratio (A = 0.5) to
study the behavior of natural frequencies under a different skew angle for different four BCs
namely SSSS, CCCC, SSFF, and CCFF.

Fig. 4. Comparison of the first four natural frequencies of CCCC skew plates f = 0.5

Figs. (5-6) represent the comparison between the WT-FSTM data and the deep NN predicted
data NDFP () for K; = 50 and K = 750 respectively of four different BCs are SSSS, CCCC,
SSFF, and CCFF. The results of the proposed deep NN show much satisfactory prediction quality
for this case study.

o 50 ] o 100 y o 100 | o 100
0 0 k
WT-FST Q !25 nsWT ST / : ns ; k Q n5 QS - h nS
D eep Q 3 4 geep N Q 3 WTI—:reseL N Q 3 4 WTI‘feseTp N Q 3
Q, 2 Q2 Q, 2 Q, 2
a) ¢ = 0° b) ¢ = 30°
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WTESTM,
eep NN o 9,
1
200 200 200 400
< 100 o 100 < 100 & 200
0 4 ﬂnSQG ,1 0 ﬂsﬂs 0l 2
WIS o, % WIESTM WIS % VTSI e
ﬂ1 2 n1 2 91 2
c) ¢ =45° d) ¢ = 60°
Fig. 5. Comparison between the WT-FSTM data and deep NN predicted data for K; = 50
200 400 400
o 100 o 200 < 200
i, T ; & wr s: )
WIESTM o WTST e2p
1
200 200 200 200
& 100 & 100 o 100 & 100
0 4 o 0 0 o % 0 ] o
WTFSTN, - WTEST WT-ESTI 2,5 WIFST
ieep NN Q 3 eep eep 3 eep NN Q 3
a, %2 9,2
a)¢p =0° 30°
400 400 400 400
& 200 & 200 & 200 & 200
0 4 Qg 0 2 0 o %% 0 Q
.| 5 .| ] Q5 |
WS a0 WM o, WS % WS o,
ﬂ1 Q1 2 € 2 Q 2
200 400 400
& 100 & 200 & 200
e o 2 04 'R
WIS WIS oyt WIS o,
a, 2 o, %2
c) ¢ =45° d) ¢ = 60°

Fig. 6. Comparison between the WT-FSTM data and deep NN predicted data for K = 750

Table 3. The first six frequencies of SCP, § = 0.5, A = 0.5

BCs | ¢ | K | Q, Q Q Qs Q4
oo |30 | 22.157 [36232 | 53.594 | 78249 | 105.594 | 138710
750 | 55.078 | 69.159 | 86.525 | 111.179 | 138.523 | 171.633

300 |50 | 39507 | 49.713 | 69.206 | 98.139 | 135.487 | 179.658
7] 750 | 72.428 | 82.640 | 99.1570 | 131.069 | 166.416 | 212.581
% | 45 | 50 | 57.936 | 69.256 | 87.408 [ 119.321 | 156.736 | 201.733
750 | 90.857 | 102.183 | 120.339 | 152.251 | 194.665 | 234.656

c00 |30 | 112.564 | 127.407 | 148.221 [ 177.583 | 204.928 | 238.044
750 | 145.485 | 160.334 | 181.152 | 210.513 | 237.857 | 270.967

oo |30 | 28446 [ 46511 | 68.806 | 100457 | 135.565 | 178.079

S 750 | 61361 | 79.435 | 101.737 | 133.372 | 168.490 | 211.102
S | 300 [30 | 45.796 | 59.992 | 85.438 [ 120.347 | 166458 | 219.027
750 | 78.711 | 92.916 | 114.369 | 153.262 | 196.383 | 252.050
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450 50 | 64.225 | 79.535 | 102.620 | 141.529 | 191.707 | 241.102

750 | 97.140 | 112.459 | 135.551 | 174.444 | 224.632 | 274.125

60° 50 | 118.853 | 137.686 | 163.433 | 199.791 | 234.899 | 277.413

750 | 151.768 | 170.610 | 196.364 | 232.706 | 267.824 | 310.436

0° 50 12.286 | 20.083 | 29.716 | 43.375 | 58.538 | 76.887

750 | 45.206 | 53.013 | 62.639 | 76.305 | 91.465 | 109.813

30° 50 | 31.636 | 36.564 | 48.348 | 66.265 | 90.431 | 117.835

= 750 | 62.556 | 66.494 | 75.271 96.195 | 119.358 | 150.761
a 450 50 | 48.065 | 53.107 | 63.530 | 84.447 | 110.680 | 139.910
750 | 80.985 | 86.037 | 96.453 | 117.377 | 143.607 | 172.836

60° 50 | 102.693 | 111.258 | 124.343 | 140.709 | 157.872 | 176.221

750 | 135.613 | 144.188 | 157.266 | 173.639 | 190.799 | 209.147

0° 50 19.603 | 32.054 | 47423 | 69.228 | 93.425 | 122.724

750 | 52.529 | 64.981 80.346 | 102.154 | 126.355 | 155.641

" 30° 50 | 36.953 | 47.535 | 64.055 | 91.118 | 126.318 | 163.672
=3 750 | 69.879 | 78.462 | 92.978 | 122.044 | 154.248 | 196.589
8 450 50 | 55.382 | 65.078 | 81.237 | 110.300 | 149.567 | 185.747
750 | 88.308 | 98.005 | 114.160 | 143.226 | 182.497 | 218.664

60° 50 | 110.010 | 123.229 | 142.050 | 168.562 | 192.759 | 222.058

750 | 142.936 | 156.156 | 174.973 | 201.488 | 225.689 | 254.975

5.3. Deep NN performance

The performances of suggested deep NN are presented in Table 4 and Fig. 3, the MSE and
accuracy of predicted data are calculated from Eq. 12 for NDFP (Q)). From Table 4 and Fig. 3 the
value of MSE and accuracy of training data are 7.2 E-5 and 99.7 % respectively and validating
data are 6.2 E-5 and 99.8 % respectively. From NN performance shows in Table 4 and Fig. 3, the
proposed deep NN gave a good prediction for vibration behavior data in the presented SCP.

Table 4. Mean square error (MSE) and accuracy values

Data MSE | Accuracy
Training | 7.2 E-5 99.7 %
Validating | 6.2 E-5 | 99.8 %

5.4. Deep NN predicting results

In this subsection, the main target of design the deep NN of predicting the vibration behavior
data of SCP under different elastic restraint coefficients (Ky) is achieved, chosen 7 different K
for different four BCs (SSSS, CCCC, SSFF, and CCFF). The deep NN predicted results of the
first six frequencies of SCP with f = 0.5 and A = 0.5 are shows in Fig. 7.

Moreover, the influence of the IES on the vibration behavior of the SCPs with variable
thickness is shown in Fig. 7. As shown in the Fig. 7 for all values of skew angle (¢) and all types
of BCs, the first six frequencies are increasing with increasing of the value of elastic restraint
coefficient (Kr). whereas the frequencies rapidly increase with for small values of elastic restraint
coefficient (Kr), and the influence of IES becomes negligible at high values. On the other hand
for all values of skew angle (¢), the first six frequencies for fully clamped (CCCC) plate are the
highest frequencies, and the semi-simply supported (SSFF) plate is the lowest one, while, the other
two boundaries (SSSS and CCFF) were rested between them. also, we can see the effects of plate
skew angles (¢p) on the NDFP () it has been increased with increasing of the. skew angles.
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Fig. 7. The deep NN predicted results of NDFP ()
6. Conclusions

By a combination of the WT and FSTM method (WT-FSTM) was used to extract the vibration
behavior of SCP with variable thickness, and IES, the plate is made from BFRP laminated. First,
To investigate from accuracy and reliability of the proposed technique, the convergence between
the proposed study results with the results available in the literature has been checked, thus
validating the accuracy and reliability of the proposed technique. Then, due to the proposed
method's difficulty in terms of, a lot of calculations with a large number of iterations, these results
may not be good choices for quick and accurate vibration behavior extracting. Thus, the new deep
neural network (NN) is designed to learn and test these results carrying out by extracting vibration
behavior features that reflect the important and essential information about the mode shapes in
SCP. The influence of §, A, ¢, and Ky on the predicted NDFP () of the plate, has been studied,
with four different support conditions (SSSS, CCCC, SSFF, and CCFF).

Based on the WT-FSTM and the deep NN predicted results, we conclude that the deep NN
predicted results of NDFP ({)) are in very good agreement with the proposed method results
WT-FSTM with an accuracy of training and validating data are 99.7 % and 99.8 % respectively.
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