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Abstract. In this paper, the vibration behavior features are extracted from the combination 
between Wavelet Transform (WT), and Finite Strip Transition Matrix (FSTM) of skew composite 
plates (SCPs), with variable thickness, and intermediate elastic support. Although, the results of 
this technique and based on the previous work done by the authors, that show the method can 
reflect the vibration behavior of the composite plates. Due to the method's difficulty in terms of, 
a lot of calculations with a large number of iterations these results may not be good choices for 
quick and accurate vibration behavior extracting. Thus, the new deep neural network (NN) is 
designed to learn and test these results carrying out by extracting vibration behavior features that 
reflect the important and essential information about the mode shapes in SCP. The results give 
high indications about the proposed technique of deep learning is a promising method, particularly 
when the type structures are complicated and the ambient environment is variable. 
Keywords: free vibration, deep learning, wavelet transform (WT), variable thickness plates, skew 
composite plates (SCPs), BFRP. 

Nomenclature 

SCP/SCPs Skew composite plate/plates 
IES Intermediate elastic support  
SP/SPs skew plate/plates 
WT/WTs Wavelet transform/transforms  
FSTM Finite strip transition matrix 
BCs boundary conditions 
CWT Continuous wavelet transform  
MSE Mean square error 𝑎 , 𝑏 Length and width of the plate ℎሺ𝑦ሻ Plate thickness as a function of 𝑦 ℎ௢, ℎ௕ Plate thickness at 𝑦 ൌ 0 and 𝑦 ൌ 𝑏, respectively ℎ௢௞ Distance from the middle-plane of the plate according to ℎ௢ to the bottom of the ℎ௢௧௛ layer 𝑚௢ ൌ 𝜌ℎ௢, mass density per unit area of the plate 𝑝 Dynamic load function 𝑤௢ሺ𝑥,𝑦, 𝑧ሻ deflection at any point ሺ𝑥,𝑦ሻ 𝐷௜௝ Plate flexural rigidity 𝑄పఫ௞തതതത Plane stress transformed reduced stiffness coefficients of the lamina 𝐸 Young’s modulus 𝐸ଵଵ Longitudinal Young’s moduli parallel to the fiber orientation 
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𝐸ଶଶ Transverse Young’s moduli perpendicular to the fiber orientation 𝐺ଵଶ,  𝐺ଶଵ Plane shear modulus of elasticity 𝑄 Number of terms used in series solution 𝑁 Number of strips 𝑊(𝑥,𝑦, 𝑧) Time-dependent deflection at any point (𝑥,𝑦) 𝑀௡ The normal bending moment at the boundary 𝑋௠ Classical beam functions in the 𝑥-direction 𝑌௡ A series solution in the 𝑦-direction 𝐾் Elastic restraint coefficient  𝑇 Translational stiffness per unit length 𝑊(𝜉, 𝜂, 𝑡) Shape function 𝑌௜(𝜂) Unknown function to be determined 𝑋௜(𝜉) Chosen a priori, the basic function in 𝜉-direction 𝜐ଵଶ,  𝜐ଶଵ Poisson’s ratio 𝜌 Density per unit area of the plate 𝜔 Natural frequency (rad/sec) 𝜉, 𝜂 = 𝑢/𝑎 and 𝜈/𝑏, respectively, non-Dimensional variables 𝜙 Skew angle 𝛽 = 𝑎/𝑏, plate aspect ratio 𝛥 =  (ℎ௕ − ℎ௢)/ℎ௢, (ℎ௢), plate tapered ratio 𝛺 ቀ௠೚௛(ఎ)ఠమ௔ర௛೚஽మమ ቁଵ ଶൗ
, non-dimensional frequency parameter (NDFP)  (𝛺)ேே Predicted non-dimensional frequency parameter (PNDFP) 𝑛 Number of deep NN data  𝜕𝑤௢/𝜕𝑛 The slope at the boundary 𝑟ℎ𝑜 Material density 

1. Introduction 

The importance of to use of composite materials in many fields of technology, such as 
aerospace industries, marine engineering, and civil engineering is due to special features, e.g. high 
strength/weight ratio and corrosion resistance property, particularly under the effects of the harsh 
environment. Although the structures are made of these types of materials have some drawback 
are subject to matrix cracks, fiber breakage, and delamination. These invisible faults can lead to 
catastrophic structural failures [1-4].  

Other major modes of failure of fiber-reinforced polymer (FRP) have a temperature, bending, 
tensile, stress, impact failure, and failure of the installation, etc. These types of failures are 
complicated and are not easy to assets, mostly when subjected to associate effects of multiple 
factors [5-7]. 

The user of an active system of structural health monitoring (SHM) to observe the safety and 
potential damage detection in composite plates are essential and most seriously. The function of 
SHM is consists of three main sub-functions, including system identification, features extraction 
for algorithms for detection and prediction, and reliability and risk evaluation [8-19]. 

The vibration behavior of composite structures is the traditional method for the intelligent 
detecting the defects in the composite. The mode shapes of the structure are one of the essential 
tools in Structural health monitoring (SHM) in the last decades, where, extracted the vibration 
response of composite structure for each damage type and position and analysis based on the 
variance in vibration parameters. In recent years, different techniques to extract the natural 
frequencies of composite plates have become a field of great interest in the scientific society 
[20-34]. 

To find the mode shapes for different boundary conditions with IES, numerical methods or 
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experimental methods must be used. Some researchers have been interested in the vibration of 
multi-span plates using different approaches. In previous works, Altabey [35, 36] used the FSTM 
as one of the common use of semi-analytical approaches to extract vibration response of basalt 
FRP laminated variable thickness rectangular plates with IES, and he tried to improve the results 
accuracy and by the way, decrease the calculations efforts due to a large number of iterations by 
combined his method with artificial neural networks (ANNs) and response surface (RS) methods. 

In the present research, the new deep NN is designed to predict the vibration behavior of SCPs 
with variable thickness and IES with a different elastic restraint coefficient (𝐾்) and four cases of 
boundary conditions (BCs) of plate edges, namely SSSS, CCCC, SSFF, and CCFF. The plate is a 
rectangular SCP with variable thickness function ℎ(𝑦), the locations of the IES is at mid-line of 
the presented plate, and the plate was manufactured from basalt fiber reinforced polymer (BFRP) 
by using five symmetrically layers with the stacking angle [45°/–45°/45°/–45°/45°] as shown in 
Fig. 1. First, review the illustrated results of the utilized method by the combination of these WT 
and FSTM methods (WT-FSTM) to convergence the studies by checking the agreement with the 
results available in the literature. Second, the trained deep NN is used to predict the outcome of 
the extracted vibration behavior of SCPs from WT-FSTM at certain values of elastic restraint 
coefficients (𝐾்) for IES, and then it is subsequently used to predict the vibration behavior for 
different levels of elastic restraint coefficients (𝐾்) for IES. The results are predicted from the 
deep NN model are in very good agreement with the WT-FSTM results. Hence, the results give 
high indications about the proposed technique of deep learning is a promising method.  

 
Fig. 1. The geometry of rectangular SCP with variable thickness and IES 

2. Model overview 

The composite plate material has corresponding elastic and shear modulus values are shown 
in Table 1. 

Table 1. Model property 𝐸ଵଵ (GPa) 𝐸ଶଶ (GPa) 𝜐ଵଶ 𝜐ଶଵ 𝐺ଵଶ (GPa) 𝐺ଶଵ (GPa) rho kg/m3 
96.74 22.55 0.3 0.6 10.64 8.73 2700 

The normalized partial differential equation of vibration behavior for the plates system 
illustrated in Fig.1 under the assumption of the classical deformation theory in terms of the plate 
deflection 𝑤𝑜(𝑥, 𝑦, 𝑡) using the non-Dimensional variables 𝜉 and 𝜂 related to the skew coordinate 
system (𝑢, 𝜈,𝜙) defined by 𝑢 = 𝑥𝑠𝑒𝑐(𝜙), 𝜈 = 𝑦 − 𝑥tan(𝜙), and 𝜉 = ௨௔, 𝜂 = ఔ௕, and after some 
derivation, the governing equation can be written as follows: 
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𝜓ଵℎଷ(𝜂) 1𝑎ସ𝑊కకకక − 4𝛽(sin𝜙)𝜓ଷℎଷ(𝜂)𝑊కకకఎ + 𝜈𝛽ଶ𝜓ଶ(cosଶ𝜙)𝜕ଶℎଷ(𝜂)𝜕𝜂ଶ 𝑊కక        +2𝛽ଶ𝜓ଶ(cosଶ𝜙)𝜕ℎଷ(𝜂)𝜕𝜂 𝑊కకఎ + 2𝛽ଶ𝜓ଶℎଷ(𝜂)(3sinଶ𝜙 + cosଶ𝜙)𝑊కకఎఎ       +2𝛽ସ(cosଶ𝜙)𝜕ℎଷ(𝜂)𝜕𝜂 𝑊ఎఎఎ − 2𝛽ଷ𝜓ସ𝜈(sin𝜙cosଶ𝜙)𝜕ଶℎଷ(𝜂)𝜕𝜂ଶ 𝑊కఎ       −4𝛽ଷ𝜓ସ(sin𝜙)ℎଷ(𝜂)𝑊కఎఎఎ + 𝛽ସ(𝜈tanଶ𝜙 + 1)cosସ𝜙 𝜕ଶℎଷ(𝜂)𝜕𝜂ଶ 𝑊ఎఎ       +𝛽ସℎଷ(𝜂)𝑊ఎఎఎఎ − 4𝛽ଷ𝜓ସ(sin𝜙cosଶ𝜙)𝜕ℎଷ(𝜂)𝜕𝜂 𝑊కఎఎ = −Ωଶℎ(𝜂)ℎ௢ଶ(cosସ𝜙)𝑊௧௧ , 
(1)

where 𝜓ଵ = ஽భభ஽మమ, 𝜓ଶ = (஽భమାଶ஽లల)஽మమ , 𝜓ଷ = ஽భల஽మమ, 𝜓ସ = ஽మల஽మమ. 
Since the treatment of IES conditions are the main objective of this paper we presented it in 

more detail. The line of the IES 𝑦 = 𝑏 2⁄ , the displacement must vanish and the normal moment 
must be continuous, i.e. 

𝐾்𝑤௢ = −2𝜓ଷ 𝜕ଷ𝑤௢𝜕𝑥ଷ − 𝜕ଷ𝑤௢𝜕𝑦ଷ − 𝜓ହ 𝜕ଶ𝑤௢𝜕𝑥ଶ𝜕𝑦 − 4𝜓ସ 𝜕ଷ𝑤௢𝜕𝑥𝜕𝑦ଶ, (2)𝜕𝑤௢𝜕𝑦  ฬఎୀଵష/ଶ = 𝜕𝑤௢𝜕𝑦 ฬఎୀଵశ/ଶ, (3)

where: 𝜓ଵ = ஽భభ஽మమ, 𝜓ଶ = (஽భమାଶ஽లల)஽మమ , 𝜓ଷ = ஽భల஽మమ, 𝜓ସ = ஽మల஽మమ, 𝐾் = ்್ మ⁄ ௕య஽మమ , 𝜓ହ = (஽భమାସ஽లల)஽మమ . 

3. Determination of vibration behavior using WT and FSTM 

In This section, the mode shapes of the SCP will be extracted using a new method by combined 
between the WT and FSTM methods with an adjusting frequency parameter, in order to improve 
the estimated accuracy of extracting by optimized the WT entropy for adjusting frequency 
parameter. 

3.1. Continuous wavelet transform (CWT) 

Continuous wavelet transform (CWT) is a convolution process of the data sequence with a set 
of continuous scaled and translated versions of the mother wavelet (MW) 𝜓(𝑡). The translating 
process is a smoothing effect over the length of the data sequence to localize the wavelet in time 
domain 𝑥(𝑡), whereas the scaling process is compressing or stretching of analyzed wavelet which 
indicates various resolutions. The stretched wavelet is used to capture the slow changes; while the 
compressed wavelet is used to capture abrupt changes in the signal. The trade-off of enhancing 
resolution is between increased computational cost and memory by computing wavelet 
components and multiplying each component by the correctly dilated and translated wavelet, 
resulting in the constituent wavelet of the analyzed signal [37-45]. 

The 𝜓(𝑡) is stretched or squeezed through varying its dilation parameter s and moved through 
its translation parameter 𝜏 (i.e. along the localized time index 𝜏): 

𝜓௦,ఛ  (𝑡) = 1 √𝑠𝜓 ൬𝑡 − 𝜏𝑠 ൰ ,       𝜏 ∈ 𝑅,    𝑆 > 0. (4)

Let 𝑥(𝑡) be the system shape function response of FSTM, where 𝑡 denotes time. CWT of a 
function 𝑥(𝑡) ∈  𝐿ଶ(𝑅), where 𝐿ଶ(𝑅) is the set of square-integrable functions is denoted as 𝑊௦,ఛ 
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and defined as: 

𝑊௦,ఛ  = 〈𝑥(𝑡),𝜓௦,ఛ  (𝑡)〉 =  1√𝑠න 𝑥(𝑡)ିஶ
ஶ .𝜓∗ ൬𝑡 − 𝜏𝑠 ൰ 𝑑𝑡, (5)

where the wavelet scale s and the period 𝜏 are used to adjust the frequency and time location. 𝑊௦,ఛ  shows how closely 𝜓௦,ఛ  (𝑡) correlated with 𝑥 (𝑡). By inverse CWT, the signal 𝑥(𝑡) can be 
regenerated as: 

𝑥(𝑡) = 1𝐶ట න න 𝑊௦,ఛ  ାஶ
ିஶ 𝜓௦,ఛ  ାஶ

ିஶ 𝑑𝑠𝑑𝜏𝑆ଶ . (6)

For a plate striped in the 𝜉-direction by divided into 𝑁 discrete longitudinal strips spanning 
between supports as shown in Fig. 1, the free-response equation for one striped beam system may 
be assumed in the form: 𝑥(𝑡) = 𝑋௜(𝜉)𝑌௜(𝜂)𝑒௝ఠఛ. (7)

The WT of Eq. (7) is: 

ห𝑊௦బ,ఛ  ห = ඥ𝑠଴2 𝑋௜(𝜉)𝑌௜(𝜂).𝜓∗(𝑆଴𝜔)𝑒௝ఠఛ. (8)

The logarithm of Eq. (8) gives: 

lnห𝑊௦బ,ఛ  ห = 𝑗𝜔𝜏 + lnቆඥ𝑠଴2 𝑋௜(𝜉)𝑌௜(𝜂)|𝜓∗(𝑆଴𝜔)|ቇ. (9)

By using the straight line of the slope of the logarithm of WT modulus, we can be obtained the 
natural frequency of the system and it is given by: 

𝐴𝑟𝑔൫𝑊௦బ,ఛ൯ = 𝜔𝜏  ⇒   𝑑𝑑𝜏  𝐴𝑟𝑔൫𝑊௦బ,ఛ൯ = 𝜔. (10)

The plot of ௗௗఛ  𝐴𝑟𝑔 ൫𝑊௦బ,ఛ൯ is constant in the time domain and is equal to the natural frequency 𝜔. The non-dimensional frequency parameter (NDFP) (Ω) are addressed in the form: 

Ω = ቆ𝑚௢ℎ(𝜂)𝜔ଶ𝑎ସℎ௢𝐷ଶଶ ቇଵ ଶൗ . (11)

4. Deep neural networks (NNs) 

Recently, deep learning, which is a network with multiple hidden layers of neurons, has also 
been applied in solving and identifying the ordinary and partial differential equations [46, 47]. 

Deep neural networks (NNs) are one of the artificial intelligence (AI) algorithms used for 
solving advanced non-linear problems [48]. The networks are consist of computational nodes that 
connected together to create one individual network, each node is processing a calculation on input 
and sends the result to output connections, and maybe a node output is an input to one other node 
or more. 

In this section, we use the outcome of the results in Section 3 of vibration behavior of SCP 
extracted by WT-FSTM at certain values of elastic restraint coefficients (𝐾்) to obtain the training 
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data and to predict the vibration behavior for different levels of elastic restraint coefficients (𝐾்) 
not included in the results.  

The proposed deep NN architecture connection is presented in Fig. 2. The steps of the NDFP (Ω) prediction can be described through the following steps in Table 2. 

 
Fig. 2. The architecture of the proposed deep NN for the NDFP (Ω) prediction 

Table 2. The steps of deep NN training to predict NDFP (Ω) 
NN steps Step remark 

Data 
collecting 

Extract the training data from the WT-FSTM of the SCP at certain values of elastic 
restraint coefficients (𝐾்) 

Training 
model 

Divide the extracting data into three groups of data, the first one will be used for 
training in MS-NN for mode shapes 𝜆௜ prediction of SCP, and the second group of a 
dataset will be used for training in W-NN for predicting deflection 𝑤௢(𝑥, 𝑡), this 
network without hidden layers 

Testing 
model 

The last part of the data will use to test the trained model in the training model. If the 
model is well-trained, the predicted results by the W-NN and MS-NN will be 
convergence to the real value. The training performance of suggested Deep NN is 
presented in Fig. 3 

Prediction 
response 

The response MS-NN will be used to predict the 𝜆௜ under random deflection 𝑤௢(𝑥, 𝑡). 
W-NN will be used to predict the 𝑤௢(𝑥, 𝑡) at any location coordinate 𝑥 along with the 
SCP including the IES location presented in Section 2 

It is important for the NN designer to check his proposed deep NN performance is suitable or 
not from the formula of mean square error (MSE): 
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𝑀𝑆𝐸 = ෍ ((Ω)ேே − Ω)ଶ𝑛 . (12)

Therefore, only one global minimum for performance index based on the features of the input 
vectors, but the minimum local minimum of a function at finite input values, and it cannot be 
omitted when attaching deep NN. Therefore, we can judge on accuracy a local minimum, if it has 
a low closer range to global minimum and low MSE. Anyway, the designer must be selected as a 
suitable method to solve this problem in order to descent the local minimum with momentum. 
Momentum allows a network to respond not only to the local gradient but also to recent trends in 
the error surface. Without momentum, a network may get stuck in a shallow local minimum. Fig. 3 
shows the performance curves of training with three groups for learning data. 

 
Fig. 3. Training performance of proposed NN 

5. Results and discussion 

In this section, after reviewing the results available in the literature, the approach of WT-FSTM 
are used to extract the vibration behavior of SCP with variable thickness are presented in Section 2 
at certain values of elastic restraint coefficients (𝐾்) for IES, on the other hand, to provide the 
active training data to proposed deep NN, in order to extract the influence of the IES on the natural 
frequencies with different elastic restraint coefficients (𝐾்) of such plates. 

5.1. Convergence study and accuracy 

The importance for review of presented work results with the results available in the literature 
in order to validate the accuracy and reliability of the proposed technique. In this subsection, the 
WT-FSTM technique has been applied on a CCCC variable thickness SP with 𝛽 = 0.5,  Δ = (0, 0.2, 0.4, 0.5) and 𝜙 = (30°, 45°, 60°), and then the convergence between the results in 
Fig. 4 with the results from FSTM [35] will be done. 

As shown in the Fig. 4, after convergence, we can see clearly generally, that the results of the 
presented method WT-FSTM in excellent agreement with the other accurate methods in references 
[23-26, 35]. On the other hand, we can see the effects of plate Skew angles (𝜙), tapered ratio (Δ) 
and aspect ratio (𝛽) on the NDFP (Ω) it has been increased with increasing of the 𝜙, 𝛽, and Ω, in 
all methods WT-FSTM and the methods in the literature. 

5.2. Proposed method (WT-FSTM) results 

In the present study, the numerical computations using the WT-FSTM approach is applied to 
extract vibration behavior. Due to the method difficulty in terms of, a lot of calculations with a 
large number of iterations these results may not be good choices for quickly and accurate vibration 
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behavior extracting, the new deep NN is designed to learn and test these results carrying out by 
extracting vibration behavior features that reflect the important and essential information about 
the mode shapes in SCP. The proposed method target achieved using only two different 𝐾் in 
computations of the NDFP (Ω), the first one is located at 𝐾் = 50 the second is  𝐾் = 750, 
respectively. The first six frequencies are presented in Table 3, the NDFP (𝛺) has been computed 
with different values of skew angle (𝜙) at aspect ratio (𝛽 = 0.5), and tapered ratio (Δ = 0.5) to 
study the behavior of natural frequencies under a different skew angle for different four BCs 
namely SSSS, CCCC, SSFF, and CCFF. 

 
Fig. 4. Comparison of the first four natural frequencies of CCCC skew plates 𝛽 = 0.5 

Figs. (5-6) represent the comparison between the WT-FSTM data and the deep NN predicted 
data NDFP (𝛺) for 𝐾் = 50 and 𝐾் = 750 respectively of four different BCs are SSSS, CCCC, 
SSFF, and CCFF. The results of the proposed deep NN show much satisfactory prediction quality 
for this case study.  
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c) 𝜙 = 45° 

 
d) 𝜙 = 60° 

Fig. 5. Comparison between the WT-FSTM data and deep NN predicted data for 𝐾் = 50 

 
a) 𝜙 = 0° 

 
b) 𝜙 = 30° 

 
c) 𝜙 = 45° 

 
d) 𝜙 = 60° 

Fig. 6. Comparison between the WT-FSTM data and deep NN predicted data for 𝐾் = 750 

Table 3. The first six frequencies of SCP, 𝛽 = 0.5, Δ = 0.5 
BCs 𝜙 𝐾்  Ωଵ Ωଶ Ωଷ Ωସ Ωହ Ω଺ 

SS
SS

 

0° 50 22.157 36.232 53.594 78.249 105.594 138.710 
750 55.078 69.159 86.525 111.179 138.523 171.633 

30° 50 39.507  49.713 69.226 98.139 135.487 179.658 
750 72.428 82.640 99.1570 131.069 166.416 212.581 

45° 50 57.936  69.256 87.408 119.321 156.736 201.733 
750 90.857 102.183 120.339 152.251 194.665 234.656 

60° 50 112.564  127.407 148.221 177.583 204.928 238.044 
750 145.485  160.334 181.152 210.513 237.857 270.967 

CC
CC

 0° 50 28.446 46.511 68.806 100.457 135.565 178.079 
750 61.361 79.435 101.737 133.372 168.490 211.102 

30° 50 45.796   59.992 85.438 120.347 166.458 219.027 
750 78.711   92.916 114.369 153.262 196.383 252.050 
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45° 50 64.225 79.535 102.620 141.529 191.707 241.102 
750 97.140 112.459 135.551 174.444 224.632 274.125 

60° 50 118.853   137.686 163.433 199.791 234.899 277.413 
750 151.768  170.610 196.364 232.706 267.824 310.436 

SS
FF

 

0° 50 12.286 20.083 29.716 43.375 58.538 76.887 
750 45.206 53.013 62.639 76.305 91.465 109.813 

30° 50 31.636 36.564 48.348 66.265 90.431 117.835 
750 62.556   66.494 75.271 96.195 119.358 150.761 

45° 50 48.065  53.107 63.530 84.447 110.680 139.910 
750 80.985   86.037 96.453 117.377 143.607 172.836 

60° 50 102.693   111.258 124.343 140.709 157.872 176.221 
750 135.613  144.188 157.266 173.639 190.799 209.147 

CC
FF

 

0° 50 19.603 32.054 47.423 69.228 93.425 122.724 
750 52.529 64.981 80.346 102.154 126.355 155.641 

30° 50 36.953  47.535 64.055 91.118 126.318 163.672 
750 69.879   78.462 92.978 122.044 154.248 196.589 

45° 50 55.382  65.078 81.237 110.300 149.567 185.747 
750 88.308   98.005 114.160 143.226 182.497 218.664 

60° 50 110.010  123.229 142.050 168.562 192.759 222.058 
750 142.936   156.156 174.973 201.488 225.689 254.975 

5.3. Deep NN performance 

The performances of suggested deep NN are presented in Table 4 and Fig. 3, the MSE and 
accuracy of predicted data are calculated from Eq. 12 for NDFP (Ω). From Table 4 and Fig. 3 the 
value of MSE and accuracy of training data are 7.2 E-5 and 99.7 % respectively and validating 
data are 6.2 E-5 and 99.8 % respectively. From NN performance shows in Table 4 and Fig. 3, the 
proposed deep NN gave a good prediction for vibration behavior data in the presented SCP. 

Table 4. Mean square error (MSE) and accuracy values 
Data MSE Accuracy 

Training 7.2 E-5 99.7 % 
Validating 6.2 E-5 99.8 % 

5.4. Deep NN predicting results 

In this subsection, the main target of design the deep NN of predicting the vibration behavior 
data of SCP under different elastic restraint coefficients (𝐾்) is achieved, chosen 7 different 𝐾் 
for different four BCs (SSSS, CCCC, SSFF, and CCFF). The deep NN predicted results of the 
first six frequencies of SCP with 𝛽 = 0.5 and Δ = 0.5 are shows in Fig. 7. 

Moreover, the influence of the IES on the vibration behavior of the SCPs with variable 
thickness is shown in Fig. 7. As shown in the Fig. 7 for all values of skew angle (𝜙) and all types 
of BCs, the first six frequencies are increasing with increasing of the value of elastic restraint 
coefficient (𝐾்). whereas the frequencies rapidly increase with for small values of elastic restraint 
coefficient (𝐾்), and the influence of IES becomes negligible at high values. On the other hand 
for all values of skew angle (𝜙), the first six frequencies for fully clamped (CCCC) plate are the 
highest frequencies, and the semi-simply supported (SSFF) plate is the lowest one, while, the other 
two boundaries (SSSS and CCFF) were rested between them. also, we can see the effects of plate 
skew angles (𝜙) on the NDFP (Ω) it has been increased with increasing of the. skew angles. 
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d) CCFF 

Fig. 7. The deep NN predicted results of NDFP (Ω) 

6. Conclusions 

By a combination of the WT and FSTM method (WT-FSTM) was used to extract the vibration 
behavior of SCP with variable thickness, and IES, the plate is made from BFRP laminated. First, 
To investigate from accuracy and reliability of the proposed technique, the convergence between 
the proposed study results with the results available in the literature has been checked, thus 
validating the accuracy and reliability of the proposed technique. Then, due to the proposed 
method's difficulty in terms of, a lot of calculations with a large number of iterations, these results 
may not be good choices for quick and accurate vibration behavior extracting. Thus, the new deep 
neural network (NN) is designed to learn and test these results carrying out by extracting vibration 
behavior features that reflect the important and essential information about the mode shapes in 
SCP. The influence of 𝛽, Δ, 𝜙, and 𝐾் on the predicted NDFP (Ω) of the plate, has been studied, 
with four different support conditions (SSSS, CCCC, SSFF, and CCFF). 

Based on the WT-FSTM and the deep NN predicted results, we conclude that the deep NN 
predicted results of NDFP (Ω) are in very good agreement with the proposed method results 
WT-FSTM with an accuracy of training and validating data are 99.7 % and 99.8 % respectively. 
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