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Abstract. In the present paper, the analysis for thermoelastic homogeneous isotropic microbeams 
has been constructed. A generalized viscothermoelasticity theory of one relaxation time with 
variable thermal conductivity in the context of damage mechanics definition has been applied 
based on simply supported conditions for aspect ratios. Laplace transform has been applied for the 
governing differential equations, and its inverse has been carried out by using the Tzou method. 
Microbeam of silicon nitride has been considered when it is subjected to ramp-type heating and 
simply supported. The results have been illustrated in figures to stand on the impacts of the 
viscothermoelastic parameter, the thermal conductivity parameter, the value of the beam 
thickness, and the ramp-type heating parameter. The influences of the mentioned parameters are 
significant on all the studied functions, and the ramp-type heating parameter plays a vital role in 
thermodynamically damping of the energy which has been generated on the beam. 
Keywords: vibration, viscothermoelastic, microbeam, silicon nitride, ramp-type heat, thermal 
conductivity, damage. 

1. Introduction 

Tzou is the first one who studied the heat conduction by solving mathematical models based 
on dual-phase lag (DPL) [1, 2]. Many authors and researchers applied that model in the thermal 
transfer applications [3-8]. The model of coupled thermoelasticity theory is one of the first types of 
heat conduction, which consists the equation of motion and the equation of energy conservation 
using the classical Fourier’s law of heat conduction [9-12]. Lord and Shulman (L-S) modified the 
classical Fourier’s law by inserting the relaxation time (lag time) for an isotropic body [13]. Within 
this model, the heat conduction law has been modified to include both heat flux and its time 
derivative which is called non-Fourier’s or Cattaneo’s law of heat conduction. In the context of this 
model, the heat equation law is a hyperbolic type of differential equation and then eliminates the 
paradox which coming from infinite speeds of propagation of the thermal wave [14-18]. 

The vibration of microbeam resonators is the most important of the micro-/nano-beam subject. 
Alghamdi studied the damping vibration of beam resonator with voids by dual-phase-lag generalized 
thermoelasticity model [9]. Sharma and Grover discussed the transverse vibrations of a homogenous 
isotropic and thermoelastic microscale and nanoscale beam resonators with voids [19]. Sun and Saka 
induced the thermal damping vibration for thermoelastic of micro-circular plate resonators [20]. 
They inserted a new factor in their formula of thermal damping based on Poisson's ratio, which is 
not the same of Lifshitz and Roukes [21]. Al-Lehaibi and Youssef studied the vibration of gold 
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nano-beam due to thermal shock [22]. Kidawa studied the effects of internal and external damping 
on transverse vibrations of a microbeam due to moving heat source by using the properties of the 
Green functions [23]. Boley discussed the thermal vibrations of a simply supported rectangular 
nanobeam due to a thermal shock distributed through its span [24]. Manolis and Beskos studied the 
heat transfer induced vibration of microbeams structures; he used a numerical method of analysis to 
the thermal of the elastic dynamic response of beam structure to thermal loading [25]. Al-Huniti et al. 
studied the displacements and stresses of heated a bar due to a thermal wave generated by a moving 
laser beam with high-power [26]. 

Studying of viscoelastic materials or thermal and mechanical relaxations properties became 
vital in mechanics. The theory of viscothermoelasticity and vibrational principles have been 
studied in thermodynamics by Biot [27, 28]. Drozdov introduced a constitutive thermal model for 
the viscothermoelasticity behavior with finite strains of polymers [29]. Ezzat and El-Karmany 
applied a different model of viscothermoelasticity for isotropic and homogenous medium to study 
the influence of the thermal and mechanical relaxation of volume properties of viscothermoelastic 
materials [30]. Carcione et al. applied a computational algorithm for wave simulations in a 
thermoelastic materials by using the Kelvin-Voigt model [31]. Grover investigated the transverse 
vibrations in viscothermoelastic microbeams [32-34]. Sharma and Grover discussed the 
closed-form formulations for the transverse vibrations of a homogenous thermoelastic thin 
micro/nano-beam with voids [19]. Grover and Seth solved a problem of viscothermoelastic 
micro-scale beam resonators based on the model of dual-phase-lag (DPL) [35]. 

Usually, the properties of any material are constant during any process. In engineering 
ceramics applications, significant variations do, however, occur over the operating temperature 
range, in the thermal conductivity coefficient particularly. Godfrey found out that up to 45 % of 
decreases in the value of the thermal conductivity of different samples of silicon nitride in the 
range of increment (1.0 °C-400 °C). So, what are the impacts of these variations on the temperature 
increment, lateral deflection, stress, and energy in metal components [36]. Thus, the 
temperature-dependent material properties must be proposed in the analysis of thermal stress. 
Youssef, with many co-authors, solved many applications for thermoelastic materials with 
variable thermal conductivity [37-39]. Zenkour and Abbas solved a model of an infinite annular 
cylinder based on generalized thermoelasticity with one relaxation time for 
temperature-dependent properties [40]. 

Products typically contain many flaws in the original condition, such as microcracks or voids. 
Such internal holes or voids may expand and converge during a deformation cycle, whereas other 
content is totally removed by the development of new micro defects in stress concentrators called 
mechanical damage. At the latter stage, the credibility of the materials has been totally lost and 
macro-cracks have been created. Methane damage was graded as brittle, crawl, ductile, and fatigue 
according to the growing macroscopic phenomena [41].  

Throughout the continuum mechanics system there is also a definition of the macros actions 
of the mechanically affected material. In certain cases, the principle of mechanical harm may relate 
the dynamics of fracture to conventional continuum mechanics. Damage variables can be 
introduced in different ways.  

In a cross-section of the mechanically damaged medium, we thus assume an area of small 
element 𝑑𝐴 with the 𝑛 vector of the unit normal. The area of the defects is 𝑑𝐴జ and the quantity 
of mechanical damage can be measured by the area fraction [41, 42]: 

𝜐௡ = 𝑑𝐴జ𝑑𝐴 ,     0 ≤ 𝜐௡ ≤ 1, (1)

where 𝜐௡ = 0  classifies the undamaged material, while 𝜐௡ = 1 theoretically comply with the 
totally damaged with a complete loss of stress hold ability (fracture case). In any natural material, 
with values of 𝜐௡ ≈ 0.2,...,0.5  processes taking place, which leads to a total failure. If the 
mechanical damage is constant through a finite area, under uniaxial tension, the relation Eq. (1) 
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reduces to: 𝜐௡ = 𝐴జ𝐴 . (2)

The effects of microcracks that are inclined to the cross-section of the materials cannot be 
described correctly in the same way. Correspondingly, in case of isotropic damage 𝜐 independent 
of 𝑛, hence, the effective stresses are given by [41, 42]: 𝜎௜௝ = ሺ1 − 𝜐ሻ𝜎෤௜௝ , (3)

where 𝜎෤௜௝ are the average stresses in the undamaged material. Many applications and problems 
have been published under this definition of damage mechanics [42-47]. 

2. Basic Equations 

A homogenous isotropic thermally conducting, Kelvin-Voigt type viscothermoelastic solid in 
Cartesian coordinate has been considered and initially undeformed at a uniform temperature 𝑇଴. 
The displacement vector is defined as 𝑈ሺ𝑥,𝑦, 𝑧, 𝑡ሻ = ሺ𝑢, 𝑣,𝑤ሻ, and the absolute temperature is 
given by 𝑇ሺ𝑥,𝑦, 𝑧, 𝑡ሻ . The governing differential equations in the context of generalized 
thermoelasticity based on the non-Fourier heat conduction law will be constructed in the absence 
of any external body forces and heat sources as follows [34]: 

The equations of motion as [2, 37]: 𝜎௜௝,௝ = 𝜌𝑈ሷ ௜ . (4)

The heat conduction law in the form [48]: 

൫𝐾ሺ𝜑ሻ𝜑,௜൯,௜ = ቆ ∂∂𝑡 + 𝜏଴ ∂ଶ∂𝑡ଶቇ ൫𝜌𝐶జ𝜑 + 𝛽𝑇଴ሺ1 − 𝜐ሻ𝛿௜௝𝑒௜௝൯. (5)

The stress-strain constitutive equations are in the form [48]: 𝜎௜௝ = ሺ1 − 𝜐ሻ൫𝜆𝛿௜௝𝑒௞௞ + 2𝜇𝑒௜௝ − 𝛽𝛿௜௝𝜑൯. (6)

The deformation-displacement relations are in the form [48]: 𝑒௜௝ = 12 ൫𝑈௜,௝ + 𝑈௝,௜൯. (7)

For the viscothermoelastic materials, Lame’s parameters are in the following forms  
[32, 35, 49]: 

𝜆 = 𝜆଴ ൬1 + 𝜆ଵ ∂∂ 𝑡൰ ,      𝜇 = 𝜇଴ ൬1 + 𝜇ଵ ∂∂ 𝑡൰ ,     𝛽 = ሺ3𝜆 + 2𝜇ሻ𝛼் , (8)

where the indices 𝑖, 𝑗 = 𝑥,𝑦, 𝑧, 𝜌 is the density, 𝛼் is the coefficient of linear thermal expansion, 𝜆ଵ, 𝜇ଵ are the viscoelastic relaxation times, 𝜏଴ is the lag time or thermal relaxation time, 𝜆଴, 𝜇଴ 
Lame’s parameter in the usual case, 𝐾ሺ𝜑ሻ is the thermal conductivity, and 𝜑 = ሺ𝑇 − 𝑇଴ሻ is the 
temperature increment. 

The specific heat at constant strain satisfies the following relation [48]: 
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𝐶జ = 𝐾𝜌 𝜅, (9)

where 𝜅 is the diffusivity.  
Consider the following mapping [48]: 

𝜃 = 1𝐾଴ න 𝐾ሺ𝜉ሻ𝑑𝜉ఝ
଴    , (10)

where 𝐾଴ is the usual thermal conductivity. 
Differentiating Eq. (10) for the coordinates 𝑥௜, we get: 𝐾଴𝜃,௜ = 𝐾ሺ𝜑ሻ 𝜑,௜ . (11)

Hence, we have: 𝐾଴𝜃,௜௜ = ൣ𝐾ሺ𝜑ሻ 𝜑,௜൧,௜ . (12)

Differentiating Eq. (10) for time, we get: 𝐾଴𝜃ሶ = 𝐾ሺ𝜑ሻ𝜑ሶ . (13)

Thus, the heat Eq. (5) takes the form: 

𝜃,௜௜ = ቆ ∂∂ 𝑡 + 𝜏଴ ∂ଶ∂ 𝑡ଶቇ ൬𝜃𝜅 + 𝛽𝑇଴𝐾଴ ሺ1 − 𝜐ሻ𝛿௜௝𝑒௜௝൰. (14)

3. Problem formulation 

We assume small flexural deflections of a thin visco-thermoelastic nanobeam of length ℓ  (0 ≤ 𝑥 ≤ ℓ), with 𝑏 (−𝑏/2 ≤ 𝑦 ≤ 𝑏/2), and thickness ℎ (−ℎ/2 ≤ 𝑧 ≤ ℎ/2), for which the 𝑥,  𝑦, and 𝑧 axes are defined along the longitudinal, with, and thickness directions of the beam, 
respectively. In equilibrium, the beam is unstrained, unstressed, without any mechanical damping, 
bending [6].  

In this work, the well-known Euler-Bernoulli equation in one-dimensional form will be used. 
Thus, the displacements components are given by [32, 50, 51]: 

𝑈(𝑥, 𝑧, 𝑡) = ൭−𝑧 ∂ 𝑤(𝑥, 𝑡)∂ 𝑥  ,0 ,𝑤(𝑥, 𝑡)൱. (15)

The flexural moment of the cross-section is given by [1, 2, 9, 10, 19]: 

𝑀(𝑥, 𝑡) = (𝜆 + 2𝜇)(1 − 𝜐)𝐼 ∂ଶ𝑤(𝑥, 𝑡)∂𝑥ଶ + (1 − 𝜐)𝛽𝑀்(𝑥, 𝑡), (16)

where 𝐼 = 𝑏ℎଷ 12⁄  is the moment of inertia of the cross-section about the 𝑥-axis, and 𝑀் is the 
thermal moment of the beam about the 𝑥-axis which is given by [42, 50-52]: 

𝑀்(𝑥, 𝑡) = 𝑏න 𝜑(𝑥, 𝑧, 𝑡)𝑧𝑑𝑧௛ ଶ⁄
ି௛ ଶ⁄ . (17)
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Thus, the equation of the induced lateral deflection may be expressed in the form [32, 49]: 

(1 − 𝜐)(𝜆 + 2𝜇)𝐼 ∂ସ 𝑤(𝑥, 𝑡)∂ 𝑥ସ   + 𝜌𝐴 ∂ଶ 𝑤(𝑥, 𝑡)∂ 𝑡ଶ + (1 − 𝜐)(3𝜆 + 2𝜇)𝛼் ∂ଶ 𝑀்(𝑥, 𝑡)∂ 𝑥ଶ = 0, (18)

where 𝑤(𝑥, 𝑡) is the lateral deflection, 𝐴 = ℎ𝑏 is the cross-section area. 
The non-Fourier heat conduction law in Eq. (14) takes the form [32]: ∂ଶ𝜃(𝑥, 𝑧, 𝑡)∂ 𝑥ଶ + ∂ଶ𝜃(𝑥, 𝑧, 𝑡)∂ 𝑧ଶ= ቆ ∂∂ 𝑡 + 𝜏଴ ∂ଶ∂ 𝑡ଶቇ൭𝜃(𝑥, 𝑧, 𝑡)𝜅  + 𝛼்𝑇଴(1 − 𝜐)(3𝜆 + 2𝜇)𝐾଴ 𝑒(𝑥, 𝑧, 𝑡)൱, (19)

and: 

𝑒(𝑥, 𝑧, 𝑡) = ∂𝑢(𝑥, 𝑧, 𝑡)∂𝑥 + ∂𝑣(𝑥, 𝑧, 𝑡)∂𝑦 + ∂𝑤(𝑥, 𝑧, 𝑡)∂𝑧 , (20)

where 𝑒(𝑥, 𝑧, 𝑡) is the volumetric strain which gives from Eq. (15) that: 

𝑒(𝑥, 𝑧, 𝑡) = −𝑧 ∂ଶ𝑤(𝑥, 𝑡)∂𝑥ଶ . (21)

From the relation in Eq. (8), we have the following: 

𝜆 + 2𝜇 = (𝜆଴ + 2𝜇଴) ൬1 + 𝛽ଵ ∂∂𝑡൰ ,    (3𝜆 + 2𝜇) = (3𝜆଴ + 2𝜇଴) ൬1 + 𝛽ଶ ∂∂𝑡൰. (22)

𝛽ଵ = (ఒబఒభାଶఓబఓభ)(ఒబାଶఓబ)  and 𝛽ଶ = (ଷఒబఒభାଶఓబఓభ)(ଷఒబାଶఓబ)  are the aggregation of the viscothermoelastic 
relaxation times parameters. 

We consider that the thermal conductivity is a function on the temperature increment as 
follows [48]: 𝐾(𝜑) = 𝐾଴(1 + 𝐾ଵ𝜑). (23)

Thus, the mapping in Eq. (10) takes the form: 𝜃 = ൬𝜑 + 𝐾ଵ2 𝜑ଶ൰, (24)

where 𝐾ଵ is a small constant (𝐾ଵ = 0gives the usual thermal conductivity). 
Because there is no heat-flow across the upper and lower surfaces of the beam, so that డఝ(௫,௬,௭)డ௭ ቚ௭ୀ±௛/ଶ = 0. For a thin beam and assuming the temperature varies in terms of a sin(𝑝𝑧) 

function through the thickness direction, where 𝑝 = 𝜋/ℎ , gives: 𝜑(𝑥, 𝑧, 𝑡) = 𝜗ଵ(𝑥, 𝑡)sin(𝑝𝑧). (25)

From Eq. (24) and (25), we have: 
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∂𝜃(𝑥, 𝑧, 𝑡)∂𝑧 ቤ௭ୀ±௛/ଶ =  ቈ∂𝜑(𝑥, 𝑧, 𝑡)∂𝑧 + 𝐾ଵ𝜑(𝑥, 𝑧, 𝑡) ∂𝜑(𝑥, 𝑧, 𝑡)∂𝑧 ቉ቤ௭ୀ±௛/ଶ = 0. (26)

Hence, we consider that: 𝜃(𝑥, 𝑧, 𝑡) = 𝜗ଶ(𝑥, 𝑡)sin(𝑝𝑧). (27)

Then, form Eqs. (17), (18), and (25), we obtain: 

(1 − 𝜐)(𝜆 + 2𝜇) ∂ସ 𝑤(𝑥, 𝑡)∂ 𝑥ସ   + 12𝜌ℎଶ ∂ଶ 𝑤(𝑥, 𝑡)∂ 𝑡ଶ       + 12𝛼்ℎଷ (1 − 𝜐)(3𝜆 + 2𝜇) ∂ଶ𝜗ଵ(𝑥, 𝑡) ∂ 𝑥ଶ න sin(𝑝𝑧)𝑧𝑑𝑧௛ ଶ⁄
ି௛ ଶ⁄ = 0. (28)

Furthermore, from Eqs. (19) and (27), we get: 

൭∂ଶ𝜗ଶ(𝑥, 𝑡)∂ 𝑥ଶ − 𝑝ଶ𝜗ଶ(𝑥, 𝑡)൱ sin(𝑝𝑧) = ቆ ∂∂ 𝑡 + 𝜏଴ ∂ଶ∂ 𝑡ଶቇ𝜗ଶ(𝑥, 𝑡)𝜅 sin(𝑝𝑧) 
      −𝑇଴𝛼்𝐾଴ (1 − 𝜐)(3𝜆 + 2𝜇)ቆ ∂∂ 𝑡 + 𝜏଴ ∂ଶ∂ 𝑡ଶቇቆ𝑧 ∂ଶ𝑤(𝑥, 𝑡)∂𝑥ଶ ቇ. (29)

Thus, Eqs. (8) and (28) gives: 

(1 − 𝜐)(𝜆଴ + 2𝜇଴) ൬1 + 𝛽ଵ ∂∂𝑡൰ ∂ସ 𝑤(𝑥, 𝑡)∂ 𝑥ସ   + 12𝜌ℎଶ ∂ଶ 𝑤(𝑥, 𝑡)∂ 𝑡ଶ  
      + 12𝛼்(1 − 𝜐)(3𝜆଴ + 2𝜇଴)ℎଷ ൬1 + 𝛽ଶ ∂∂𝑡൰ ∂ଶ𝜗ଵ(𝑥, 𝑡) ∂ 𝑥ଶ න  𝑧 sin(𝑝𝑧)𝑑𝑧௛/ଶ

ି௛/ଶ = 0 . (30)

By carrying out the integrations, the Eq. (30) takes the form: 

(1 − 𝜐)(𝜆଴ + 2𝜇଴) ൬1 + 𝛽ଵ ∂∂𝑡൰ ∂ସ 𝑤(𝑥, 𝑡)∂ 𝑥ସ   + 12𝜌ℎଶ ∂ଶ 𝑤(𝑥, 𝑡)∂ 𝑡ଶ         + 24𝛼்(1 − 𝜐)(3𝜆଴ + 2𝜇଴)ℎ𝜋ଶ ൬1 + 𝛽ଶ ∂∂𝑡൰ ∂ଶ𝜗ଵ(𝑥, 𝑡) ∂ 𝑥ଶ = 0 . (31)

Multiply both sides of Eq. (29) by z and integrating for 𝑧 from −ℎ/2 to ℎ/2 , then, we obtain: ∂ଶ𝜗ଶ(𝑥, 𝑡)∂ 𝑥ଶ − 𝑝ଶ𝜗ଶ(𝑥, 𝑡) =  𝜀 ቆ ∂∂ 𝑡 + 𝜏଴ ∂ଶ∂ 𝑡ଶቇ 𝜗ଶ(𝑥, 𝑡)       −𝑇଴ℎ𝜋ଶ𝛼்(1 − 𝜐)(3𝜆଴ + 2𝜇଴)24𝐾଴ ቆ ∂∂ 𝑡 + 𝜏଴ ∂ଶ∂ 𝑡ଶቇ ൬1 + 𝛽ଶ ∂∂𝑡൰ ∂ଶ𝑤(𝑥, 𝑡)∂ 𝑥ଶ , (32)

where 𝜀 = ଵ఑ = ఘ஼ഔ௄బ .  
From Eqs. (24), (25), and (27), we have: 𝜗ଶ(𝑥, 𝑧, 𝑡) =  𝜗ଵ(𝑥, 𝑡) + 𝐾ଵ2 𝜗ଵଶ(𝑥, 𝑡)sin(𝑝𝑧), (33)
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which gives: ∂ଶ𝜗ଶ(𝑥, 𝑡)∂𝑥ଶ = ∂ଶ𝜗ଵ(𝑥, 𝑡)∂𝑥ଶ + 𝐾ଵsin(𝑝𝑧) ൥𝜗ଵ(𝑥, 𝑡) ∂ଶ𝜗ଵ(𝑥, 𝑡)∂𝑥ଶ + ቆ∂𝜗ଵ(𝑥, 𝑡)∂𝑥 ቇଶ൩. (34)

Since: 

𝐾ଵsin(𝑝𝑧) ൥𝜗ଵ(𝑥, 𝑡) ∂ଶ𝜗ଵ(𝑥, 𝑡)∂𝑥ଶ + ቆ∂𝜗ଵ(𝑥, 𝑡)∂𝑥 ቇଶ൩ ≪ ∂ଶ𝜗ଵ(𝑥, 𝑡)∂𝑥ଶ . (35)

Then, we can consider the following approximation: ∂ଶ𝜗ଶ(𝑥, 𝑡)∂𝑥ଶ ≈ ∂ଶ𝜗ଵ(𝑥, 𝑡)∂𝑥ଶ . (36)

Hence, the Eq. (31) takes the form: 

(𝜆଴ + 2𝜇଴) ൬1 + 𝛽ଵ ∂∂𝑡൰ ∂ସ 𝑤(𝑥, 𝑡)∂ 𝑥ସ   + 12𝜌ℎଶ(1 − 𝜐) ∂ଶ 𝑤(𝑥, 𝑡)∂ 𝑡ଶ        + 24𝛼்(3𝜆଴ + 2𝜇଴)ℎ𝜋ଶ ൬1 + 𝛽ଶ ∂∂𝑡൰ ∂ଶ𝜗ଶ(𝑥, 𝑡) ∂ 𝑥ଶ = 0 . (37)

For simplicity, we use the non-dimensional variables as follows [12, 37]: (𝑥′,𝑤′,ℎ′, ℓ′) = 𝜀 𝑐଴(𝑥,𝑤,ℎ, ℓ) , (𝑡′, 𝜏′଴,𝛽′ଵ,𝛽′ଶ) = 𝜀 𝑐଴ଶ(𝑡, 𝜏଴,𝛽ଵ,𝛽ଶ),  𝜎ᇱ = 𝜎𝜆଴ + 2𝜇଴ ,      𝜗′ଶ = 𝜗ଶ𝑇଴ , (38)

where 𝑐଴ = ඥ𝜆଴ + 2𝜇଴ 𝜌⁄ . 
Hence, we have: 

൬1 + 𝛽ଵ ∂∂𝑡൰ ∂ସ 𝑤(𝑥, 𝑡)∂ 𝑥ସ   + 𝜀ଵ ∂ଶ 𝑤(𝑥, 𝑡)∂ 𝑡ଶ + 𝜀ଶ ൬1 + 𝛽ଶ ∂∂𝑡൰ ∂ଶ𝜗ଶ(𝑥, 𝑡) ∂ 𝑥ଶ = 0, (39)∂ଶ𝜗ଶ(𝑥, 𝑡)∂ 𝑥ଶ − 𝜀ଷ𝜗ଶ(𝑥, 𝑡) = ቆ ∂∂ 𝑡 + 𝜏௢ ∂ଶ∂ 𝑡ଶቇቆ𝜗ଶ(𝑥, 𝑡) − 𝜀ସ ൬1 + 𝛽ଶ ∂∂𝑡൰ ∂ଶ𝑤(𝑥, 𝑡)∂ 𝑥ଶ ቇ, (40)𝜎௫௫(𝑥, 𝑧, 𝑡) = ൬1 + 𝛽ଵ ∂∂𝑡൰ 𝑒(𝑥, 𝑧, 𝑡) − 𝛾 ൬1 + 𝛽ଶ ∂∂𝑡൰𝜑(𝑥, 𝑧, 𝑡), (41)

where: 𝜀ଵ = 12ℎଶ(1 − 𝜐) , 𝜀ଶ = 24𝛾𝜋ଶℎ  , 𝜀ଷ = 𝑝ଶ,   𝜀ସ = 𝜋ଶℎ 𝛼்(1 − 𝜐)(3𝜆଴ + 2𝜇଴)24𝐾଴𝜀  ,   𝛾 = 𝑇଴𝛼்(3𝜆଴ + 2𝜇଴)(𝜆଴ + 2𝜇଴) . 
(We dropped the prime for simplicity). 

4. Formulation in the Laplace transform domain 

The Laplace transform for Eq. (39) and (40), which is defined by the following formula will 
be applied: 
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𝑓̅ (𝑠) = න 𝑓(𝑡)𝑒ି௦௧𝑑𝑡ஶ
଴ , (42)

where the inverse of the Laplace transform takes the form: 

𝐿ିଵ ቀ𝑓̅(𝑠)ቁ = 𝑓(𝑡) ≈ 𝑒఑௧𝑡 ൥12𝑓̅(𝜅) + Re෍(−1)௡𝑓̅ ൬𝜅 + 𝑖𝑛𝜋𝑡 ൰ே
௡ୀଵ ൩, (43)

where 𝜅𝑡 ≈ 4.7 Tzou [2], 𝑅𝑒 is the real part and 𝑖 is the imaginary unit, for faster convergence, 
many numerical applications and experiments have shown that the value of 𝜅 satisfies the relation. 

Hence, we obtain the following system of differential equations: 

(1 + 𝛽ଵ𝑠) ∂ସ 𝑤ഥ(𝑥, 𝑠)∂ 𝑥ସ   + 𝜀ଵ𝑠ଶ𝑤ഥ + 𝜀ଶ(1 + 𝛽ଶ𝑠) ∂ଶ𝜗̅ଶ(𝑥, 𝑠) ∂ 𝑥ଶ = 0, (44)∂ଶ𝜗̅ଶ(𝑥, 𝑠)∂ 𝑥ଶ − 𝜀ଷ𝜗̅ଶ(𝑥, 𝑠) = (𝑠 + 𝜏௢𝑠ଶ)𝜗̅ଶ(𝑥, 𝑠) − 𝜀ସ(𝑠 + 𝜏௢𝑠ଶ)(1 + 𝛽ଶ𝑠) ∂ଶ𝑤ഥ(𝑥, 𝑠)∂ 𝑥ଶ , (45)𝜎ത௫௫(𝑥, 𝑧, 𝑠) = (1 − 𝜐)ሾ(1 + 𝛽ଵ𝑠)𝑒̅(𝑥, 𝑧, 𝑠) − 𝛾(1 + 𝛽ଶ𝑠)𝜑ത(𝑥, 𝑧, 𝑠)ሿ, (46)𝑒̅(𝑥, 𝑧, 𝑠) = −𝑧 ∂ଶ𝑤ഥ(𝑥, 𝑠)∂𝑥ଶ . (47)

During applying the Laplace transform, the following initial conditions have been used: 

𝜗ଶ(𝑥, 0) = 𝑤(𝑥, 0) = ∂𝜗ଶ(𝑥, 0)∂𝑡 = ∂𝑤(𝑥, 0)∂𝑡 = 0. (48)

We can re-write the above system in Eqs. (44) and (45) to be in the forms: (𝐷ସ   + 𝜀ହ)𝑤ഥ(𝑥, 𝑠) = −𝜀଺𝐷ଶ𝜗̅ଶ(𝑥, 𝑠), (49)(𝐷ଶ − 𝜀଻)𝜗̅ଶ(𝑥, 𝑠) = −𝜀଼𝐷ଶ𝑤ഥ(𝑥, 𝑠), (50)

where: 

𝐷௥ = ∂௥∂ 𝑥௥ ,     𝜀ହ = 𝜀ଵ𝑠ଶ(1 + 𝛽ଵ𝑠) , 𝜀଺ = 𝜀ଶ(1 + 𝛽ଶ𝑠)(1 + 𝛽ଵ𝑠) , 𝜀଻ = 𝜀ଷ + (𝑠 + 𝜏௢𝑠ଶ),      𝜀଼ =  𝜀ସ(𝑠 + 𝜏௢𝑠ଶ)(1 + 𝛽ଶ𝑠). 
The system in Eqs. (49) and (50) generates the following characteristic equation: (𝐷଺ − 𝐿𝐷ସ + 𝑀𝐷ଶ − 𝑁)ሼ𝜗̅ଶ(𝑥, 𝑠),𝑤ഥଶ(𝑥, 𝑠)ሽ  = 0, (51)

where 𝐿 = 𝜀଻   + 𝜀଺𝜀଼, 𝑀 = 𝜀ହ, 𝑁 = 𝜀ହ𝜀଻. 
The solutions of the Eqs. (51) take the forms: 

𝜗̅ଶ(𝑥, 𝑠) = −𝜀଼෍𝐴௜𝑘௜ଶsinh൫𝑘௜(ℓ − 𝑥)൯ଷ
௜ୀଵ , (52)

𝑤ഥ(𝑥, 𝑠) = ෍𝐴௜(𝑘௜ଶ − 𝜀଻)sinh൫𝑘௜(ℓ − 𝑥)൯ଷ
௜ୀଵ , (53)

where ±𝑘ଵ, ±𝑘ଶ, ±𝑘ଷ are the roots of the characteristic equation: 
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𝑘଺   − 𝐿 𝑘ସ + 𝑀 𝑘ଶ − 𝑁 = 0. (54)

To calculate the constants 𝐴௜ = 𝐴௜(𝑠) , 𝑖 =  1, 2, 3, we must apply any set of boundary 
conditions, so we consider that the beam is thermally loaded and simply supported as following: 

𝑤(0, 𝑡) = ∂ଶ𝑤(0, 𝑡)∂𝑥ଶ = 0,      𝜑(0, 𝑡) = 𝜗଴𝑔(𝑡), (55)𝑤(ℓ, 𝑡) = ∂ଶ𝑤(ℓ, 𝑡)∂𝑥ଶ =  𝜑(ℓ, 𝑡) = 0, (56)

where 𝜗଴ is constant and 𝑔(𝑡) is the function of the thermal loading.  
Eqs. (25) and (55) gives that: 𝜗ଵ(0, 𝑡) = 𝜗଴𝑔(𝑡). (57)

From Eqs. (33) and (57), we obtain: 

𝜗ଶ(0, 𝑡) = 𝜗଴𝑔(𝑡) + 𝐾ଵsin(𝑝𝑧)𝜗଴ଶ2 𝑔ଶ(𝑡). (58)

Apply the Laplace transform, we have: 

𝑤ഥ(0, 𝑠) = ∂ଶ𝑤ഥ(0, 𝑠)∂𝑥ଶ = 0, (59)𝜗̅ଶ(0, 𝑠) =  𝜗଴𝑔̅(𝑡) + 𝐾ଵsin(𝑝𝑧)𝜗଴ଶ2 𝑔ଶ(𝑡) = 𝐺(𝑠). (60)𝑤ഥ(ℓ, 𝑠) = ∂ଶ𝑤ഥ(ℓ, 𝑠)∂𝑥ଶ = 𝜗̅ଶ(ℓ, 𝑠) = 0. (61)

Then, we obtain the following system of linear equations: 

෍𝐴௜𝑘௜ଶsinh(𝑘௜ℓ)ଷ
௜ୀଵ = −𝐺(𝑠)𝜀଼ , (62)

෍𝐴௜(𝑘௜ଶ − 𝜀଻)sinh(𝑘௜ℓ)ଷ
௜ୀଵ = 0, (63)

෍𝐴௜(𝑘௜ଶ − 𝜀଻)𝑘௜ଶsinh(𝑘௜ℓ)ଷ
௜ୀଵ = 0. (64)

After solving the above system, then, we get the solutions in the Laplace transform domain as 
follows: 

𝜗̅ଶ(𝑥, 𝑠) = 𝐺(𝑠) 𝜀଻ ቈ (𝜀଻ − 𝑘ଶଶ)(𝜀଻ − 𝑘ଷଶ)𝑘ଵଶ(𝑘ଵଶ − 𝑘ଶଶ)(𝑘ଵଶ − 𝑘ଷଶ)sinh(𝑘ଵℓ) sinh൫𝑘ଵ(ℓ − 𝑥)൯       + (𝜀଻ − 𝑘ଵଶ)(𝜀଻ − 𝑘ଷଶ)𝑘ଶଶ(𝑘ଶଶ − 𝑘ଵଶ)(𝑘ଶଶ − 𝑘ଷଶ)sinh(𝑘ଶℓ) sinh൫𝑘ଶ(ℓ − 𝑥)൯       + (𝜀଻ − 𝑘ଵଶ)(𝜀଻ − 𝑘ଶଶ)𝑘ଷଶ(𝑘ଷଶ − 𝑘ଵଶ)(𝑘ଷଶ − 𝑘ଶଶ)sinh(𝑘ଷℓ) sinh൫𝑘ଷ(ℓ − 𝑥)൯቉, (65)

which gives: 
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𝜃̅(𝑥, 𝑠) = 𝐺(𝑠) 𝜀଻ sin(𝑝𝑧) ቈ (𝜀଻ − 𝑘ଶଶ)(𝜀଻ − 𝑘ଷଶ)𝑘ଵଶ(𝑘ଵଶ − 𝑘ଶଶ)(𝑘ଵଶ − 𝑘ଷଶ)sinh(𝑘ଵℓ) sinh൫𝑘ଵ(ℓ − 𝑥)൯       + (𝜀଻ − 𝑘ଵଶ)(𝜀଻ − 𝑘ଷଶ)𝑘ଶଶ(𝑘ଶଶ − 𝑘ଵଶ)(𝑘ଶଶ − 𝑘ଷଶ)sinh(𝑘ଶℓ) sinh൫𝑘ଶ(ℓ − 𝑥)൯       + (𝜀଻ − 𝑘ଵଶ)(𝜀଻ − 𝑘ଶଶ)𝑘ଷଶ(𝑘ଷଶ − 𝑘ଵଶ)(𝑘ଷଶ − 𝑘ଶଶ)sinh(𝑘ଷℓ) sinh൫𝑘ଷ(ℓ − 𝑥)൯቉. (66)

We get the temperature increment 𝜑(𝑥, 𝑧, 𝑡) from Eqs. (24) and (66) as follows: 

𝜑(𝑥, 𝑧, 𝑡) =  −1 + ඥ1 + 2𝐾ଵ 𝐿ିଵሾ𝜃̅(𝑥, 𝑧, 𝑠)ሿ𝐾ଵ . (67)

The lateral deflection is: 

𝑤ഥ(𝑥, 𝑠) = 𝐺(𝑠)𝜀଺𝜀଻ ቈ 1(𝑘ଵଶ − 𝑘ଶଶ)(𝑘ଵଶ − 𝑘ଷଶ)sinh(𝑘ଵℓ) sinh൫𝑘ଵ(ℓ − 𝑥)൯       + 1(𝑘ଶଶ − 𝑘ଵଶ)(𝑘ଶଶ − 𝑘ଷଶ)sinh(𝑘ଶℓ) sinh൫𝑘ଶ(ℓ − 𝑥)൯       + 1(𝑘ଷଶ − 𝑘ଵଶ)(𝑘ଷଶ − 𝑘ଶଶ)sinh(𝑘ଷℓ) sinh൫𝑘ଷ(ℓ − 𝑥)൯቉, (68)

and the deformation takes the form: 

𝑒̅(𝑥, 𝑠) = −𝑧 𝐺(𝑠)𝜀଺𝜀଻ ቈ 1(𝑘ଵଶ − 𝑘ଶଶ)(𝑘ଵଶ − 𝑘ଷଶ)sinh(𝑘ଵℓ) sinh൫𝑘ଵ(ℓ − 𝑥)൯       + 1(𝑘ଶଶ − 𝑘ଵଶ)(𝑘ଶଶ − 𝑘ଷଶ)sinh(𝑘ଶℓ) sinh൫𝑘ଶ(ℓ − 𝑥)൯       + 1(𝑘ଷଶ − 𝑘ଵଶ)(𝑘ଷଶ − 𝑘ଶଶ)sinh(𝑘ଷℓ) sinh൫𝑘ଷ(ℓ − 𝑥)൯቉. (69)

The stress-strain energy through the beam is given by [12, 37]: 

𝜛(𝑥, 𝑧, 𝑡) = ෍ 12𝜎௜௝𝑒௜௝ଷ
௜,௝ୀଵ = 12𝜎௫௫(𝑥, 𝑧, 𝑡)𝑒(𝑥, 𝑧, 𝑡). (70)

Hence, we have: 𝜛(𝑥, 𝑧, 𝑡) = 12 ൣ𝐿ିଵ൫𝜎ത௫௫(𝑥, 𝑧, 𝑠)൯൧ൣ𝐿ିଵ൫𝑒̅(𝑥, 𝑠)൯൧, (71)

where 𝐿ିଵሾ•ሿ is defined as the inversion of Laplace transform. 
To get the complete solutions, we have to determine the function of the thermal loading 𝑔(𝑡), 

so, we will consider the thermal loading is ramp-type heat as follows [38]: 

𝑔(𝑡) = ቐ 𝑡𝑡଴ , 0 < 𝑡 < 𝑡଴,1, 𝑡 ≥ 𝑡଴.  (72)

Hence, we have: 
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𝐺(𝑠) =  𝜗଴ ቆ1 − 𝑒ି௦ ௧బ𝑠ଶ𝑡଴ ቇ + 𝐾ଵsin(𝑝𝑧)𝜗଴ଶ2 ቆ1 − 𝑒ି௦௧బ − 𝑠 𝑡଴𝑒ି௦௧బ𝑠ଷ𝑡଴ଶ ቇ. (73)

5. Numerical results and discussion 

Now, we will consider a numerical example for which computational results are given. For 
this purpose, silicon nitride is taken as the thermoelastic material for which we take the following 
values of the different physical constants [34]: 𝑘 =  43.5 W/(m K), 𝛼் = 2.71×10-6 K-1,  𝜌 =  3200 kg/m3, 𝑇଴ =  293 K, 𝐶జ =  630 J/(kg K), 𝜆଴ = 217×109 N/m2, 𝜇଴ = 108×109 N/m2,  𝜏଴ = 4.32×10-13 s, 𝜆ଵ = 𝜇ଵ = 6.89×10-13 s. 

The aspect ratios of the beam are fixed as𝑏 = ℎ/2 and ℓ/ℎ = 6. For the microscale beam, we 
will assume the length of the beam is in range ℓ (1.0-100)×10-9 m , and the original time t and the 
relaxation time 𝜏଴ are of order 10-12 sec and 10-14 sec, respectively. The figures were carried by 
using the dimensionless variables for a beam with length ℓ = 1.0 𝜃଴ = 1.0, 𝜏଴ = 0.01 𝑧 = ℎ/2 
and 𝑡 = 1.0. 

Figs. 1(a-d) represent the temperature increment, the lateral deflection, the stress, and the 
stress-strain energy distributions, respectively, with various values of the thermal conductivity 
(𝐾ଵ = 0.0, 𝐾ଵ ≠ 0.0) when 𝑡 ≥ 𝑡଴. It has been noted that the parameter 𝐾ଵ has significant effects 
on the temperature increment distribution, the lateral deflection, the stress, and the stress-strain 
energy distributions. An increase in the value of the parameter 𝐾ଵ leads to an increase in the values 
of the temperature increment, lateral deflection, stress, and stress-strain energy. 

 
a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 1. The state-functions distributions based on the thermal conductivity when 𝑡 ≥ 𝑡଴ 

Figs. 2(a-d) show the temperature increment, lateral deflection, stress, and stress-strain energy 
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distributions, respectively, with various values of the thermal conductivity parameter (𝐾ଵ = 0.0, 𝐾ଵ ≠ 0.0) when 𝑡 < 𝑡଴ . It has been noted that the parameter 𝐾ଵ  has a limited effect on the 
temperature increment distribution, while it has significant effects on the lateral deflection, the 
stress, and the stress-strain energy distributions. The values of the peak points of the lateral 
deflection, stress, and stress-strain energy increase when the thermal conductivity becomes 
variable. 

 
a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 2. The state-functions distributions based on the thermal conductivity when 𝑡 < 𝑡଴  

Figs. 3(a-d) and 4(a-d) show the temperature increment, lateral deflection, stress, and 
stress-strain energy distributions, respectively, for various values of the mechanical damage 
variable (𝜐 = 0.0, 𝜐 = 0.3) when 𝑡 ≥ 𝑡଴  and 𝑡 < 𝑡଴ , respectively. It has been noted that the 
parameter 𝜐  has a limited effect on the temperature increment distribution. The mechanical 
damage variable has significant impacts on the lateral deflection, stress, and stress-strain energy 
distributions in the two cases 𝑡 ≤ 𝑡௢  and 𝑡 > 𝑡௢. An increase in the value of the mechanical 
damage variable leads to a decrease in the values of the peak points of the lateral deflection, stress, 
and stress-strain energy.  

Figs. 5(a-d) and 6(a-d) show the temperature increment, lateral deflection, stress, and 
stress-strain energy distributions, respectively, for various values of the viscothermoelastic 
parameter (𝛽ଵ = 𝛽ଶ = 0.0,…, 𝛽ଵ ≠ 𝛽ଶ ≠0.0) when 𝑡 ≥ 𝑡଴ and 𝑡 < 𝑡଴, respectively. It is observed 
that the mechanical relaxation times parameters 𝛽ଵ and 𝛽ଶ have a limited effect on the temperature 
increment distribution, while they have significant effects on the lateral deflection, stress, and 
stress-strain energy distributions. An increase in the values of the mechanical relaxation times 
parameters 𝛽ଵ and 𝛽ଶ leads to a decrease in the values of the peak points of the lateral deflection, 
stress, and stress-strain energy.  
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a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 3. The state-functions distributions based on the damage mechanics variable when 𝑡 ≥ 𝑡଴ 

 
a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 4. The state-functions distributions based on the damage mechanics variable when 𝑡 < 𝑡଴ 
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a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 5. The state-functions distributions based on the viscothermoelastic parameters when 𝑡 ≥ 𝑡଴ 

 
a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 6. The state-functions distributions based on the viscothermoelastic parameters when 𝑡 < 𝑡଴ 
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a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 7. The state-functions distributions based on the thickness of the nanobeam when 𝑡 ≥ 𝑡଴ 

 
a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 8. The state-functions distributions based on the thickness of the nanobeam when 𝑡 < 𝑡଴ 
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Figs. 7(a-d) and 8(a-d) show the temperature increment, lateral deflection, stress, and 
stress-strain energy distributions, respectively, for various values of beam’s thickness 𝑧  (𝑧 = ℎ/4, 𝑧 = ℎ/2)  when 𝑡଴ = 1 and 𝑡଴ = 2, respectively. It has been noted that the beam’s 
thickness has significant effects on the temperature increment, lateral deflection, stress, and 
stress-strain energy distributions. 

Figs. 9(a-d) and 10(a-d) show the temperature increment, lateral deflection, stress, and 
stress-strain energy distributions, respectively, for different values of damage mechanics 
parameter 𝜐 = (0.0, 0.3) when 𝑡 = 𝑡଴ = 1.0 , for constant and variable thermal conductivity, 
respectively. In those figures, we discuss the effect of the damage variable to the thermal 
conductivity.  

Figs. 9(a) and 10(a) show that the values of the temperature increment based on variable 
thermal conductivity are higher than the values of the temperature increment based on constant 
thermal conductivity for the two cases of damage mechanics variable. 

 
a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 9. The state-functions distributions when the thermal conductivity is constant 

Figs. 9(b) and 10(b) state that the values of the difference between the peak points of the lateral 
deflection based on the damage and non-damage situations with variable thermal conductivity are 
higher than the values of the difference between the peak points of the lateral deflection based on 
the damage and non-damage situations with constant thermal conductivity. 

Fig. 9(c) and 10(c) state that the value of the difference between the peak points of the stress 
based on the damage and non-damage situations with variable thermal conductivity is higher than 
the values of the difference between the peak points of the stress based on the damage and 
non-damage situations with constant thermal conductivity.  

Figs. 9(d) and 10(d) state that the value of the difference between the peak points of the 
stress-strain energy based on the damage and non-damage situations with variable thermal 
conductivity are higher than the values of the difference between the peak points of the 
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stress-strain energy based on the damage and non-damage situations with constant thermal 
conductivity. Thus, thermal conductivity has a significant effect on the damage mechanics 
variable and vis versa. 

 
a) The temperature increment distribution 

 
b) The lateral deflection distribution 

 
c) The stress distribution 

 
d) The stress-strain energy distribution 

Fig. 10. The state-functions distributions when the thermal conductivity is variable 

Fig. 1-10 show that the ramp-type heating parameter 𝑡௢  has significant effects on the 
temperature increment, lateral deflection, stress, and stress-strain energy. An increase the value of 
the ramp-time heat parameter 𝑡଴ leads to a decrease the values of all the studied functions. Thus, 
the ramp-time heat parameter 𝑡଴ plays a vital role in the propagation of the thermal and mechanical 
waves and it could be used to control the vibration of the microbeam and damping the energy 
generated in the beam.  

Fig. 11(a-d) represents only the lateral deflection for wide range of time 𝑡 (0.0 ≤ 𝑡 ≤ 2.0) and 
at distance 𝑥 = 0.2 when 𝑡଴ = 1.0 with different cases.  

Fig. 11(a) shows the later deflection with respect to the thermal conductivity case, where the 
solid line represents the case of constant thermal conductivity while the dotted line represents the 
variable thermal conductivity case. It is noted that the considering of variable thermal conductivity 
has a significant effect on the lateral deflection distribution. Considering variable thermal 
conductivity leads to an increase in the value of the lateral deflection. 

Fig. 11(b) shows the later deflection with various values of the mechanical damage variable, 
where the solid line represents the undamaged case, while the dotted line represents the damaged 
case. It is noted that the mechanical damage variable has a significant effect on the lateral 
deflection distribution. An increase in the value of mechanical damage variable leads to a decrease 
in the value of the lateral deflection. 

Fig. 11(c) shows the later deflection with various values of the mechanical relaxation time 
parameter, where the solid line represents the thermoelastic case (non-visco), while the dotted line 
represents the viscothermoelastic case. It is noted that the mechanical relaxation time parameter 
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has a limited effect on the lateral deflection distribution. 
Fig. 11(d) shows the later deflection with various values of the beam’s width 𝑧, where the solid 

line represents the case of beam’s width 𝑧 = ℎ/4, while the dotted line represents the case of 
beam’s width 𝑧 = ℎ/2. It is noted that the beam’s width 𝑧 has a significant effect on the lateral 
deflection distribution. An increase in the value of 𝑧 leads to an increase in the value of the lateral 
deflection. 

 
a) The lateral deflection when  𝜐 = 0.3, 𝑧 = ℎ/2, and 𝛽ଵ ≠ 𝛽ଶ ≠ 0.0 

 
b) The lateral deflection when  𝐾ଵ ≠ 0.0, 𝑧 = ℎ/2, and 𝛽ଵ ≠ 𝛽ଶ ≠ 0.0 

 
c) The lateral deflection when  𝜐 = 0.3, 𝑧 = ℎ/2, and 𝐾ଵ ≠ 0.0 

 
d) The lateral deflection when  𝐾ଵ ≠ 0.0 , 𝜐 = 0.3, and 𝛽ଵ ≠ 𝛽ଶ ≠ 0.0 

Fig. 11. The lateral deflection for wide range of time 𝑡 (0.0 ≤ 𝑡 ≤ 2.0)  
and at distance 𝑥 = 0.2 when 𝑡଴ = 1.0 

Overall, the results in this work agree with the results in other papers, mainly in the cases  𝐾ଵ = 𝜐 = 𝛽ଵ = 𝛽ଶ = 0 [9, 10, 12, 19, 22, 25, 32, 37]. 

6. Conclusions 

A simply supported viscothermoelastic microbeam has been thermally loaded by ramp-type 
heating considering variable thermal conductivity and damage mechanics variable.  

The ramp-type heating parameter, thermal conductivity, and thickness of the microbeam have 
significant effects, while the damage mechanics variable and the mechanical relaxation time have 
a limited impact on the temperature increment. The ramp-type heating parameter, thermal 
conductivity, thickness of the microbeam, damage mechanics variable, and mechanical relaxation 
time have significant effects on the lateral deflection, deformation, stress, and stress-strain energy 
distributions. Thus, the considering of the variability of the thermal conductivity and damage 
mechanics variable are more significant among studying the microbeams resonators. The thermal 
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conductivity and damage mechanics variable between them have a significant mutual effect. 
The ramp-time heat parameter can be used as a tuner to the vibration and the generated entire 

energy of the microbeam.  
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