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Abstract. Acute diarrhea disease has a greater threat to human population especially in poor 
sanitary or hygienic environments, which caused enormous mortality and mobility in the Society. 
In this paper, we proposed a model to describe the transmission of the acute diarrhea disease and 
optimal control strategies in a community. The reproduction number and global dynamics of the 
model are obtained. Global Stability of the Disease free and endemic state of the model equations 
is determined. It was found that, the Disease Free Equilibrium is globally asymptotically stable in 
feasible region Ω if 𝑅0 ≤ 1 and Endemic state is globally asymptotically stable when 𝑅0 ൐ 1. The 
Optimal control problem is designed with two control strategies, namely, the prevention through 
minimizing the contact between the infected with acute diarrhea infectious and susceptible, and 
treatment of an individual. The existence of optimal control model is obtained. Numerical results 
of the dynamics of the disease are presented. It was found that, as the effective contact rate 
increases, it increases the reproduction number of the model equations, also as the effectiveness 
of compliance of good hygiene increases, it decreases the reproduction number of the model by 
varying the contact rate and more so, as production rate of acute diarrhea bacteria increases, it 
increases the secondary cases of the infected individuals. 
Keywords: acute diarrhea infection, basic reproduction number, modelling, global stability. 

1. Introduction 

Acute diarrhea is one of the most common reported illnesses in developing Country, according 
to World Health Organisation (WHO), it is second leading cause of mortality in children young 
than four years old, particularly in the developing world. Diarrhea infection which may lasts less 
than 2 weeks is known as acute diarrhea, while, Chronic diarrhea lasts longer than 4 weeks. 
Diarrhea infection is an increase in the number of stools, but stool consistency is really the 
characteristic. The symptoms include abdominal cramps fever, nausea, vomiting, fatigue and 
urgency [1]. Exposure to causative agent such bacteria and virus are often transmitted by the fecal-
oral route, so hand washing and hygiene are important to prevent infection. Soap and water are 
better because alcohol-based hand sanitizers may not kill viruses [1].  

Mortality from acute diarrhea is globally declining but remains high in developing Country. 
Most estimates considered diarrhea infection as the second cause of childhood mortality, with  
18 % of the 10.6 million yearly deaths in children younger than age 5 years [1]. Despite 
progressive reduction in global diarrhea disease mortality over the past 2 decades, diarrhea 
morbidity slightly increased worldwide from 1990-2000 compare with previous reports [1]. 
Furthermore, in many Countries in which the toll of diarrhea is high, adding poverty is enormous 
additional burden [2].  

Mathematical models have played an essential role to the dynamics of different virus infection 
[3]. Among the most popular are Ebola Virus [3], Hepatitis B Virus [4]. The Human 
Immunodeficiency Virus (HIV) [5-7]. These models have been helpful to study the control of the 
virus kinetics in order to provide a quantitative understanding and create public awareness of the 
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virus, while [8-13] have designed mathematical models to explore the transmission dynamics and 
control of the infection. Hence, with the scarcity of data and no literature review on acute diarrhea 
infection, the assumptions and estimation of the values of the parameters of the model would be 
considered. 

2. Model formulation 

The model equations are formulated using ordinary differential equations with nonlinear 
incidence rate called force of infection. We incorporated Vaccination class, Effectiveness of 
sanitations and Control measures, as well as Optimal Control Strategies. The population is divided 
into five classes: susceptible class (𝑋): this class includes the individuals at risk for acute diarrheal 
infection after infected it then move to Infected class with thick arrow line. Infected class (𝐼): this 
includes an individuals who have been infected and shows symptom of the infection, after 
treatment it then move to recovery class, without treatment it contribute to bacteria population 
with thick arrow directed to Bacteria class. Vaccination (𝑉): this is individual who vaccinated 
against the infection. Recovery class (𝑅): this class includes all individuals that have recovered 
from the infection and move back to susceptible and Concentration of Bacteria is 𝐶஻, as shown in 
Fig. 1, 𝐶஻ is interact with population 𝑋 as it shown with dash arrow and become infected 𝐼 with 
tick line, 𝐼 recovered and move to Recovery class 𝑅, meanwhile, 𝑅 have only temporary recovery, 
it then move back to 𝑋, 𝑋 is vaccinated and move to vaccination class and vaccination win out an 
become susceptible (𝑋) again.  

 
Fig. 1. Schematic representation for the acute diarrhea model 

The transfer rates between the sub-classes are collection of several epidemiological  
parameters. The susceptible human population (𝑋) is increase by recruitment rate Λ, the rate at 
which individuals is vaccinated is 𝜔ଶ and 𝑓 is the proportion of individuals who are vaccinated. 
The proportion of unvaccinated individuals is (1 − 𝑓) and 𝜔ଵ is the rate of loosing immunity from 
vaccination individuals. 𝜇 is the natural death rate which is applicable to all the classes. Bacteria (𝐶஻) interact with 𝑋 and become infected with force of infection 𝛽𝐶஻/(𝐾 + 𝐶஻), it then move to 
infected class (I), where 𝛽 is the effective contact rate, also, K is the concentration of the bacteria 
in contaminated environment, and 𝐶஻/(𝐾 + 𝐶஻) is the probability of individuals in consuming 
foods or drinks contaminated caused by bacteria, the rate at which infected individuals die as a 
result of disease is 𝛿 and 𝜙 is the effectiveness of compliance of good hygiene. Meanwhile, The 
rate at which individuals recovered from 𝐼 class as a result of treatment from infection is 𝛾, there 
is no permanent recovery from the infection, recovery (𝑅) individuals move back to susceptible 
class at the rate of 𝜓. Population of Bacteria (𝐶஻) increase at the rate of 𝜃, the mortality rate of 
bacteria is 𝜇௣ and the rate of sanitation which lead to death of bacteria is 𝜑. The model flow 
diagram is shown in Fig. 1. The dash line from Bacteria class (𝐶஻) to susceptible class (𝑋) shows 
that susceptible individuals get the infection from Bacteria. The tick lines show the movement of 
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one class to another class.  
Based on the above schematic representation and assumptions of the models, the equations 

governing the dynamics of the Acute diarrhea infection are given as: 𝑑𝑋𝑑𝑡 = (1 − 𝑓)Λ + 𝜔ଵ𝑉 + 𝜓𝑅 − 𝛽𝐶஻(1 − 𝜙)𝐾 + 𝐶஻ 𝑋 − 𝜔ଶ𝑋 − 𝜇𝑋, (1)𝑑𝐼𝑑𝑡 = 𝛽𝐶஻(1 − 𝜙)𝐾 + 𝐶஻ 𝑋 − 𝛾𝐼 − (𝜇 + 𝛿)𝐼, (2)𝑑𝑉𝑑𝑡 = 𝑓Λ + 𝜔ଶ𝑋 − 𝜔ଵ𝑉 − 𝜇𝑉, (3)𝑑𝑅𝑑𝑡 = 𝛾𝐼 − 𝜓𝑅 − 𝜇𝑅, (4)𝑑𝐶஻𝑑𝑡 = 𝜃𝐼 − ൫𝜇௣ + 𝜑൯𝐶஻, (5)𝑁 = 𝑋 + 𝐼 + 𝑉 + 𝑅. (6)

3. The model analysis 

3.1. Invariant region 

To obtain the invariant region, we considered the total human population (𝑁 ), where  𝑁 = 𝑋 + 𝐼 + 𝑉 + 𝑅. Then, the differentiation of 𝑁 with respect to time leading to: 𝑑𝑁𝑑𝑡 = 𝑑𝑋𝑑𝑡 + 𝑑𝐼𝑑𝑡 + 𝑑𝑉𝑑𝑡 + 𝑑𝑅𝑑𝑡 . (7)

Then we have: 𝑁 ≤ Λ𝜇 − ൜Λ − 𝜇𝑁଴𝜇 ൠ 𝑒ିఓ௧. (8)

As 𝑡 → ∞ in Eq. (8), the population size 𝑁 → Λ 𝜇⁄  which means that 0 ≤ 𝜇 ≤ Λ 𝜇⁄ . Thus, the 
feasible solution set of the system equations of the model enters and remains in the region:  Ω = {(𝑋, 𝐼,𝑉,𝑅) ∈ 𝑅ସ:𝑁 ≤ Λ 𝜇⁄ }. 

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is 
sufficient to study the dynamics of the basic model in region Ω. 

3.2. The disease free equilibrium (DFE) 

To find the disease free equilibrium, we set the Eq. (1) to zero (0) and solve simultaneously, 
we make 𝐶஻ in Eq. (6) subject of the expression and substitute into Eq. (2), we get: 

𝐼 ቐ 𝛽𝑋𝜃(1 − 𝜙)𝐾 ቀ൫𝜇௣ + 𝜑൯ + 𝜃𝐼ቁ − 𝛾 − (𝜇 + 𝛿)ቑ = 0, 
𝐼 = 0   or   𝛽𝑋𝜃(1 − 𝜙)(𝐾𝜇௣ + 𝐾𝜑 + 𝜃𝐼) − 𝛾 − (𝜇 + 𝛿) = 0. (9)

Since 𝐼 = 0, then it implies 𝐶஻ = 0, 𝑅 = 0.Therefore, the disease free equilibrium: 

𝐸଴ = ቆ(1 − 𝑓)Λ(𝜔ଵ + 𝜇) + 𝑓Λ𝜔ଵ(𝜔ଵ + 𝜇)(𝜔ଶ + 𝜇) −𝜔ଵ𝜔ଶ , 0, 𝑓Λ𝜇 + Λ𝜔ଶ(𝜔ଵ + 𝜇)(𝜔ଶ + 𝜇) − 𝜔ଵ𝜔ଶ , 0,0ቇ. (10)
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3.3. The basic reproduction number(𝑹𝟎) 

The 𝑅଴ is the secondary infection cases infected on average per person, to obtain the basic 
reproduction number, we used the next generation matrix which is the approach adopted by [3]. 
Both 𝐹(𝑥)  and 𝑉(𝑥)  are obtained from the model Eqs. (1-6) of the disease free equilibrium  
(DFE), we have: 

𝐼ூ = 𝛽𝐶஻(1 − 𝜙)𝑋𝐾 + 𝐶஻ − 𝛾𝐼 − (𝜇 + 𝛿)𝐼,     𝐶 ಳூ = 𝜃𝐼 − ൫𝜇௣ + 𝜑൯𝐶஻. 
Therefore, 𝐹(𝑥) is the inflow of the infected class while 𝑉(𝑥) is the outflow of the infected 

class, we have the following: 

𝑓 = ൬𝑓ଵ𝑓ଶ൰ = ൭(1 − 𝜙)𝛽𝐶஻𝐾 + 𝐶஻ 𝑋𝜃𝐼 ൱ ,     𝐹 = ൭0 𝐾(1 − 𝜙)𝛽(𝐾 + 𝐶஻)ଶ 𝑋𝜃 0 ൱. 
The Jacobian matrix of 𝑓 and 𝑣 evaluated at DFE are given by 𝐹 and 𝑉, we get: 

𝑣 = ൬(𝛾 + 𝜇 + 𝛿)𝐼(𝜇௣ + 𝜑)𝐶஻ ൰ ,     𝑉 = ൬𝛾 + 𝜇 + 𝛿0 0𝜇௣ + 𝜑൰. 
The characteristics equation of 𝐹𝑉ିଵ is obtained with the inverse of 𝑉 as: 

|(𝐹𝑉ିଵ) − 𝜆𝐼| = ⎝⎜
⎛ −𝜆 (1 − 𝜙)𝛽𝐾(𝜇௣ + 𝜑)𝑋଴𝜃𝛾 + 𝜇 + 𝛿 −𝜆 ⎠⎟

⎞ = 0. (11)

The dominant eigenvalues of 𝐹𝑉ିଵ which is the spectral radius give: 

𝜆 = +ඨ 𝜃(𝛾 + 𝜇 + 𝛿) (1 − 𝜙)𝛽𝐾(𝜇௣ + 𝜑)𝑋଴. (12)

Therefore, the basic reproduction number (𝑅଴) after substitution of 𝑋଴ is given as: 

𝑅଴ଶ = 𝜃(1 − 𝜙)𝛽{(1 − 𝑓)Λ(𝜔ଵ + 𝜇) + 𝑓Λ𝜔ଵ}(𝛾 + 𝜇 + 𝛿)𝐾(𝜇௣ + 𝜑){(𝜔ଵ + 𝜇)(𝜔ଶ + 𝜇) − 𝜔ଵ𝜔ଶ}. (13)

3.4. Global stability of DFE 

Theorem 1. The disease free equilibrium is globally asymptotically stable if 𝑅଴ < 1. 
Proof: To show this theorem, we construct suitable Lyapunov function is given by: 𝐿 = 𝜃𝐼 + (𝛾 + 𝜇 + 𝛿)𝐶஻. (14)

We differentiate Eq. (14) with respect to 𝑡 and substitute Eqs. (1-5) into the differentiation, we 
get: 𝑑𝐿𝑑𝑡 = 𝜃 ቊ𝛽(1 − 𝜙)𝐶஻𝑋𝐾 + 𝐶஻ − (𝛾 + 𝜇 + 𝛿)𝐼ቋ + (𝛾 + 𝜇 + 𝛿)൛𝜃𝐼 − ൫𝜇௣ + 𝜑൯𝐶஻ൟ. (15)
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From Eq. (15) yields: 𝑑𝐿𝑑𝑡 = (𝛾 + 𝜇 + 𝛿)(𝜇௣ + 𝜑)𝐾𝐶஻𝐾 + 𝐶஻ ቊ𝑅଴ଶ − (𝐾 + 𝐶஻)𝐾 ቋ. (16)

So if 𝑅଴ < 1 then ௗ௅ௗ௧ < 1 or if 𝐶஻ = 0 ⇒ ௗ௅ௗ௧ = 0. Hence, 𝐿 is Lyapunov function on Ω and 
largest compact invariant set in {(𝑋, 𝐼,𝑉,𝑅,𝐶஻) ∈ Ω,𝑑𝐿 𝑑𝑡⁄ = 0} is the singleton (𝑋, 0,𝑉, 0,0). 
Therefore, by Lasalle’s invariance principle Eq. (16), that all the solution of the model Eqs. (1-5) 
with initial condition in the region which approach the DFE at time tends to infinity when 𝑅଴ ≤ 1, 
hence, DFE is globally asymptotically stable in the feasible region Ω if 𝑅଴ ≤ 1. 

3.5. The endemic equilibrium 

The endemic equilibrium state is denoted by 𝐸∗ = (𝑋∗, 𝐼∗,𝑉∗,𝑅∗,𝐶஻∗) and this occurs when 
the infection is persistence in the population. To obtain this, we equate the system of Eqs. (1-5) to 
zero and we have the following: 

𝐸∗ = ቆ(𝛾 + 𝜇 + 𝛿)൛൫𝜇௣ + 𝜑൯𝐾 + 𝜃𝐼∗ൟ𝛽(1 − 𝜙)𝜃 , 𝐼∗ > 0 

      𝑓Λ𝛽𝜃(1 − 𝜙) + 𝜔ଶ(𝛾 + 𝜇 + 𝛿)൛൫𝜇௣ + 𝜑൯𝐾 + 𝜃𝐼∗ൟ𝛽𝜃(1 − 𝜙)(𝜔ଵ + 𝜇) , 𝛾𝐼∗𝜓 + 𝜇 , 𝜃𝐼∗𝜇௣ + 𝜑ቇ. (17)

3.6. Global stability of endemic equilibrium (EE) 

Theorem 2. If 𝑅଴ > 1 , the endemic equilibrium state is globally asymptotically stable, 
otherwise, unstable if 𝑅଴ < 1 

Proof: 𝐿 = (𝑋 − 𝑋∗𝐼𝑛𝑋) + (𝐼 − 𝐼∗𝐼𝑛𝐼) + (𝐶஻ − 𝐶஻∗𝐼𝑛𝐶஻). (18)

The differentiation of Eqs. (18) is gives by: 𝑑𝐿𝑑𝑡 = ൬1 − 𝑋∗𝑋 ൰𝑑𝑋𝑑𝑡 + ൬1 − 𝐼∗𝐼 ൰ 𝑑𝐼𝑑𝑡 + 𝛽(1 − 𝜙)𝐶஻∗𝑋∗𝜃𝐼∗(𝐾 + 𝐶஻) ൬1 − 𝐶஻∗𝐶஻൰ 𝑑𝐶஻𝑑𝑡 , (19)𝑑𝐿(௑)𝑑𝑡 = ൬1 − 𝑋∗𝑋 ൰ ൜(1 − 𝑓)Λ + 𝜔ଵ𝑉 + 𝜓𝑅 − 𝛽𝐶஻(1 − 𝜙)𝑋(𝐾 + 𝐶஻) −𝜔ଶ𝑋 − 𝜇𝑋ൠ ൬1 − 𝑋∗𝑋 ൰       ∙ ൜−𝜔ଵ𝑉∗ − 𝜓𝑅∗ + 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) + 𝜔ଶ𝑋∗ + 𝜇𝑋∗ + 𝜔ଵ𝑉 + 𝜓𝑅 − 𝛽𝐶஻(1 − 𝜙)𝑋(𝐾 + 𝐶஻)−𝜔ଶ𝑋 − 𝜇𝑋ൠ ൬1 − 𝑋∗𝑋 ൰ ൜𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) − 𝛽𝐶஻(1 − 𝜙)𝑋(𝐾 + 𝐶஻) + 𝜔ଶ𝑋∗ − 𝜔ଶ𝑋 + 𝜇𝑋∗ − 𝜇𝑋− 𝜔ଵ𝑉∗ + 𝜔ଵ𝑉 − 𝜓𝑅∗ + 𝜓𝑅ൠ ൬1 − 𝑋∗𝑋 ൰ ൜𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) − 𝛽𝐶஻(1 − 𝜙)𝑋(𝐾 + 𝐶஻) + 𝜔ଶ(𝑋∗− 𝑋) + 𝜇(𝑋∗ − 𝑋) −𝜔ଵ(𝑉∗ − 𝑉) − 𝜓(𝑅∗ − 𝑅)ൠ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝑋∗𝑋 ൰       ∙ ቊ1 − 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻)ቋ + ൬𝑋 − 𝑋∗𝑋 ൰ {(𝜔ଶ + 𝜇)(𝑋∗ − 𝑋) − 𝜔ଵ(𝑉∗ − 𝑉) − 𝜓(𝑅∗ − 𝑅)} 
(20)
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      ∙ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝑋∗𝑋 ൰ ቊ1 − 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻)ቋ − (𝜔ଶ + 𝜇)𝑋 (𝑋∗ − 𝑋)ଶ− ൬𝑋 − 𝑋∗𝑋 ൰ {𝜔ଵ(𝑉∗ − 𝑉) + 𝜓(𝑅∗ − 𝑅)}≤ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝑋∗𝑋 ൰ ቊ1 − 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻)ቋ, 𝑑𝐿(ூ)𝑑𝑡 = ൬1 − 𝐼∗𝐼 ൰ 𝑑𝐼𝑑𝑡, 𝑑𝐿(ூ)𝑑𝑡 = ൬1 − 𝐼∗𝐼 ൰ ൜𝛽𝐶஻(1 − 𝜙)𝑋(𝐾 + 𝐶஻) − 𝛾𝐼 − (𝜇 + 𝛿)𝐼ൠ, 𝑑𝐿(ூ)𝑑𝑡 = ൬1 − 𝐼∗𝐼 ൰ ൜𝛽𝐶஻(1 − 𝜙)𝑋(𝐾 + 𝐶஻) − 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗)𝐼∗ 𝐼ൠ
= 𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) ൬1 − 𝐼∗𝐼 ൰൞ 𝑋𝐶஻(𝐾 + 𝐶஻)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) − 𝐼𝐼∗ൢ, 

(21)

𝑑𝐿(஼ಳ)𝑑𝑡 = 𝛽(1 − 𝜙)𝐶஻∗𝑋∗𝜃𝐼∗(𝐾 + 𝐶஻) ൬1 − 𝐶஻∗𝐶஻൰ 𝑑𝐶஻𝑑𝑡 = 𝛽(1 − 𝜙)𝐶஻∗𝑋∗𝜃𝐼∗(𝐾 + 𝐶஻) ൬1 − 𝐶஻∗𝐶஻൰ ൫𝜃𝐼 − ൫𝜇௣ + 𝜑൯𝐶஻൯, 𝑑𝐿(஼ಳ)𝑑𝑡 = 𝛽(1 − 𝜙)𝐶஻∗𝑋∗𝜃𝐼∗(𝐾 + 𝐶஻∗) ൬1 − 𝐶஻∗𝐶஻൰ ቆ𝜃𝐼 − 𝜃𝐼∗𝐶஻𝐶஻∗ ቇ = 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝐶஻∗𝐶஻൰ ቆ 𝐼𝐼∗ − 𝐶஻𝐶஻∗ቇ. (22)

As a result of Eqs. (20-22), we get: 𝑑𝐿𝑑𝑡 = 𝑑𝐿(௑)𝑑𝑡 + 𝑑𝐿(ூ)𝑑𝑡 + 𝑑𝐿(஼ಳ)𝑑𝑡 , 𝑑𝐿𝑑𝑡 ≤ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝑋∗𝑋 ൰ ቊ1 − 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻)ቋ 
    +𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) ൬1 − 𝐼∗𝐼 ൰൞ 𝑋𝐶஻(𝐾 + 𝐶஻)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) − 𝐼𝐼∗ൢ + 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝐶஻∗𝐶஻൰ ቆ 𝐼𝐼∗ − 𝐶஻𝐶஻∗ቇ. (23)

For the function 𝑉(𝑋) = 1 − 𝑋 + In𝑋, we know that 𝑋 > 0 leads to 𝑉(𝑋) ≤ 0 and if 𝑋 = 1, 
then 𝑉(𝑋) = 0: 𝑑𝐿(௑,ூ)𝑑𝑡 ≤ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝑋∗𝑋 ൰ ቊ1 − 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻)ቋ 

      +𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) ൬1 − 𝐼∗𝐼 ൰൞ 𝑋𝐶஻(𝐾 + 𝐶஻)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) − 𝐼𝐼∗ൢ, 
𝑑𝐿(௑,ூ)𝑑𝑡 ≤ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ቆ1 − 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻) − 𝑋∗𝑋 + 𝐶஻(𝐾 + 𝐶஻∗)𝐶஻∗(𝐾 + 𝐶஻)ቇ
      +𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) ൮ 𝑋𝐶஻(𝐾 + 𝐶஻)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) − 𝐼𝐼∗ − 𝑋𝐶஻(𝐾 + 𝐶஻)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) 𝐼

∗𝐼 + 𝐼∗𝐼 𝐼𝐼∗൲ ,  (24)
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𝑑𝐿(௑,ூ)𝑑𝑡 ≤ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ቆ1 − 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻) − 𝑋∗𝑋 + 𝐶஻(𝐾 + 𝐶஻∗)𝐶஻∗(𝐾 + 𝐶஻)ቇ      +𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) ቆ 𝑋𝐶஻(𝐾 + 𝐶஻∗)𝑋∗𝐶஻∗(𝐾 + 𝐶஻) − 𝐼𝐼∗ + 𝐼∗𝑋𝐶஻(𝐾 + 𝐶஻∗)𝐼𝑋∗𝐶஻∗(𝐾 + 𝐶஻) + 1ቇ ,  

𝑑𝐿(௑,ூ)𝑑𝑡 ≤ 𝛽𝐶஻∗(1 − 𝜙)𝑋∗(𝐾 + 𝐶஻∗) ቆ2 − 𝑋∗𝑋 − 𝐼𝐼∗ + 𝐶஻(𝐾 + 𝐶஻∗)𝐶஻∗(𝐾 + 𝐶஻) + 𝐼∗𝑋𝐶஻(𝐾 + 𝐶஻∗)𝐼𝑋∗𝐶஻∗(𝐾 + 𝐶஻)ቇ, 𝑑𝐿(௑,ூ)𝑑𝑡 ≤ 𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) ൭𝐶஻𝐶஻∗ − 𝐼𝑛 ቆ𝐶஻𝐶஻∗ቇ − 𝐼𝐼∗ + 𝐼𝑛 ൬ 𝐼𝐼∗൰൱. 
Also: 𝑑𝐿(஼ಳ)𝑑𝑡 = 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ൬1 − 𝐶஻∗𝐶஻൰ ቆ 𝐼𝐼∗ − 𝐶஻𝐶஻∗ቇ= 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ቆ 𝐼𝐼∗ − 𝐶஻𝐶஻∗ − 𝐶஻∗𝐶஻ 𝐼𝐼∗ + 𝐶஻𝐶஻∗ 𝐶஻∗𝐶஻ቇ𝑑𝐿(஼ಳ)𝑑𝑡= 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ቆ 𝐼𝐼∗ − 𝐶஻𝐶஻∗ − 𝐶஻∗𝐶஻ 𝐼𝐼∗ + 1ቇ𝑑𝐿(஼ಳ)𝑑𝑡= 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ൭𝑣 ൬𝐶஻∗𝐶஻ 𝐼𝐼∗൰ + 𝐼𝐼∗ − 𝐼𝑛 ൬ 𝐼𝐼∗൰ − 𝐶஻𝐶஻∗ + 𝐼𝑛 ቆ𝐶஻𝐶஻∗ቇ൱, 𝑑𝐿(஼ಳ)𝑑𝑡 ≤ 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ൭ 𝐼𝐼∗ − In ൬ 𝐼𝐼∗൰ − 𝐶஻𝐶஻∗ + Inቆ𝐶஻𝐶஻∗ቇ൱. 

(25)

Consequently, we have: 𝑑𝐿𝑑𝑡 ≤ 𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻ ∗) ൭𝐶஻𝐶஻∗ − 𝐼𝑛 ൬ 𝐶஻𝐶஻∗൰ − 𝐼𝐼∗ + 𝐼𝑛 ൬ 𝐼𝐼∗൰൱+ 𝛽(1 − 𝜙)𝐶஻∗𝑋∗(𝐾 + 𝐶஻∗) ൭ 𝐼𝐼∗ − 𝐼𝑛 ൬ 𝐼𝐼∗൰ − 𝐶஻𝐶஻∗ + 𝐼𝑛 ቆ𝐶஻𝐶஻∗ቇ൱𝑑𝐿𝑑𝑡≤ 𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) ൭𝐶஻𝐶஻∗ − 𝐼𝑛 ቆ𝐶஻𝐶஻∗ቇ − 𝐼𝐼∗ + 𝐼𝑛 ൬ 𝐼𝐼∗൰ + 𝐼𝐼∗ − 𝐼𝑛 ൬ 𝐼𝐼∗൰ − 𝐶஻𝐶஻∗ + 𝐼𝑛 ቆ𝐶஻𝐶஻∗ቇ൱, 𝑑𝐿𝑑𝑡 ≤ 𝛽(1 − 𝜙)𝑋∗𝐶஻∗(𝐾 + 𝐶஻∗) {0} = 0, 
(26)

Implies: 𝑑𝐿𝑑𝑡 ≤ 0. (27)

Therefore, it can be seen from Eqs. (27) that largest invariant subset when 𝑑𝐿 𝑑𝑡⁄ = 0 is 𝐸∗, 
by lasalle’s invariance principle, 𝐸∗ is globally asymptotically stable when 𝑅଴ > 1. 

4. Extension of the model equations into optimal control system 

The model of acute diarrhea infection is generalized by incorporating two control strategies. 
The control is 𝛼ଵ which minimize the contact of susceptible and bacteria and control 𝛼ଶ which is 
the treatment of individuals who developed symptoms of the infection. Therefore, incorporating 
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the controls into the model, we get the following: 𝑑𝑋𝑑𝑡 = (1 − 𝑓)Λ + 𝜔ଵ𝑉 + 𝜓𝑅 − (1 − 𝛼ଵ)(1 − 𝜙)𝜆𝑋 − 𝜔ଶ𝑋 − 𝜇𝑋, (28)𝑑𝐼𝑑𝑡 = (1 − 𝛼ଵ)(1 − 𝜙)𝜆𝑋 − (𝛼ଶ + 𝛾)𝐼 − (𝜇 + 𝛿)𝐼, (29)𝑑𝑉𝑑𝑡 = 𝑓Λ + 𝜔ଶ𝑋 − 𝜔ଵ𝑉 − 𝜇𝑉, (30)𝑑𝑅𝑑𝑡 = (𝛼ଶ + 𝛾)𝐼 − 𝜓𝑅 − 𝜇𝑅, (31)𝑑𝐶஻𝑑𝑡 = 𝜃𝐼 − ൫𝜇௣ + 𝜑൯𝐶஻, (32)

where: 

𝜆 = 𝐶஻𝛽𝐾 + 𝐶஻. (33)

Our main objective is to obtain the optimal levels of the controls and associated state variables 
that optimize the objective function. The objective functional is given by: 

𝐽൫𝛼ଵ(⋅),𝛼ଶ(⋅)൯ = න ൭𝑏ଵ𝐼 + 12෍𝑤௜∗𝛼௜ଶଶ
௜ୀଵ ൱𝑑𝑡௧೑

଴ . (34)

And the minimizing the cost function [2], that is 𝐽(𝛼ଵ∗(⋅),𝛼ଶ∗(⋅)) = 𝑚𝑖𝑛௨భ,௨మ(𝛼ଵ(⋅),𝛼ଶ(⋅)), where, {0 ≤ 𝛼ଵ < 0.95,0 ≤ 𝛼ଶ < 0.95}, ∀𝑡 ∈ [0,𝑇]. 
The state variable coefficients b and with controls 𝑤ଵ , 𝑤ଶ  are positive. Since the cost is 

nonlinear in its condition, here we considered the cost with controls in a quadratic form ଵଶ𝑤௜∗𝛼௜ଶ 
[2]. The aim of this work is to minimize the number of infective and cost that is to get the optimal (𝛼ଵ∗,𝛼ଶ∗) ∍ 𝐽(𝛼ଵ∗,𝛼ଶ∗) = 𝑚𝑖𝑛{(𝛼ଵ,𝛼ଶ)/𝛼௜ ∈ 𝑈}, where, 𝑈 = {(𝛼ଵ,𝛼ଶ)/ each 𝛼௜ is measurable with 0 ≤ 𝛼௜ < 1 for 0 ≤ 𝑡 ≤ 𝑡௙}. 

4.1. Existence of an optimal control 

The Hamiltonian and Optimal system, we used the approach of [2] such that: 

𝐻 = 𝑑𝐽𝑑𝑡 + 𝜆ଵ 𝑑𝑋𝑑𝑡 + 𝜆ଶ 𝑑𝐼𝑑𝑡 + 𝜆ଷ 𝑑𝑉𝑑𝑡 + 𝜆ସ 𝑑𝑅𝑑𝑡 + 𝜆ହ 𝑑𝐶஻𝑑𝑡 , (35)𝐻(𝑋, 𝐼,𝑉,𝑅,𝐶஻) = 𝐿(𝑋, 𝐼,𝑉,𝑅,𝐶஻) + 𝜆ଵ 𝑑𝑋𝑑𝑡 + 𝜆ଶ 𝑑𝐼𝑑𝑡 + 𝜆ଷ 𝑑𝑉𝑑𝑡 + 𝜆ସ 𝑑𝑅𝑑𝑡 + 𝜆ହ 𝑑𝐶஻𝑑𝑡 , (36)

where, 𝐿(𝑋, 𝐼,𝑉,𝑅,𝐶஻) = 𝑏𝐼 + ଵଶ∑ 𝑤௜∗𝛼௜ଶଶ௜ୀଵ , 𝜆ଵ , 𝜆ଶ , 𝜆ଷ , 𝜆ସ , and, 𝜆ହ  are the adjoint variable 
functions. To obtain the adjoint variables, we followed [2]. 

Theorem 3. There exist an optimal control 𝛼ଵ and 𝛼ଶ which are corresponding Solutions, 𝑋, 𝐼 , 𝑉 , 𝑅 , and 𝐶஻  that minimize 𝐽(𝛼ଵ,𝛼ଶ)  over 𝑈  there exist adjoint functions 𝜆ଵ , 𝜆ଶ , 𝜆ଷ , 𝜆ସ ,  
and, 𝜆ହ: 𝑑𝜆ଵ𝑑𝑡 = −𝜆ଵ ቆ−(1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻(𝐾 + 𝐶஻) − 𝜇 + 𝜔ଶቇ − 𝜆ଶ ൭(1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻(𝐾 + 𝐶஻) ൱ − 𝜆ଷ𝜔ଶ, (37)
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𝑑𝜆ଶ𝑑𝑡 = −𝑏ଵ − 𝜆ଶ(−𝛼ଶ − 𝛾 − 𝜇 − 𝛿) − 𝜆ସ(𝛼ଶ + 𝛾) − 𝜆ହ𝜃, (38)𝑑𝜆ଷ𝑑𝑡 = −𝜆ଵ(𝜔ଵ) − 𝜆ଷ(−𝜔ଵ − 𝜇), (39)𝑑𝜆ସ𝑑𝑡 = −𝜆ଵ(𝜓) − 𝜆ସ(−𝜓 − 𝜇), (40)𝑑𝜆ହ𝑑𝑡 = −𝜆ଵ ቆ− (1 − 𝛼ଵ)𝛽(1 − 𝜙)𝑋(𝐾 + 𝐶஻) + (1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻𝑋(𝐾 + 𝐶஻)ଶ ቇ       −𝜆ଶ ቆ(1 − 𝛼ଵ)𝛽(1 − 𝜙)𝑋(𝐾 + 𝐶஻) − (1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻𝑋(𝐾 + 𝐶஻)ଶ ቇ − 𝜆ହ൫−𝜇௣ − 𝜑൯. (41)

With transverscility conditions, 𝜆௜(𝑡௙) = 0, 𝑖 = 1, . . . ,5. 
And the control of (𝛼ଵ∗,𝛼ଶ∗) is: 

𝛼ଵ∗(𝑡) = 𝑚𝑎𝑥 ቊ0,𝑚𝑖𝑛 ቆ1,𝑋(𝜆ଵ𝛽𝐶஻𝜙 − 𝜆ଶ𝛽𝐶஻𝜙)(𝐾 + 𝐶஻)𝑤∗ ቇቋ, 𝛼ଶ∗(𝑡) = 𝑚𝑎𝑥 ቊ0,𝑚𝑖𝑛 ቆ1, 𝐼(𝜆ଶ − 𝜆ସ)𝑤ଶ∗ ቇቋ. (42)

Proof: 𝑑𝜆ଵ𝑑𝑡 = −𝑑𝐻𝑑𝑋 = −𝜆ଵ ቆ−(1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻(𝐾 + 𝐶஻) − 𝜇 + 𝜔ଶቇ 
      −𝜆ଶ ൭(1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻(𝐾 + 𝐶஻) ൱ − 𝜆ଷ𝜔ଶ, 𝑑𝜆ଶ𝑑𝑡 = −𝑑𝐻𝑑𝐼 = −𝑏ଵ − 𝜆ଶ(−𝛼ଶ − 𝛾 − 𝜇 − 𝛿) − 𝜆ସ(𝛼ଶ + 𝛾) − 𝜆ହ𝜃, 

(43)

𝑑𝜆ହ𝑑𝑡 = − 𝑑𝐻𝑑𝐶஻ = −𝜆ଵ ቆ− (1 − 𝛼ଵ)𝛽(1 − 𝜙)𝑋(𝐾 + 𝐶஻) + (1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻𝑋(𝐾 + 𝐶஻)ଶ ቇ       −𝜆ଶ ቆ(1 − 𝛼ଵ)𝛽(1 − 𝜙)𝑋(𝐾 + 𝐶஻) − (1 − 𝛼ଵ)𝛽(1 − 𝜙)𝐶஻𝑋(𝐾 + 𝐶஻)ଶ ቇ − 𝜆ହ൫−𝜇௣ − 𝜑൯. (44)

And for characterisation of the optimal control, we used partial differential equations డுௗఈ೔ = 0, 
at 𝛼௜ = 𝛼௜∗, where, 𝑖 = 1,2. 

For 𝑖 = 1, డுడఈభ = 0 at: 

𝛼ଵ∗ => 𝛼ଵ∗ = 𝑋(𝜆ଵ𝛽𝐶஻𝜙 − 𝜆ଶ𝛽𝐶஻𝜙)(𝐾 + 𝐶஻)𝑤ଵ∗ . (45)

For 𝑖 = 2, డுడఈమ = 0 at: 

𝛼ଶ∗ => 𝛼ଶ∗ = 𝐼(𝜆ଶ − 𝜆ସ)𝑤ଶ∗ . (46)

Since 0 < 𝛼௜∗ < 1, we can write in a compact notation: 
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𝛼ଵ∗ = 𝑚𝑎𝑥 ቊ0,𝑚𝑖𝑛 ቆ1,𝑋(𝜆ଵ𝛽𝐶஻𝜙 − 𝜆ଶ𝛽𝐶஻𝜙)(𝐾 + 𝐶஻)𝑤∗ ቇቋ, 𝛼ଶ∗ = 𝑚𝑎𝑥 ቊ0,𝑚𝑖𝑛 ቆ1, 𝐼(𝜆ଶ − 𝜆ସ)𝑤ଶ∗ ቇቋ. (47)

4.2. The optimality system 

It is a system of Eqs. (28-32) and adjoint Eqs. (37-41) incorporating with the characteristics of 
optimal control and initial as well as transversality conditions. The following optimality is 
presented: 𝑑𝑋𝑑𝑡 = (1 − 𝑓)Λ + 𝜔ଵ𝑉 + 𝜓𝑅 − (1 − 𝛼ଵ∗)(1 − 𝜙)𝜆𝑋 − 𝜔ଶ𝑋 − 𝜇𝑋, (48)𝑑𝐼𝑑𝑡 = (1 − 𝛼ଵ∗)(1 − 𝜙)𝜆𝑋 − (𝛼ଶ∗ + 𝛾)𝐼 − (𝜇 + 𝛿)𝐼, (49)𝑑𝑉𝑑𝑡 = 𝑓Λ + 𝜔ଶ𝑋 − 𝜔ଵ𝑉 − 𝜇𝑉, (50)𝑑𝑅𝑑𝑡 = (𝛼ଶ∗ + 𝛾)𝐼 − 𝜓𝑅 − 𝜇𝑅, (51)𝑑𝐶஻𝑑𝑡 = 𝜃𝐼 − ൫𝜇௣ + 𝜑൯𝐶஻, (52)𝑑𝜆ଵ𝑑𝑡 = −𝜆ଵ ቆ−(1 − 𝛼ଵ∗)𝛽(1 − 𝜙)𝐶஻(𝐾 + 𝐶஻) − 𝜇 + 𝜔ଶቇ − 𝜆ଶ ቆ(1 − 𝛼ଵ∗)𝛽(1 − 𝜙)𝐶஻(𝐾 + 𝐶஻) ቇ − 𝜆ଷ𝜔ଶ, (53)𝑑𝜆ଶ𝑑𝑡 = −𝑏ଵ − 𝜆ଶ(−𝛼ଶ∗ − 𝛾 − 𝜇 − 𝛿) − 𝜆ସ(𝛼ଶ∗ + 𝛾) − 𝜆ହ𝜃, (54)𝑑𝜆ଷ𝑑𝑡 = −𝜆ଵ(𝜔ଵ) − 𝜆ଷ(−𝜔ଵ − 𝜇), (55)𝑑𝜆ସ𝑑𝑡 = −𝜆ଵ(𝜓) − 𝜆ସ(−𝜓 − 𝜇), (56)𝑑𝜆ହ𝑑𝑡 = −𝜆ଵ ቆ− (1 − 𝛼ଵ∗)𝛽(1 − 𝜙)𝑋(𝐾 + 𝐶஻) + (1 − 𝛼ଵ∗)𝛽(1 − 𝜙)𝐶஻𝑋(𝐾 + 𝐶஻)ଶ ቇ       −𝜆ଶ ቆ(1 − 𝛼ଵ∗)𝛽(1 − 𝜙)𝑋(𝐾 + 𝐶஻) − (1 − 𝛼ଵ∗)𝛽(1 − 𝜙)𝐶஻𝑋(𝐾 + 𝐶஻)ଶ ቇ − 𝜆ହ൫−𝜇௣ − 𝜑൯, (57)

𝜆௜൫𝑡௙൯ = 0,   𝑖 = 1,2,3,4,5,     𝑋(0) = 𝑋଴,     𝐼(0) = 𝐼଴, 𝑉(0) = 𝑉଴,     𝑅(0) = 𝑅଴,      𝐶஻(0) = 𝐶஻బ . (58)

5. Numerical results and discussion 

The model is simulated using the parameter values in Table 1, to assess the effect of different 
strategies considered the two control measures in this study are education awareness, 
environmental sanitations and hygiene, and Treatment of an individuals. The graphical results 
obtained are shown below. 

Fig. 2 shows the effect of compliance of good hygiene on basic reproduction number 𝑅଴, it is 
observed from Fig. 1 that, as compliance rate of good hygiene (𝜙) increases, the reproduction 
number decreases (𝑅଴). In Fig. 3, we varying the rate of effective contact rate (𝛽), we observed 
that as effective contact rate decreases, it also decreases the basic reproduction number. It is 
observed from Fig. 4 that as production rate of Bacteria infection (𝜃)  from infected human 
increases, it increases the basic reproduction number 𝑅଴, varying the recovery rate (𝛾), it was 
discovered that as recovery parameter increases, it decreases the basic reproduction number. 
Meanwhile, Fig. 5 shows the effect of recruitment rate (Λ) on the basic reproduction number 𝑅଴, 
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it is observed that as recruitment rate (Λ) increases, it increases the basic reproduction number 𝑅଴. 

Table 1. Definition of the parameters and values 
Symbol Definition of the parameter Value Source Λ Human populations rate 100/day [2] 𝜔ଵ Rate of loosing immunity from vaccination individuals  0.55/day Assumed 𝜓 Rate of recovered humans to become Susceptible   0.003/day [14] 𝜔ଶ Rate at which individuals are vaccinated  0.45/day Assumed 𝛽 Exposure to contaminated food and water (Effective contact rate) 0.9/day [2] 𝜙 Compliance rate of waters and foods Hygiene 0.6/days Assumed 𝛾 Recovery rate of infected humans 0.002/day [2] 𝜃 Production of Bacteria infection from infected humans 0.8cell/mL/day Assumed 𝜇 Natural human mortality  0.0247/day [2] 𝛿 Disease induced dearth rate 0.052/day [2] 𝑓 Proportion of unvaccinated individuals  0.075/day Assumed 𝐾 Concentration of the bacteria in contaminated water 50,000 [2] 𝜇௣ Mortality rate for bacteria  0.001/day [2] 𝜑 Water Sanitation lead to dearth of Bacteria 0.05/day Assumed 

 

 
Fig. 2. Effect of compliance of Hygiene  

on reproduction number 
Fig. 3. Varying the rate of exposure to contaminated 

foods and waters (𝛽) on reproduction number 
 

 
Fig. 4. Production rate of Bacteria infection  

on reproduction number 
Fig. 5. Effect of recruitment rate (Λ)  

on the basic reproduction number 

We examine the effect of 𝛼ଵ(𝑡) and 𝛼ଶ(𝑡) respectively, as two control measures (𝛼ଵ, 𝛼ଶ) were 
used to optimize the objective function 𝐽(𝛼ଵ(⋅),𝛼ଶ(⋅)). It means minimizing the contact between 
the infected and susceptible individuals, and treatment of acute diarrhea infectious is also 
optimized. We observed from Fig. 6, line one (𝛼ଵ = 𝛼ଶ = 0) that the acute diarrheal infection is 
not effectively control as basic reproduction number increases. In line two (𝛼ଵ = 0,𝛼ଶ ് 0) only 𝛼ଶ is used to optimize the objective function 𝐽(𝛼ଵ(⋅),𝛼ଶ(⋅)), while setting 𝛼ଵ to zero, this is the 
only treatment without prevention and it is observed that it is not like having prevention by 
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minimizing the contact between the infected individuals and susceptible. In line three  
(𝛼ଵ ് 0,𝛼ଶ = 0) with this measure, it is clearly suggested that this strategy is very efficient and 
effective in controlling the basic reproduction number of the model equations. In line four  
(𝛼ଵ ് 𝛼ଶ ് 0), we observed that acute diarrhea infection of individuals is effectively control as 
basic reproduction number reduces. 

 
Fig. 6. Effective contact rate on reproduction number, varying the control strategies 

6. Conclusions 

In this study, we presented an improved model for the transmission of acute diarrehea  
infection, two models were considered; we presented an acute diarrhea infection with 
effectiveness of compliance of good hygiene. The second model was an optimal control model 
that included two control measures with one minimizing the interaction between the susceptible 
and bacteria infectious, and the other is increasing the number of treated individuals. From the 
analysis, it was found that, the Disease Free Equilibrium is globally asymptotically stable if  𝑅଴ ≤ 0  and Endemic state is globally asymptotically stable when 𝑅଴ > 0 . Graphically, the 
reproduction number shown significant reduction as the strategy (𝛼ଵ ് 𝛼ଶ ് 0) suggested that 
optimal prevention and treatment regime against acute diarrhea infection in a population would 
be a good approach to effectively control or eradicate the acute diarrhea infection.  
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