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Abstract. The nonlinear aeroelastic vibrations of the Windbelt System are described in the paper. 
The system works based on aeroelastic flutter principle. The long narrow ribbon with pinned 
supports at the ends is used as mechanical model. The analysis of aerodynamic forces for a thin 
rectangular cross-section of the ribbon is provided. Lateral-torsional oscillations of the system is 
derived, considering aerodynamic forces. Conditions for generation of oscillations are determined 
using Poincaré-Andronov-Hopf bifurcation. The critical speed, which defines dynamic instability 
(aeroelastic flutter), is determined as well. The influence of the tension force and other ribbon 
parameters on the critical speed is considered. The supercritical behavior of the system is 
investigated. 
Keywords: wind power, Windbelt, aeroelastic oscillations, flutter, self-oscillations. 

1. Introduction 

Wind energy is one of the main areas of alternative energy. It is based on conversion of kinetic 
energy of the air masses into electrical, mechanical or thermal power. The transformation of 
airflow energy into electrical energy is usually accomplished through wind turbines. Recently, the 
possibility of producing electric energy using a wind generator, called “Wind Belt” [1-5], is being 
intensively studied. 

The schematic diagram of the device is shown in Fig. 1; taken from [3]. A permanent magnet 3 
is fixed on a flexible tape 2 stretched between two rigid supports 1 (constructions with two or 
more magnets are also known [1]). Inductance coils 5 are arranged coaxially with the magnet on 
top and bottom of the ribbon on the frame 4. The airflow can disturb the static balance of the 
ribbon and lead to the excitation of its oscillation as an aeroelastic flutter [6] under certain 
conditions. The vibrating movement of the magnets induces current in nearby pickup coils, which 
subsequently can be rectified to a direct voltage. 

 
Fig. 1. Schematic diagram of a wind generator “Windbelt” 

There are a few studies related to the generation of electric current in such devices in the 
existing scientific literature. However, investigation of the oscillations of a thin ribbon depending 
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on its tension and the airspeed has been studied insufficiently. Known computational models are 
based on various simplified assumptions that limit investigation of supercritical behavior based 
on bifurcation analysis. 

The purpose of this work is to model the dynamics of the ribbon in the air flow, analyze its 
movement and the possibility of structure optimization. 

1.1. Problem statement  

A ribbon of length 𝑙 with hinged supports on both ends is positioned in the oncoming air flow 
(Fig. 2). It is stretched by the longitudinal force 𝑇 along the 𝑍 axis. The cross section of the ribbon 
is constant along the length. The ribbon in horizontal air flow of constant rate 𝑈 has lifting force 
(wind load), which is evenly distributed along the length. 

The net lifting force is applied along a line that passes through the pressure centers of cross 
section. This line is parallel to the 𝑍-axis at a distance 𝑥0 𝑏 4⁄  (Fig. 2). 

 
a) 

 
b) 

Fig. 2. a) Model scheme and b) cross-section loading diagram 

The lifting force 𝑞  is distributed over length and applied to the center of pressure line (point 𝐵 in Fig. 2) 𝑞 𝜌𝑈 2⁄ 𝑏𝐶  [6], where 𝜌 is the density of the environment, 𝑏 is the width of 
the cross section of the ribbon, 𝐶  – is lifting force coefficient. The lifting force point 𝐵  is 
relocated to the center of the cross section, point 𝐶. To compensate this transition, the force system 
is supplemented by linear torques 𝜇 𝐶 𝜌𝑈 𝑏 8⁄ .  

The lifting force coefficient 𝐶  for a thin rectangular profile of the ribbon is given by a known 
solution for a flow of an ideal incompressible fluid 𝐶 2𝜋sin 𝜑 ≈ 𝐴 𝜑 − 𝐴 𝜑 , where 𝐴 2𝜋, 𝐴 2𝜋 6⁄  are the expansion coefficients, 𝜑 𝜑 − 𝜑 𝑏 4⁄ 𝑣 𝑈⁄  is the effective 
angle of attack, 𝑣 is the vertical movement of the ribbon axis (pole).  

1.2. Equations of motion 

The motion of the considered model is described by a system of equations for lateral-torsional 
oscillations of a string on hinged supports, which is loaded with distributed force and distributed 
moment [7]. Taking into account the relocation of lifting forces to the center of gravity and the 
expression for the lifting coefficient, the system becomes: 𝜌 𝐴∂ 𝑣 ∂𝑡⁄ 𝑑 ∂𝑣 ∂𝑡⁄ − 𝑇 ∂ 𝑣 ∂𝑧⁄ 𝜌𝑈 2⁄ 𝑏 𝐴 𝜑 − 𝐴 𝜑 ,𝜌 𝐼 ∂ 𝜑 ∂𝑡⁄ 𝑑 ∂𝜑 ∂𝑡⁄ − 𝐺𝐼 ∂ 𝜑 ∂𝑧⁄ 𝑏 4⁄ 𝜌𝑈 2⁄ 𝑏 𝐴 𝜑 − 𝐴 𝜑 , (1)

where 𝜌  is the density of the ribbon, 𝐺 is the shear modulus, 𝐴 𝑏ℎ is area of cross section,  𝐼 𝑏ℎ 𝑏 ℎ 12⁄  is the polar moment of inertia, 𝐼 𝑏ℎ 3⁄  – is geometric stiffness of the 
section (strip) during torsion, 𝑑 , 𝑑  – is linear viscous Rayleigh damping coefficients in bending 
and torsion, respectively. 

Further, Eq. (1) is reduced to a dimensionless form. Whereupon, dimensionless parameters are 
introduced: time 𝜏 𝑡 𝑡∗⁄ , deflection 𝜉 𝑣 𝑉∗⁄ , coordinate 𝜁 𝑧 𝑍∗⁄ , velocity Λ 𝑈 𝑈∗⁄ , force 
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𝜃 = 𝑇 𝑇∗⁄ , and scales 𝑡∗ = 𝑙 ℎ⁄ 𝜌 𝑏 + ℎ 4𝐺⁄ , 𝑈∗ = 8𝐺ℎ 3𝜌 𝑎 𝑏𝑙⁄ , 𝑉∗ = ℎ, 𝑍∗ = 𝑙, 𝑇∗ = 𝐺ℎ . The systems of Eq. (1) take the form: 

⎩⎪⎨
⎪⎧∂ 𝜉 ∂𝜏⁄ − 𝜃𝛼 ∂ 𝜉 ∂𝜁⁄ + 𝑑 ∂𝜉 ∂𝜏⁄ = Λ 𝛽 𝜑 − Λ𝛾 ∂𝜑 ∂𝜏⁄ − Λ𝜂 ∂𝜉 ∂𝜏⁄      − 1 Λ⁄ 𝐴 𝛽 Λ𝜑 − 𝛾 ∂𝜑 ∂𝜏⁄ − 𝜂 ∂𝜉 ∂𝜏⁄ ,∂ 𝜑 ∂𝜏⁄ − ∂ 𝜑 ∂𝜁⁄ + 𝑑 ∂𝜑 ∂𝜏⁄ = Λ 𝜑 − Λ𝛾 ∂𝜑 ∂𝜏⁄ − Λ𝜂 ∂𝜉 ∂𝜏⁄      − 1 Λ⁄ 𝐴 Λ𝜑 − 𝛾 ∂𝜑 ∂𝜏⁄ − 𝜂 ∂𝜉 ∂𝜏⁄ .  (2)

All of them are expressed in terms of two fixed dimensionless parameters 𝜀 = ℎ 𝑏⁄  and  𝜅 = 𝜌 𝜌⁄ : 𝛼 = 1 + 𝜀 4𝜀⁄ ,      𝛽 = 1 + 𝜀 3𝜀⁄ ,𝛾 = 6𝐴 24⁄ 𝜅 1 + 𝜀 𝜀⁄ ,       𝜂 = 6𝐴 6⁄ 𝜅 1 + 𝜀 𝜀⁄ ,𝛾 = 6𝐴 8⁄ 𝜅 1 𝜀 1 + 𝜀⁄ ,       𝜂 = 6𝐴 2⁄ 𝜅 𝜀 1 + 𝜀⁄ ,𝑑 = 2𝜋𝑘 𝜃𝛼 ⋅ 0.05𝑑 = 2𝜋𝑘 ⋅ 0.05.
 

Damping coefficients are equal to 5 % of its critical value (𝑘 is mode number). 

1.3. The calculation of the critical speed 

The system of Eq. (2) is reduced to a system with a finite number of degrees of freedom using 
the Galerkin method. The solution is represented in the form of an expansion on the basis  𝜉 ≈ ∑ 𝑝 𝜏  𝑢 𝜁 ,  𝜑 ≈ ∑ 𝑞 𝜏  𝑢 𝜁 ,  where 𝑢 𝜁 = 𝐶 sin 𝑘𝜋𝜁  are functions 
satisfying the boundary conditions for the considered model (Fig. 2). The constant 𝐶  is 
determined from the condition of basis property and orthonormality of functions 𝑢 (𝜁). 

After applying the Ritz-Galerkin method Eq. (2) will take the form:  

⎩⎪⎨
⎪⎧𝑝 + 𝜃𝛼 𝑝 𝜋 𝑘 + 𝑑 𝑝 − Λ 𝛽 𝑞 + Λ𝛾 𝑞 + Λ𝜂 𝑝      +𝐵(1 Λ⁄ )𝐴 𝛽 (Λ𝑞 − 𝛾 𝑞 −𝜂 𝑝 )  = 0,𝑞 + 𝑞 𝜋 𝑘 + 𝑑 𝑞 − Λ 𝑞 + Λ𝛾 𝑞 + Λ𝜂 𝑝      +𝐵(1 Λ⁄ )𝐴 𝑢 (Λ𝑞 − 𝛾 𝑞 − 𝜂 𝑝 ) = 0,  (3)

where 𝐵 = 𝑢 𝑑𝜁. 
The existing trivial solution of the Eq. (3) corresponds to the equilibrium position, which is 

defined as an unperturbed motion. The Eq. (3) is linearized near the equilibrium position for 
stability analysis. Then, the Eq. (3) in matrix form: 𝐌𝐱 + 𝐃𝐱 + 𝐂𝐱 = 0, 𝐱 = 𝑝𝑞 ,     𝐌 = 1 00 1 ,     𝐃 = 𝑑 + Λ𝜂 Λ𝛾Λ𝜂 𝑑 + Λ𝛾 ,   𝐂 = 𝜃𝛼 𝜋 𝑘 −Λ 𝛽0 𝜋 𝑘 − Λ . (4)

Solutions of the Eq. (4) are sought in the form 𝐱 = 𝑒 𝐮. Then, the characteristic equation to 
determine 𝜆 takes the form det(𝜆 𝐌 + 𝜆𝐃 + 𝐂) = 0. Further, the solution is considered only for 
the first mode (𝑘 = 1) with the following parameter values 𝜀 = 0.002, 𝜅 = 0.03. 

The dimensionless tension force 𝜃 is set in a way that the dynamic loss of stability occurs 
earlier than the static one (divergence). Otherwise, there is a divergence phenomenon when 
torsional rigidity of the ribbon is completely lost.  

Fig. 3(a) shows the dependence of the critical velocity Λ∗ on the tension force 𝜃. When a 
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certain value of the tension force 𝜃∗ is reached, the critical speed becomes equal to 𝜋 and does not 
grow with further increase of 𝜃. This value of the critical velocity Λ∗ corresponds to divergence. 
This is confirmed by Fig. 3(b) and Fig. 3(c) when 𝜃 > 𝜃∗  (○ – beginning of trajectory,  
× – trajectory end). The first trajectory intersects the Re(𝜆) = 0 axis at in the value Λ∗ = 𝜋 
(Fig. 3(b)) that corresponds to the transition of the same trajectory through the origin at the Argand 
diagram (Fig. 3(c)). It corresponds to static loss of stability. 

 
Fig. 3. a) The dependence of the critical speed Λ∗ on the tension force 𝜃;  

b) the dependence Re(𝜆)on Λ; c) static stability loss on the Argand diagram 

An analysis of the results shows that the parameter 𝜃 must be in the range of (0, 𝜃∗) in order 
to observe dynamic loss of stability before static one. Here, it is defined as 𝜃 = 0.002. Fig. 4(a) 
shows trajectories of roots 𝜆 for selected parameters. The point of their transition to the right 
half-plane is determined. The system has a critical velocity value Λ∗ at this point. 

The value of the imaginary part has the meaning of the oscillation frequency 𝜔𝑓 of the system 
at Λ = Λ∗. The value of 𝜔𝑓 corresponds to the ordinate of the marked point Λ = Λ∗ in Fig. 4(a). 
The value of Λ∗ is defined by dependence of the real part of the roots Re(𝜆) on Λ (Fig. 4(b)), at 
the point Re(𝜆) equals zero Λ∗ = 2.203. 

 
a) 

 
b) 

Fig. 4. a) The Argand diagram and b) dependence of the real part of the roots 𝜆  
on the dimensionless velocity Λ; ○ – beginning of trajectory, × – trajectory end 

1.4. Analysis of supercritical behavior 

To study supercritical behavior the nonlinear system (see Eq. (3)) is integrated. A speed value 
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Λ greater than Λ∗ by 10 % is used. The motion is considered at the dimensionless time interval 𝜏 = 30𝑇 , where 𝑇 = 1 𝜔⁄  is the wave number for the frequency 𝜔 . 
Numerical simulation of the Eq. (3) shows that periodic solutions can be established, i.e., there 

are both unstable equilibrium position and stable periodic motions in the supercritical region. 
To evaluate the establishment of a self-oscillatory regime, phase portraits in Fig. 5(a) and 

Fig. 5(b) of vertical dimensionless movement 𝜉(𝜏) and dimensionless rotation of the cross-section 𝜑(𝜏) from the Eq. (3) are derived for different initial conditions: 1) 𝜉, 𝜉,𝜑,𝜑 = 0,0.85,0,0 ,  
2) 𝜉, 𝜉,𝜑,𝜑 = 130,0,0,0 . 

The attractions of the trajectories to the limit cycles are clearly visible in Fig. 5. 

 
a) 

 
b) 

Fig. 5. Phase portraits for coordinate functions at a) 𝜁 = 1/2 lateral oscillations 𝜉, 𝜉  and b) torsional 
oscillations 𝜑,𝜑 ; “ –– “ – trajectory with initial conditions No. 1; “– – –“ – trajectory with initial 

conditions No. 2; ○ – beginning of trajectory, × – trajectory end 

The analysis of stability of the equilibrium rectilinear position of the tape allows to plot a 
bifurcation diagram (Fig. 6). It was shown above that there are stable periodic motions in the 
supercritical, region that corresponds to a stable branch on the bifurcation diagram. Numerical 
integration by establishing method is utilized to plot the diagram, [8]. The results for the 
amplitudes 𝐴𝜉 and 𝐴𝜑 are presented in Fig. 6(a) and Fig. 6(b), respectively. 

 
a) 

 
b) 

Fig. 7. The bifurcation diagram a) for 𝜉 and b) for 𝜑: ● – stable motion, × – unstable motion 

2. Conclusions 

The mathematical model for the lateral-torsional oscillations of a flexible ribbon under the 
influence of oncoming air flow is derived and analyzed. The value of the critical velocity, the 
trajectory of motion, and the bifurcation diagram are obtained. Small lateral-torsional oscillations 
of the system are analyzed. They describe the dynamics of a Windbelt-type wind generator in a 
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simplified form. The calculations show that there is a hyperbolic law. 
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