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Abstract. In this paper, the detailed study of the transversal vibrations of a damped axially moving 
string is considered. Two end pulleys of the string are taken to be fixed and the initial conditions 
are assumed to be of general displacement field and the general velocity field. The axial speed of 
the string is considered to be sinusoidal, time-dependent and small compared to wave-velocity. A 
two timescales perturbation method with a combination of Fourier-sine series which fits the 
boundary conditions is employed in order to formulate the valid and uniform asymptotic 
approximations of the exact solutions for the equation. It is found that there are infinitely many 
values of frequency parameter Ω which cause the internal resonances in system. The fundamental 
resonant frequency, the non-resonant frequency and the detuning cases have been discussed and 
analyzed in detail. It has been found explicitly that the total mechanical energy of the infinite 
dimensional system decreases for two cases of the damping parameter, that is, for 𝛿 2 and for 𝛿 2. By truncation method it has been shown that the mode-amplitude response for first few 
modes is stable. So, Galerkin’s truncation method may be possible for these two cases of the 
parameter 𝛿 . But for case 𝛿 2  the total mechanical energy of belt system is increasing 
exponentially. Therefore, it is evident that the Galerkin’s truncation method cannot be applied in 
order to obtain valid approximations on long timescales, that is, on timescales of 𝑂 1 𝜀⁄ .  
Keywords: conveyor belt, viscous damping, internal resonances, perturbation method. 

1. Introduction 

There are numerous applications in engineering such as elevators [1-5], aerial cables, crane 
and mining hoists, conveyor belts [6-9], oil pipelines [10, 11], magnetic and paper tapes and 
band-saw blades [12], are often known as axially moving systems. Since last few decades, there 
has been vast research activity on examining the stability of such systems, for instance, see  
[13-19]. Irregular speed of driven motor, non-uniform material properties and environmental 
disturbances can lead to severe vibrations, which are not desirable phenomena. Such severe 
vibrations can discomfort human beings and sometimes may create great damage to these 
mechanical structures. The main goal of applied mathematicians, engineers and physicists is to 
understand, analyze and mitigate these vibrations from the mechanical systems. In order to reduce 
unnecessary noise and vibrations in these mechanical systems, researchers have used different 
kinds of dampers at different positions of these systems, such as internal dampers [20], external 
dampers [21], wire rope [22, 23], elastomeric bearing [24] and Kelvin-Voigt damping [25] are 
extensively used in practical and industrial applications. Darmawijoyo and van Horssen [26] 
considered wave equation and studied the behaviour of spring-mass-dashpot system attached at 
one boundary by using perturbation method. In this paper it was shown that the boundary damping 
is an effective phenomenon to suppress amplitudes of oscillations. Sandilo and van Horssen [27] 
studied beam-like equation with non-classical boundary condition at one end and simply support 
on other end. In this paper though authors did not find any conclusion whether beam energy was 
increasing or decreasing, but authors found very interesting results. Gaiko and van Horssen [28] 
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employed two timescales perturbation method and obtained the asymptotic approximations for 
(lateral) oscillations in axially moving string under the effect of boundary damping. Darmawijoyo 
and van Horssen [29] used two timescales perturbation method for finding the solution of weakly 
nonlinear wave equation with non-classical boundary conditions. Darmawijoyo et al. [30] studied 
weakly nonlinear string equation, where one end of string was kept fixed and to the other end a 
dashpot was attached. A two timescales perturbation method with combination of method of 
characteristics was employed and it was shown that for large damping parameter solutions tend to 
zero. Chen and Ferguson [31] studied the axially moving viscoelastic string under viscous 
damping and, constant and time-varying length. The linear and nonlinear models were discussed 
from numerical solutions point of view. Malookani et al. [32] studied an axially moving string 
where they considered spring-dashpot system at one end and other end was kept fixed. Asymptotic 
approximations of the exact solutions were obtained by using a two timescales perturbation 
method with method of characteristic coordinates. Malookani and van Horssen [33] examined the 
lateral vibrations of axially moving system and computed the amplitude-response of the system 
for all modes. The authors used method of two timescales together the Laplace transform method.  

This paper aims to examine the applicability of Galerkin’s truncation method for the model 
describing the transversal vibrations of axially moving string under the influence of viscous 
damping, with time-varying velocity. 

This paper is organized as follows. In Section 2, the governing equations of motion are 
established. In Section 3, the asymptotic approximations of the exact solution of the 
initial-boundary value problem are constructed by using a two timescales perturbation method. 
These solutions will be analyzed and a Galerkin’s truncation method will be applied in order to 
truncate few modes from the infinite dimensional system of ODE’s. The detuning and the 
non-resonant cases will also be discussed in detail. In Section 4, the results and the discussion are 
presented. Finally, in Section 5, some conclusions will be drawn and the remarks will be made. 

2. Governing equations of motion 

In this Section, we consider viscous damped axially translating string, moving with 
time-varying velocity 𝑉(𝑡) as shown in Fig. 1. It is assumed that the displacement field is zero at 
end points of string, i.e., at 𝑥 = 0 and 𝑥 = 𝐿, where 𝐿 is the constant distance between the pair of 
pulleys. The mathematical formulation of a string with viscous damping is carried out by extended 
Hamilton’s principle [34]. The mathematical formulation of the model describing the vertical 
vibrations of string with viscous damping is given as under: 𝜌(𝑢 + 2𝑉𝑢 + 𝑉 𝑢 + 𝑉 𝑢 ) − 𝑇𝑢 + 𝛿 (𝑢 + 𝑉𝑢 ) = 0,     𝑡 ≥ 0,    0 < 𝑥 < 𝐿, (1)

with the Dirichlet boundary conditions: 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, (2)

and the initial conditions: 𝑢(𝑥, 0) = 𝑓(𝑥),     𝑢 (𝑥, 0) = 𝑔(𝑥), (3)

where 𝑡 is the time, 𝑥 is the spatial coordinate, 𝑢(𝑥, 𝑡) is the vertical displacement field, 𝑉(𝑡) is 
the belt velocity, 𝜌 is the linear constant mass-density, 𝑇 is the constant tension, and 𝛿  is viscous 
damping coefficient. At 𝑡 = 0, the displacement and velocity of the string are represented by the 
functions 𝑓(𝑥) and 𝑔(𝑥), respectively. In order to convert the equation of motion with associated 
initial-boundary conditions in non-dimensional form, we use the following non-dimensional 
parameters: 
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𝑥∗ = 𝑥𝐿 ,     𝑡∗ = 𝑐𝑡𝐿 ,     𝑉∗ = 𝑉𝑐 ,     𝑢∗(𝑥∗, 𝑡∗) = 𝑢(𝑥, 𝑡)𝐿 ,  Ω∗ = Ω𝐿𝑐 ,    𝑓∗(𝑥∗) = 𝑓(𝑥)𝐿 ,     𝑔∗(𝑥∗) = 𝑔(𝑥)𝑐 ,   𝛿∗ =  𝛿 𝐿𝜌𝑐 , (4)

where 𝑐 = 𝑇 𝜌⁄ , is a wave speed. Substitution of Eq. (4) and all required derivatives of unknown 
function 𝑢(𝑥, 𝑡) into initial-boundary value problem Eqs. (1)-(3) give the following dimensionless 
form of equations of motion (where asterisks have been neglected): 𝑢 + 2𝑉𝑢 + 𝑉 𝑢 + (𝑉 − 1)𝑢 + 𝛿 (𝑢 + 𝑉𝑢 ) = 0,      𝑡 ≥ 0,    0 < 𝑥 < 1, (5)BC s:     𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 ≥ 0, (6)IC s:     𝑢(𝑥, 0) = 𝑓(𝑥),     𝑢 (𝑥, 0) = 𝑔(𝑥), 0 < 𝑥 < 1. (7)

It is assumed that the quantity 𝛿 𝐿 is small in comparison to 𝜌𝑐, where 𝑐 = 𝑇 𝜌⁄ . Thus, we 
can write  𝛿∗ =  𝛿 𝐿 𝜌𝑐⁄ = 𝜀𝛿 , where 𝜀  is small dimensionless parameter with 0 < 𝜀 ≪ 1 . In 
addition to this, it is also assumed that the axial speed 𝑉(𝑡)  is time-varying and small in 
comparison to wave-speed 𝑐. Thus, we can write 𝑉∗ = 𝑉 𝑐⁄ = 𝜀(𝑉 + 𝛼 sin(Ω𝑡)), where 𝑉  and 𝛼 are constants with  𝑉 > 0 and  𝑉 > |𝛼|; this condition guarantees that the belt will always 
move in one direction. The velocity fluctuation frequency of belt is denoted by Ω. The sinusoidal 
form of the belt velocity is of practical usage. In reality, however, due to belt imperfections, roll 
eccentricities, speed variations in driven motors, and non-uniform material properties can cause 
small variations in the belt velocity. This variation in the belt velocity exhibits interesting 
mathematical complexities and dynamical features.  

 
Fig. 1. The schematic model of a damped axially moving belt with two fixed-ends 

3. Construction of asymptotic approximations 

In this section, we shall construct the asymptotic approximations of the solutions of the 
initial-boundary value problem Eqs. (5)-(7). We assume that the string velocity is time-varying 
and is of the 𝑂(𝜀), as given below: 𝑉(𝑡) = 𝜀(𝑉 + 𝛼 sin(Ω𝑡)). (8)

We also assume that the damping parameter is of the 𝑂(𝜀), as given by: 𝛿 = 𝜀𝛿. (9)

By plugging Eq. (8) and Eq. (9) into Eq. (5), we collect the terms up to 𝑂(𝜀), we get: 𝑢 − 𝑢 = −𝜀 2(𝑉 + 𝛼 sin(Ω𝑡))𝑢 + 𝛼Ω cos(Ω𝑡)𝑢 + 𝛿𝑢 + 𝑂(𝜀 ), (10)



ON APPLICABILITY OF TRUNCATION METHOD FOR DAMPED AXIALLY MOVING STRING.  
SANAULLAH DEHRAJ, SAJAD H. SANDILO, RAJAB A. MALOOKANI 

340 JOURNAL OF VIBROENGINEERING. MARCH 2020, VOLUME 22, ISSUE 2  

with the boundary conditions: 𝑢(0, 𝑡; 𝜀) = 𝑢(1, 𝑡; 𝜀) = 0, 𝑡 ≥ 0, (11)

and the initial conditions: 𝑢(𝑥, 0; 𝜀) = 𝑓(𝑥),     𝑢 (𝑥, 0; 𝜀) = 𝑔(𝑥),     0 < 𝑥 < 1. (12)

In order to construct the asymptotic approximations of the solution of the initial-boundary 
value problem Eqs. (10)-(12), we expand 𝑢(𝑥, 𝑡) in Fourier-sine series, given as under: 𝑢(𝑥, 𝑡) = 𝑢 (𝑡; 𝜀)sin (𝑛𝜋𝑥). (13)

The orthogonality properties of the eigenfunctions are given by: 

sin(𝑛𝜋𝑥) sin(𝑘𝜋𝑥)𝑑𝑥 = 0,     𝑛 ≠ 𝑘,12 ,     𝑛 = 𝑘,  (14)

cos(𝑛𝜋𝑥) sin(𝑘𝜋𝑥)𝑑𝑥 = 0,                          (𝑛 ± 𝑘) is even,− 2𝑘(𝑛 − 𝑘 )𝜋 ,    (𝑛 ± 𝑘) is odd.  (15)

By making use of Eq. (13) with required time and space derivatives into Eq. (10), it follows: 

(𝑢 + (𝑛𝜋) 𝑢 ) sin(𝑛𝜋𝑥)
= −𝜀 (𝑛𝜋) 2(𝑉 + 𝛼 sin(Ω𝑡)𝑢 + 𝛼Ω cos(Ω𝑡)𝑢 ) cos(𝑛𝜋𝑥)
− 𝜀𝛿 𝑢 sin(𝑛𝜋𝑥) + 𝑂(𝜀 ). 

(16)

By multiplying Eq. (16) with sin(𝑘𝜋𝑥) on both sides and then by integrating the so-obtained 
equation from 𝑥 = 0 to 𝑥 = 1, and by using Eq. (14) and Eq. (15), it yields: 

(𝑢 + (𝑘𝜋) 𝑢 ) = 𝜀 𝑛𝑘𝑛 − 𝑘 ±   
8(𝑉 + 𝛼 sin(Ω𝑡))𝑢+4𝛼Ω cos(Ω𝑡)𝑢  − 𝜀𝛿𝑢 + 𝑂(𝜀 ). (17)

Eq. (17) represents an infinite dimensional system of ODE’s, which is not easy to be solved 
exactly. In the subsequent Section, the application of a two timescales perturbation method will 
be carried out to obtain approximations of the solutions of Eq. (17) for different values of the 
parameter Ω. 

3.1. A two timescales perturbation method 

In this section, we discuss the application of a two timescales perturbation method for 
constructing the approximations of the solutions of the infinite dimensional system of ODE’s 
given in Eq. (17). A straightforward expansion in 𝜀 will lead to unbounded terms which cause the 
non-uniformity in the solutions and this method is only applicable for 𝑡 < 1 𝜀⁄ . Therefore, to 
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approximate the exact solutions valid on long timescales, that is a timescales of 𝑂(𝜀 ), it is 
reasonable to use a two timescales perturbation method. We introduce two timescales, 𝑡 = 𝑡 (fast 
timescale) and 𝑡 = 𝜀𝑡 (slow timescale). We assume that the solution of Eq. (17) in the form 𝑢 (𝑡; 𝜀) = 𝑤 (𝑡 , 𝑡 ; 𝜀) . The following transformations are required to express the time 
derivatives: 𝑑𝑢𝑑𝑡 = 𝜕𝑤𝜕𝑡 + 𝜀 𝜕𝑤𝜕𝑡  , (18)𝑑 𝑢𝑑𝑡 = 𝜕 𝑤𝜕𝑡 + 2𝜀 𝜕 𝑤𝜕𝑡 𝜕𝑡 + 𝜀 𝜕 𝑤𝜕𝑡 . (19)

We plug Eq. (18) and Eq. (19) into Eq. (17), it follows: 𝜕 𝑤𝜕𝑡 + 2𝜀 𝜕 𝑤𝜕𝑡 𝜕𝑡 + (𝑘𝜋) 𝑤
= 𝜀 𝑛𝑘𝑛 − 𝑘 4𝛼Ωcos(Ω𝑡 )𝑤+8(𝑉 + 𝛼 sin(Ω𝑡 ))𝜕𝑤𝜕𝑡 ±   − 𝛿𝜀 𝜕𝑤𝜕𝑡 + 𝑂(𝜀  ). (20)

An approximation of 𝑤 𝑡  , 𝑡  ; 𝜀  is sought in the following form (up to 𝑂(𝜀) and neglecting 
higher order terms): 𝑤 𝑡 ,𝑡  ; 𝜀 = 𝑤 (𝑡 , 𝑡 ) + 𝜀𝑤 (𝑡 , 𝑡 ) + 𝜀 …, (21)

where 𝑤 (𝑡 , 𝑡 ), 𝑤 (𝑡 , 𝑡 ),… are of 𝑂(1). By substituting Eq. (21) into Eq. (20), and equating 
the coefficients of 𝜀  and 𝜀 , the 𝑂(1)- and the 𝑂(𝜀)-problem for 𝑤  and 𝑤  are given. 

The 𝑂(1) problem: 

 𝜕 𝑤𝜕𝑡 + (𝑘𝜋) 𝑤 = 0. (22)

The 𝑂(𝜀) problem: 𝜕 𝑤𝜕𝑡 + (𝑘𝜋) 𝑤 = −2 𝜕 𝑤𝜕𝑡 𝜕𝑡  − 𝛿 𝜕𝑤𝜕𝑡  
      + 𝑛𝑘𝑛 − 𝑘 4𝛼Ω cos(Ω𝑡 )𝑤 + 8(𝑉 + 𝛼 sin(Ω𝑡 ))𝜕𝑤𝜕𝑡 ±   . (23)

The solution of Eq. (22) can easily be obtained, and is given by: 𝑤 (𝑡 , 𝑡 ) = 𝐴 (𝑡 ) cos(𝑘𝜋𝑡 ) + 𝐵 (𝑡 ) sin(𝑘𝜋𝑡 ), 𝑘 = 1,2,3 … , (24)

where 𝐴 (𝑡 )  and 𝐵 (𝑡 )  are still arbitrary functions of slow timescales and they can be 
determined from the 𝑂(𝜀)-problem free from the secular terms. Since we have assumed that the 
functions 𝑤 (𝑡 , 𝑡 )  and 𝑤 (𝑡 , 𝑡 )  are bounded on timescales of 𝑂(1 𝜀⁄ )  so these 
unbounded/secular terms must be prevented to have valid and uniform approximations on long 
timescales. From Eq. (23), it turns out that the resonances only occur if  Ω = (𝑘 + 𝑛)𝜋 ,  Ω = (𝑘 − 𝑛)𝜋, or Ω = (𝑛 − 𝑘)𝜋 when 𝑛 ± 𝑘 is odd. 
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3.2. The fundamental resonance case Ω = 𝝅 

This section discusses the fundamental resonant frequency case, that is, the frequency Ω of the 
moving string is equal to fundamental natural frequency of the string, that is Ω = 𝜋. After putting Ω = 𝜋 into the 𝑂(𝜀)-problem given in Eq. (23) and by avoiding the secular terms in 𝑤 (𝑡 , 𝑡 ); 
the functions 𝐴 (𝑡 ) and 𝐵 (𝑡 ) have to satisfy the following solvability conditions:  𝑑𝐴𝑑𝑡̅ = −𝛿2̅𝐴 (𝑡 ) + (𝑘 + 1)𝐵( ) + (𝑘 − 1)𝐵( ) , 𝑑𝐵𝑑𝑡̅ = −𝛿2̅𝐵 (𝑡 ) − (𝑘 + 1)𝐴( ) + (𝑘 − 1)𝐴( ) , (25)

where 𝑡̅ = 𝛼𝑡 , 𝛿̅ = 𝛿 𝛼⁄  and 𝑘 = 1,2,3 …. The functions 𝐴  and 𝐵  are defined to be zero for 
non-positive indices 𝑘. For sake of suitability, the bar from 𝑡̅  and 𝛿̅ is omitted. The coupled 
system Eq. (25) is an infinite dimensional system of ODE’s. It is evident from system Eq. (25) 
that there are infinitely many interfaces between the vibration modes. For 𝛿 = 0 in Eq. (25) is 
referred to [6]. 

3.2.1. Mathematical analysis of infinite dimensional system (25) 

This subsection computes the energy of the axially moving system from coupled system given 
in Eq. (25) by using following transformations. 

Let 𝑋 (𝑡 ) = 𝑘𝐴 (𝑡 ) and 𝑌 (𝑡 ) = 𝑘𝐵 (𝑡 ), then Eq. (25) becomes: 

⎩⎨
⎧𝑑𝑋𝑑𝑡 = −𝛿2𝑋 + 𝑘 𝑌( ) + 𝑌( ) ,   𝑑𝑌𝑑𝑡 = −𝛿2𝑌 − 𝑘 𝑋( ) + 𝑋( ) ,    (26)

where 𝑘 = 1,2,3⋯  and the functions 𝑋  and 𝑌  are zero for non-positive indices 𝑘.  By 
multiplying 𝑋  and 𝑌  with first and second equations in Eq. (26) respectively, we get: 

𝑋 𝑋 = −𝛿2𝑋 + 𝑘 𝑋 𝑌( ) + 𝑋 𝑌( ) ,𝑌 𝑌 = −𝛿2𝑌 − 𝑘 𝑌 𝑋( ) + 𝑌 𝑋( ) .    (27)

By addition both equations in system Eq. (27), and by taking the sum from 𝑘 = 1 to ∞, it 
yields: 12 𝑑𝑑𝑡 (𝑋 + 𝑌 ) = −𝛿2 (𝑋 + 𝑌 ) + 𝑋( ) 𝑌 − 𝑋 𝑌( ) . (28)

By differentiating Eq. (28) with respect 𝑡  ,it yields: 12 𝑑𝑑𝑡 (𝑋 + 𝑌 ) + 𝛿 𝑑𝑑𝑡 (𝑋 + 𝑌 ) + 𝛿2 − 2 (𝑋 + 𝑌 ) = 0, (29)

and then by putting ∑ (𝑋 + 𝑌 ) = 𝑤(𝑡 ) into Eq. (29) yields: 
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𝑑 𝑤(𝑡 )𝑑𝑡 + 2𝛿 𝑑𝑤(𝑡 )𝑑𝑡 + (𝛿 − 4)𝑤(𝑡 ) = 0. (30)

The solution of Eq. (30) is:  𝑤(𝑡 ) = 𝑝 𝑒( ) + 𝑝 𝑒( ) , (31)

where 𝑝  and 𝑝  are constants and can be computed by applying the given initial conditions. Now 
by multiplying Eq. (5) with (𝑢 + 𝑉𝑢 ) and after long but elementary calculations we get: 12𝑢 + 𝑉𝑢 𝑢 + 12𝑉 𝑢 + 12𝑢 ,= 12𝑉𝑢 + 𝑢 𝑢 + 12𝑉𝑢 − 12𝑉 𝑢 − 𝑉 𝑢 𝑢 − 𝑉𝑢 , − 𝛿(𝑢 + 𝑉𝑢 ) .   (32)

Integrate Eq. (32) first with respect to 𝑥 over the interval [0,1] and then with respect to 𝑡 over [0, 𝑡] it yields: 12𝑢 + 𝑉𝑢 𝑢 + 12𝑉 𝑢 + 12𝑢 𝑑𝑥
= 12 𝑉(1 − 𝑉 )𝑢 | 𝑑𝑡 − 𝛿  (𝑢 + 𝑉𝑢 )  𝑑𝑥𝑑𝑡. (33)

Thus, the total mechanical energy of the string under viscous damping is given by: 

𝐸(𝑡) = 12 ((𝑢 + 𝑉𝑢 )  + 𝑢 )𝑑𝑥. (34)

The energy 𝐸(𝑡) of the axially moving string can also be computed by using the energy 
function 𝑤(𝑡 ). Using Eq. (24) into Eq. (13) the approximated solution up to 𝑂(𝜀) is given by: 𝑢(𝑥, 𝑡) = [𝐴 (𝑡 ) cos(𝑘𝜋𝑡 ) + 𝐵 (𝑡 ) sin(𝑘𝜋𝑡 )] sin(𝑘𝜋𝑥) + 𝑂(𝜀). (35)

Thus, approximate energy of belt system can be obtained by plugging Eq. (35) into Eq. (34) it 
becomes: 

𝐸(𝑡) = 𝜋4 𝑘 (−𝐴 sin(𝑘𝜋𝑡 ) + 𝐵 cos(𝑘𝜋𝑡 ))+(𝐴 cos(𝑘𝜋𝑡 ) + 𝐵 sin 𝑘𝜋𝑡 ) + 𝑂(𝜀). (36)

On further simplification, it yields: 

𝐸(𝑡) = 𝜋  4 [(𝑘𝐴 ) + (𝑘𝐵 ) ] + 𝑂(𝜀). (37)

This implies that: 

𝐸(𝑡) = 𝜋4  [(𝑋 ) + (𝑌 ) ] + 𝑂(𝜀), (38)

As ∑ (𝑋 + 𝑌 ) = 𝑤(𝑡 ), and using Eq. (31), so Eq. (37) becomes: 
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𝐸(𝑡) = 𝜋4 𝑝 𝑒( ) + 𝑝 𝑒( ) + 𝑂(𝜀). (39)

The following cases arise for damping parameter 𝛿:  
– Case I: For 𝛿 = 2, the energy of system decreases in the smaller domain of time and then 

remains constant.  
– Case II: For 𝛿 > 2, the energy decays as time increases.  
– Case III: For 𝛿 < 2, the energy increases without bound as time grows.  
– Case IV: For 𝛿 = 0, then the system exhibits the similar behaviour as shown in [6]. 

3.2.2. Galerkin’s truncation method  

This subsection investigates the application of truncation method for the system Eq. (25). The 
truncation up to three modes is given below: 𝑋 = 𝐴𝑋, (40)

where: 

𝑋 =
⎣⎢⎢
⎢⎢⎡
𝐴𝐵𝐴𝐵𝐴𝐴 ⎦⎥⎥

⎥⎥⎤ ,     𝐴 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡−

𝛿 2 0 0 2 0 00 −𝛿 2 − 2 0 0 00 1 −𝛿 2 0 0 3−1 0 0 −𝛿 2 −3 00 0 0 2 −𝛿 2 00 0 −2 0 0 −𝛿 2⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ . (41)

This linear system has the eigenvalues −𝛿 2⁄ , −𝛿 2⁄ ± 2√2𝑖, all with multiplicity of 2 and 
their associated eigenvectors are given as follows: (−3,−3,0,0,1,1),  (−3,0,0,0,1,0), 1,1,−√2𝑖,√2𝑖, 1,1 ,  0,1,−√2𝑖, 0,0,1 ,  1,1,√2𝑖,−√2𝑖, 1,1 ,  0,1,√2𝑖, 0,0,1 ,  respectively. 
Thus, the general solutions of a linear system Eq. (40) is given by: 𝐴 (𝑡 ) = 𝑒 𝐶 cos 2√2𝑡 + 𝐶 sin 2√2𝑡 − 3𝐶 , 𝐵 (𝑡 ) = 𝑒 𝐶 cos 2√2𝑡 + 𝐶 sin 2√2𝑡 − 3𝐶 , 𝐴 (𝑡 ) = 𝑒 −√2𝐶 cos 2√2𝑡 + √2𝐶 sin 2√2𝑡 , 𝐵 (𝑡 ) = 𝑒 √2𝐶 cos 2√2𝑡 − √2𝐶 sin 2√2𝑡 , 𝐴 (𝑡 ) = 𝑒 𝐶 cos 2√2𝑡 + 𝐶 sin 2√2𝑡 + 𝐶 , 𝐵 (𝑡 ) = 𝑒 𝐶 cos 2√2𝑡 + 𝐶 sin 2√2𝑡 + 𝐶 , 

(42)

where 𝐶 , 𝐶 ,…, 𝐶  are all constants and are to be determined via initial conditions:  𝑢(𝑥, 0) = 𝑓(𝑥), 𝑢 (𝑥, 0) = 𝑔(𝑥), 0 < 𝑥 < 1, it follows that: 

𝑓(𝑥) = 𝑢 (0; 𝜀) sin(𝑘𝜋𝑥)   ⇔   𝑢 (0; 𝜀) = 2 𝑓(𝑥) sin(𝑘𝜋𝑥)𝑑𝑥,    (43)𝑔(𝑥) = 𝑢 (0; 𝜀) sin(𝑘𝜋𝑥)  ⇔  𝑢 (0; 𝜀) = 2 𝑔(𝑥) sin(𝑘𝜋𝑥)𝑑𝑥. (44)
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Moreover, since 𝑢 (0; 𝜀) = 𝑤 (0,0; 𝜀) = 𝑤 (0,0) + 𝜀𝑤 (0,0) + ⋯  and  𝑢 (0; 𝜀) =𝑤 (0,0; 𝜀) = 𝑤 (0,0) + 𝜀𝑤 (0,0) + ⋯ it follows that: 

𝑤 (0,0) = 2 𝑓(𝑥) sin(𝑘𝜋𝑥)𝑑𝑥 , 𝑤 (0,0) = 2 𝑔(𝑥) sin(𝑘𝜋𝑥)𝑑𝑥. (45)

Thus, by using Eq. (24) and Eq. (45) finally we get: 

𝐴 (0) = 2 𝑓(𝑥) sin(𝑘𝜋𝑥)𝑑𝑥 ,     𝐵 (0) = 2𝑘𝜋 𝑔(𝑥) sin(𝑘𝜋𝑥)𝑑𝑥. (46)

Now the constants in Eq. (42) can easily be determined by utilizing Eq. (46). Thus for  𝑓(𝑥) = 0.01 sin(𝜋𝑥), and 𝑔(𝑥) = 0 we find first three approximate modes as under: 𝑢 (𝑥, 𝑡) ≈ 0.01𝑒 cos(𝜋𝑡 ) sin(𝜋𝑥), 𝑢 (𝑥, 𝑡) ≈ 𝑒 0.01 cos(𝜋𝑡 ) cos √2𝑡 sin(𝜋𝑥)  − 0.01√2 sin √2𝑡 sin(2𝜋𝑡 ) sin(2𝜋𝑥) , (47)

𝑢 (𝑥, 𝑡) ≈ 𝑒 0.014 cos 2√2𝑡 + 0.034 cos(𝜋𝑡 ) sin(𝜋𝑥)   
      − (0.01)√24 sin 2√2𝑡 sin(2𝜋𝑡 ) sin(2𝜋𝑥)       + 0.014 cos 2√2𝑡 − 0.014 cos(3𝜋𝑡 ) sin(3𝜋𝑥) . 

Eq. (47) shows that first three modes are clearly damped out and amplitude of oscillations gets 
reduced. It is, however, difficult to calculate four and more than four eigenvalues and 
corresponding eigenvectors manually so we use computer software package Mapple16, to obtain 
the eigenvalues of coupled system up to 7 modes and are given listed in Table 1. All of these 
eigenvalues are multiplicity of 2 and the real parts of eigenvalues have negative sign which shows 
that system is stable in nature. Further for 𝛿 = 0 system has same eigenvalues as given in [6]. 

Table 1. The eigenvalues of truncated system Eq. (25) 
No. of modes The Eigenvalues of matrix 𝐴 (All multiplicity of 2) Dimension of 𝐴 

1 −𝛿2 2 

2 −𝛿2 ± √2𝑖 4 

3 −𝛿2 ± 2√2𝑖,−𝛿2 6 

4 −𝛿2 ± 1.13𝑖,−𝛿2 ± 4.33𝑖 8 

5 −𝛿2 ± 2.302𝑖,−𝛿2 ± 5.89𝑖,−𝛿2 10 

6 −𝛿2 ± 1.00𝑖+,−𝛿2 ± 7.50𝑖,−𝛿2 ± 3.56𝑖,  12 

7 −𝛿2 ± 4.89𝑖,−𝛿2 ± 2.05𝑖,−𝛿2 ± 9.15𝑖,−𝛿2 14 

3.3. The detuning case: Ω = 𝒎𝝅 + 𝜺𝝈 

This section presents the (in) stability of the damped axially moving string close to the 
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resonances, i.e., Ω~𝑚𝜋 , where the constant 𝑚  is taken to be positive odd integer. Thus, we 
demonstrate the closeness of velocity fluctuation Ω by using the relation: Ω = 𝑚𝜋 + 𝜀𝜎, (48)

where the parameter 𝜎 is a detuning parameter and 𝜀 is a small dimensionless parameter, that is, 0 < 𝜀 ≪ 1. Putting Eq. (48) into Eq. (23) gives for the 𝑂(𝜀) for 𝑤 : 𝜕 𝑤𝜕𝑡 + (𝑘𝜋) 𝑤 − 2 𝜕 𝑤𝜕𝑡 𝜕𝑡  − 𝛿 𝜕𝑤𝜕𝑡+ 𝑛𝑘𝑛 − 𝑘 4𝛼 (𝑚𝜋 + 𝜀𝜎)cos (𝑚𝜋 + 𝜀𝜎)𝑡 𝑤 ±   + 8(𝑉 + 𝛼 sin(𝑚𝜋 + 𝜀𝜎)𝑡 )𝜕𝑤𝜕𝑡 . 
(49)

To avoid the unbounded terms in Eq. (49), the functions 𝐴  and 𝐵   have to satisfy the 
following solvability conditions: 𝑑𝐴𝑑𝑡 = −𝛿2𝐴 (𝑡 ) + 𝛼𝑚 (𝑚 + 𝑘) 𝐴( ) sin𝜎𝑡 + 𝐵( ) cos𝜎𝑡        −(𝑚− 𝑘) 𝐴( ) sin𝜎𝑡 + 𝐵( ) cos𝜎𝑡− (𝑘 −𝑚) 𝐴( ) sin𝜎𝑡 − 𝐵( ) cos𝜎𝑡 , 𝑑𝐵𝑑𝑡 = −𝛿2𝐵 (𝑡 ) − 𝛼𝑚 (𝑚 + 𝑘) 𝐴( ) cos𝜎𝑡 −𝐵( ) sin𝜎𝑡        +(𝑚− 𝑘) 𝐴( ) cos𝜎𝑡 −𝐵( ) sin𝜎𝑡+ (𝑘 −𝑚) 𝐴( ) cos𝜎𝑡 +𝐵( ) sin𝜎𝑡 , 

(50)

where 𝑘 = 1,2,3,⋯ and the functions 𝐴  and 𝐵  are defined to be zero for 𝑘 ≤ 0. It can be 
observed that for 𝜎 = 0 and 𝑚 = 1 we get same system given in Eq. (25) and for 𝛿 = 0 in above 
coupled system we get same system as given in [33]. 

3.3.1. Mathematical analysis of infinite dimensional system Eq. (50) 

In this subsection we analyze the coupled system of ODE’s for 𝑚 = 1, and obtain the energy 
of the system to examine its behaviour for detuning case. For 𝑚 = 1, Eq. (50) reduces as: 𝑑𝐴𝑑𝑡 = −𝛿2̅𝐴 (𝑡 ) + (𝑘 + 1) 𝐴( ) sin𝜎𝑡 + 𝐵( ) cos𝜎𝑡        −(𝑘 − 1) 𝐴( ) sin𝜎𝑡 − 𝐵( ) cos𝜎𝑡 , 𝑑𝐵𝑑𝑡 = −𝛿2̅𝐵 (𝑡 ) − (𝑘 + 1) 𝐴( ) cos𝜎𝑡 −𝐵( ) sin𝜎𝑡        +(𝑘 − 1) 𝐴( ) cos𝜎𝑡 +𝐵( ) sin𝜎𝑡 , 

(51)

where 𝑡 = 𝛼𝑡  and 𝛿̅ = 𝛿 𝛼⁄  and 𝑘 = 1, 2, 3…. For convenience, we drop the bar from 𝑡  and 𝛿̅. 
By introducing 𝑋 = 𝑘𝐴  and 𝑌 = 𝑘𝐵 , where 𝑘 = 1, 2, 3…, the system Eq. (51) becomes: 
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⎩⎨
⎧𝑑𝑋𝑑𝑡 = −𝛿2𝑋 + 𝑘 𝑋( ) sin𝜎𝑡  +𝑌( ) cos𝜎𝑡−𝑋( ) sin𝜎𝑡 + 𝑌( ) cos𝜎𝑡 ,𝑑𝑌𝑑𝑡 = −𝛿2𝑌 − 𝑘 𝑋( ) cos𝜎𝑡 −𝑌( ) sin𝜎𝑡+𝑋( ) cos𝜎𝑡 +𝑌( ) sin𝜎𝑡 .  (52)

The functions 𝑋 (𝑡 ) and 𝑌 (𝑡 ) are zero for 𝑘 ≤ 0. By multiplying the functions  𝑋 (𝑡 ) 
and 𝑌 (𝑡 ), respectively, the first and the second equations of Eq. (52), it yields: 

⎩⎪⎨
⎪⎧𝑋 𝑋 = −𝛿2𝑋 + 𝑘 𝑋 𝑋( ) sin𝜎𝑡 +𝑌( ) cos𝜎𝑡−𝑋( ) sin𝜎𝑡 + 𝑌( ) cos𝜎𝑡 ,𝑌 𝑌 = −𝛿2𝑌 − 𝑘 𝑌 𝑋( ) cos𝜎𝑡 −𝑌( ) sin𝜎𝑡+𝑋( ) cos𝜎𝑡 +𝑌( ) sin𝜎𝑡 .  (53)

By adding both sides of Eq. (53), and then by taking the sum from 𝑘 = 1 to ∞, it becomes: 12 𝑑𝑑𝑡 (𝑋 + 𝑌 ) + 𝛿2 (𝑋 + 𝑌 )= 𝑋( ) 𝑌 − 𝑋 𝑌( ) cos𝜎𝑡 − 𝑋 𝑋( ) + 𝑌 𝑌( ) sin𝜎𝑡 .   (54)

After differentiating Eq. (54) twice with respect to 𝑡 , we obtain: 𝑑 𝑤𝑑𝑡 + 3𝛿 𝑑 𝑤𝑑𝑡 + (3𝛿 − 4 + 𝜎 ) 𝑑𝑤𝑑𝑡 + (𝛿 − 4𝛿 + 𝜎 𝛿)𝑤 = 0, (55)

where ∑ (𝑋 + 𝑌 ) = 𝑤(𝑡 ), thus the roots of auxiliary Eq. (55) are −𝛿, −𝛿 ± √4 − 𝜎 . 
Three cases arise: 
Case I: When 4 − 𝜎 = 0 , that is, 𝜎 = ±2  then 𝑤(𝑡 ) = (𝑐 + 𝑐 𝑡 + 𝑐 𝑡 )𝑒  where 𝑐 , 𝑐  and 𝑐  are arbitrary constants. In this case, if 𝛿 > 0 the energy of system decays as time 

increases without bound and in this case the system is stable, whereas if 𝛿 = 0 then energy grows 
polynomially; so the energy of infinite dimensional system remains unbounded. 

Case II: When 4 − 𝜎 > 0 that is, |𝜎| < 2 then: 𝑤(𝑡 ) = 𝑐 𝑒 + 𝑒 𝑐 cosh 4 − 𝜎  𝑡 + 𝑐 sinh 4 − 𝜎  𝑡 , 
and if 𝛿 > √4 − 𝜎  the energy of system decays as time increases and system is stable. For  𝛿 < √4 − 𝜎  the energy of infinite system of coupled ODE’s grow exponentially, that is sign for 
unstable system. 

Case III: When 4 − 𝜎 < 0 that is, |𝜎| > 2, then: 𝑤(𝑡 ) = 𝑐 𝑒 + 𝑒 𝑐 cos 4 − 𝜎 𝑡 + 𝑐 sin 4 − 𝜎 𝑡 . 
In this case, the energy remains to be bounded. 

3.4. The non-resonant case 

In this case we assume that the fluctuation frequency Ω in not within an 𝑂(𝜀) neighbourhood 
of the frequencies that cause the internal resonance, that is not within an 𝑂(𝜀) neighbourhood of 𝜋, then we may have following equation after eliminating the secular terms: 
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⎩⎨
⎧𝑑𝐴𝑑𝑡 = −𝛿2𝐴 ,𝑑𝐵𝑑𝑡 = −𝛿2𝐵 . (56)

The solution of Eq. (56) is 𝐴 (𝑡 ) = 𝐷 𝑒  and 𝐵 (𝑡 ) = 𝐷 𝑒  where 𝐷  and 𝐷  are 
arbitrary constants. By inserting the solution of Eq. (56) into Eq. (35), we obtain: 𝑢(𝑥, 𝑡) = 𝑒 [𝐷 cos(𝑘𝜋𝑡 ) + 𝐷 sin(𝑘𝜋𝑡 )] sin(𝑘𝜋𝑥) + 𝑂(𝜀). (57)

Eq. (57) clearly shows that the system damps out due to the presence of damping in the system. 
The energy of damped string system for non-resonant case can also be approximated by putting 
Eq. (57) to Eq. (34) it yields: 

𝐸(𝑡) = 𝜋4 𝑒 𝑘 [𝐷 + 𝐷 ] + 𝑂(𝜀). (58)

It can easily be observed from Eq. (58) that energy of damped axially moving string seems 
stable for non-resonant case. 

4. Results and discussion 

This section presents the results for the transverse vibrations of the damped axially moving 
string for the resonant, non-resonant cases. It is assumed that the string moves in one direction 
with time-dependent velocity 𝑉(𝑡) = 𝜀(𝑉 + 𝛼 sin(Ω𝑡)) , where 0 < 𝜀 ≪ 1  and 𝑉 , 𝛼 , Ω  are 
positive constants. A two timescales perturbation method with conjunction of Fourier-sine series 
has been employed in search of infinite mode approximate solutions. It has been found that there 
are infinitely many values of Ω which give rises to the resonances in system. This study, however, 
is restricted to the fundamental resonance case, that is, Ω = 𝜋. The energy of system is obtained 
from infinite dimensional system of coupled ordinary differential equations. For 𝛿 = 2, it has been 
observed that the energy of system decreases in the smaller domain of time and then remains 
constant. For 𝛿 > 2 the energy of system has been damped out as the time progresses, while the 
energy grows without bound when 𝛿 < 2. However, for 𝛿 = 0 the system exhibits the similar 
behavior as obtained in [6]. Fig. 2 depicts the energy and mode-amplitude response for the 
damping parameter 𝛿 = 2. Fig. 2(a) represents the energy of the damped system, while Fig. 2(b), 
Fig. 2(c) and Fig. 2(d) represent, respectively, the first, the second and the third mode-amplitude 
responses. It can clearly be seen in these figures that both the mode-amplitude response and energy 
are damped out as time increases. This implies that the mode-response and energy response 
exhibits the similar behavior, so there does not seem a problem in mode-truncation. The energy 
and mode responses are obtained for 𝛿 > 2 and is shown in Fig. 3. The energy response is shown 
in Fig. 3(a), while Fig. 3(b), Fig. 3(c) and Fig. 3(d) represent the first, the second and the third 
mode-amplitude responses, respectively. It can easily be observed in these figures that the energy 
and mode-amplitude responses have similar behavior, so mode-truncation for 𝛿 > 2 may also be 
possible. Finally, Fig. 4(a) represents the energy for 𝛿 < 2, and it grows exponentially. Fig. 4(b), 
Fig. 4(c) and Fig. 4(d) depict, respectively, the first, the second and the third mode-amplitude 
responses for 𝛿 <  2. In these figures, it can easily be observed that both the energy and 
mode-amplitude responses have different behavior, so the mode-truncation for this case does not 
seem possible. 
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– Case I. 𝛿 = 2. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. For 𝜀 = 0.01, 𝛿 = 2 and 𝑥 = 0.5: a) energy 𝐸 vs time 𝑡,  
b) first mode, c) second mode, d) third mode 

– Case II. 𝛿 > 2. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. For 𝜀 = 0.01, 𝛿 = 5 and 𝑥 = 0.5: a) energy 𝐸 vs time 𝑡,  
b) first mode, c) second mode, d) third mode 
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– Case III. 𝛿 < 2. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 4. For 𝜀 = 0.01, 𝛿 = 0.05 and 𝑥 = 0.5: a) energy 𝐸 vs time 𝑡,  
b) first mode, c) second mode, d) third mode 

5. Conclusions 

In this paper, we have examined the applicability of truncation method for string-like model 
under the effect of viscous damping. Axial velocity of the string is assumed to be sinusoidal, 
time-varying and small compared to wave velocity. In order to obtain the formal approximations 
of the solutions of the initial-boundary value problem, a two timescales perturbation method along 
with Fourier-sine series is employed. It turns out that there are infinitely many values of parameter Ω  which give rise to the resonances in system. The fundamental resonant, detuning and 
non-resonant cases have been discussed. In resonant-case, the mode-amplitude response and 
energy of the damped system are computed. For 𝛿 = 2 and 𝛿 > 2, it has been shown that the 
mode-truncation may not be problematic for damped string-like model as was claimed in [6, 33]. 
However, for 𝛿 < 2, the mode-truncation is not possible due to exponential growth of the energy 
of damped system and oscillatory behaviour of mode-amplitude responses. 

In addition to this, the energy of system in the neighbourhood of fundamental resonance is 
discussed. It has been observed that the system remains stable for detuning parameter 𝜎 = ±2 and 
damping parameter 𝛿 > 0. In case of detuning parameter |𝜎| < 2, the energy of system is shown 
to be bounded for damping parameter 𝛿 > √4 − 𝜎 , while the system remains unstable for  𝛿 < √4 − 𝜎 . However, the system remains stable due to trigonometric functions for detuning 
parameter |𝜎| > 2. Furthermore, for non-resonant case, the system is shown to be stable. 
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