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Abstract. When tracking the trajectory of the mechanical arm in a joint space, the system is 
affected by friction non-linearity, unknown dynamic parameters and external disturbances that 
makes it difficult to improve the control accuracy of the mechanical arm. To solve the above 
problems, this paper introduces LuGre friction model and designs a new joint space trajectory 
tracking controller based on the adaptive fuzzy neural network. The controller is capable to make 
the adaptive adjustment of the center and width of the basis function, can approach the nonlinear 
link having the LuGre friction on line, and uses the sliding mode control term to reduce the 
approximation error. The introduction of LuGre model into the mechanical arm system can more 
truly simulate the friction link of the system, which is of great significance to the high precision 
control of the mechanical arm. The Lyapunov method is used to prove the stability of the closed-
loop system. The simulation results show that the designed adaptive fuzzy neural network can 
effectively compensate the non-linear links including friction without precise system parameters, 
and the controller has strong robustness to load changes, thus realizing high-precision trajectory 
tracking of the mechanical arm in joint space. 
Keywords: trajectory tracking, fuzzy neural network, parameter uncertainty, friction nonlinearity, 
joint space. 

1. Introduction 

Mechanical arm has been widely used in industrial manufacturing, agriculture, medical and 
other fields. With the development of modern science and technology, the task of manipulator is 
becoming more and more diverse and complex. Its operation is not limited to repetitive positioning 
operation, and the demand for real-time tracking of given trajectory is increasing. It is of great 
practical significance to study the problem of trajectory tracking control and realize the 
high-precision tracking of the given trajectory of the manipulator to meet the increasingly complex 
and diverse task requirements. Because the manipulator is a high-order, nonlinear and strong 
coupling complex multiple input and multiple output system, and the dynamic and kinematic 
parameters of the manipulator are usually difficult to be obtained accurately, the problem of 
high-precision trajectory tracking control of the manipulator is more complex when multiple 
manipulators are needed to work together. All of them put forward higher demands to the design 
of high-precision trajectory tracking controller of manipulator. 

Friction nonlinear link is a complex nonlinear link widely existing in the mechanical arm 
system, and it is a disturbance factor that cannot be ignored in high-precision trajectory tracking 
of the mechanical arm. Before compensating for the nonlinear links of a system, it is necessary to 
set up one exact friction model of the mechanical arm. At present, the commonly used friction 
models include Coulomb friction, viscous friction and Stribeck friction [1-7], which are not 
accurate enough to describe the friction process. The LuGre friction model [8-13] is a perfect 
dynamic friction model proposed by Cannudas et al., which can more accurately describe the 
complex dynamic and static characteristics in the friction process, such as sliding displacement, 
friction hysteresis, variable static friction, creep and Stribeck effect, etc. It is widely used in servo 
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systems, automobile industry, etc. 
Researchers have done a lot of work [14-19] to compensate the nonlinearity and parameter 

uncertainty of mechanical arm dynamics using appropriate methods, so as to realize the accurate 
trajectory tracking of the mechanical arm. Reference [14] proposes a parameter recognition 
method for LuGre model on the basis of stable-state error analysis. Friction torque gets derived 
by stable-state error, and dynamic and static parameters are identified by a genetic algorithm. 
Experiment outcomes verify the efficiency of the identification approach. Reference [15] uses the 
improved genetic algorithm so as to recognize the dynamic parameters of the LuGre model, takes 
the control force as the target approximation value, and directly uses the displacement (or 
acceleration) and control torque output by the friction parameter identification system, which has 
the advantages of high speed, high identification accuracy and good robustness. Reference [16] 
proposes a new fast identification method for LuGre friction parameters. Solving LuGre's discrete 
recursion equation according to the speed input and friction output can identify dynamic and static 
parameters at one time with high identification accuracy. Because the bristle deformation in the 
LuGre friction model is difficult to be measured accurately, it is important to create a 
corresponding viewer for the sake of excluding it online, and then identify the parameters on this 
basis. In order to simplify the controller design, references [17-19] adopt neural network control, 
fuzzy control and other methods to compensate the friction link, and achieve a good control effect. 
However, there is little research on the LuGre friction in the field of mechanical arm control. 
Therefore, the introduction of LuGre model into a mechanical arm system can more truly simulate 
the friction link of the system, which is of great significance for a high precision control of the 
mechanical arm. 

In view of the above problems, the LuGre friction model was presented into the mechanical 
arm mechanism in this paper. Considering the sudden change of load, an adaptive fuzzy neural 
network controller was designed according to the characteristics of fuzzy neural network which 
included self-learning, self-adaptive and approximation to the arbitrary nonlinear function. The 
controller uses an adaptive fuzzy neural network with a 4-layer structure to handle nonlinear links 
(including friction) in the mechanical arm system, and the center and width of the primary function 
can be self-adaptively adjusted. Finally, simulation experiments indicate the efficiency of the 
suggested controlling method. 

2. System dynamics and preliminaries 

2.1. System modeling 

Without considering the system flexibility and using the Lagrange modeling method, the 
dynamic model of the mechanical arm could be presented as follows: 𝑀 𝑞 𝑞 + 𝐶 𝑞, 𝑞 𝑞 + 𝐺 𝑞 + 𝑓 + 𝑑 = 𝜏, (1)

where 𝑞 ∈ ℝ  is the rotation angle vector of the mechanical arm, 𝑀(𝑞) ∈ ℝ ×  means the inertia 
matrix, 𝐶(𝑞, 𝑞)𝑞 ∈ ℝ  is the vector containing the Coulomb force and centrifugal force,  𝐺(𝑞) ∈ ℝ  is the gravity moment vector, 𝑓 ∈ ℝ  is the LuGre friction moment vector, 𝑑 ∈ ℝ  is 
the bounded disturbing moment vector, and 𝜏 ∈ ℝ  is the joint driving moment vector. Inertia 
matrix 𝑀(𝑞)  and Coulomb matrix and centrifugal matrix 𝐶(𝑞, 𝑞)𝑞  meet the following 
characteristic of asymmetry: 𝜁 12𝑀(𝑞) − 𝐶(𝑞, 𝑞) 𝜁 = 0,    ∀𝜁 ∈ ℝ . (2)

The LuGre friction model is described as: 
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⎩⎪⎨
⎪⎧𝑑𝑧𝑑𝑡 = 𝑞 − |𝑞|𝑔(𝑞) 𝑧 ,𝜎 𝑔(𝑞) = 𝐹 + (𝐹 − 𝐹 )𝑒 ( )𝑓 = 𝜆 𝜎 𝑧 + 𝜎 𝑑𝑧𝑑𝑡 + 𝜎 𝑞 , , (3)

where 𝑧  is the average deformation of the contact surface bristles, 𝜎  is the frictional rigidity 
parameter, 𝜎  stands for the friction damping parameter, 𝜎  means a variety of the friction 
parameter, 𝐹  means the Coulomb friction torque, 𝐹  stands for the maximum static frictional 
moment, 𝑞  is the Stribeck speed; 𝜆  means the friction parameter, which is related to the working 
environment in the actual LuGre model, it is usually used to reflect the influence of changes in the 
working environment on the friction torque. 

2.2. Fuzzy neural network 

As a combination of the fuzzy system and the artificial neural network, the fuzzy neural 
network has the characteristics of function approximation and self-learning. Traditional fuzzy 
control requires a large amount of prior knowledge in the process of determining the discourse 
domain. Inappropriate domain selection will greatly affect the performance of the controller. 
Compared with the fuzzy system, the fuzzy neural network has the advantage of self-learning, and 
can continuously adjust its parameters according to the reaction of this mechanism during the 
controlling process. It can simplify the domain selection process, and there is still a good control 
effect in the absence of prior knowledge of the system. 

In the paper, a Mamdani type fuzzy neural network (FNN) with a four-layer structure was 
applied so as to approximate the non-linear link of the mechanical arm system. The width and 
center concerning the fuzzy basis function are variable. The framework of the fuzzy neural 
network was presented in Fig. 1.  

 
Fig. 1. Fuzzy neural network structure diagram 
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The first layer means the input layer, in which 𝑥𝑖 (𝑖 = 1, … , 𝑛1) is the input of the FNN, where 𝑛  is the number of inputs.  
The second layer is the fuzzy membership degree calculation layer of each input component, 

using a Gauss function: 

𝑢𝑖𝑗(𝑥𝑖) = exp − 𝑥𝑖 − 𝑐𝑖𝑗𝜅𝑖𝑗
2 , (4)

where 𝑐 , 𝜅  (𝑖 = 1, … ,𝑛 ; 𝑗 = 1, … ,𝑛 ) refer to the center and width concerning the fuzzy basis 
functions (FNNBF) respectively, and the center and width vectors of the basis function are as 
follows: 𝑐 = 𝑐 , … , 𝑐 , 𝑐 , … 𝑐 , … , 𝑐 , … 𝑐 ∈ ℝ ,𝜅 = 𝜅 , … , 𝜅 , 𝜅 , … , 𝜅 , … , 𝜅 , … , 𝜅 ∈ ℝ . 

Among which 𝑁 = 𝑛 × 𝑛 . 
The third layer is used to match the antecedent of fuzzy rules, the completed calculation is: 

𝑙 = ∏ exp − 𝑥 − 𝑐𝜅∑ ∏ exp − 𝑥 − 𝑐𝜅 . (5)

The fourth layer means the output layer for clarity calculation: 

𝑦 = 𝑤 𝑙 , (6)

where 𝑦  (𝑖 = 1,2, … ,𝑛 ) means the output of the FNN. 
The matrix form of the fuzzy neural network can be obtained as: 𝑦 = 𝑦 ,𝑦 , … ,𝑦 = 𝑊𝐿, (7)

where 𝑦 ∈ ℝ  is the output vector, 𝑊 = 𝑤 ⋯ 𝑤⋮ ⋱ ⋮𝑤 ⋯ 𝑤 ∈ ℝ ×  means the weight matrix, 

and 𝐿 = 𝑙 , … , 𝑙 ∈ ℝ  means the output base vector. 

3. Controller design 

3.1. Control objective 

Assuming that the joint rotation angle of the mechanical arm 𝑞, and the angular velocity of the 
joint 𝑞  are measurable values, the expected angle 𝑞  and its derivative 𝑞  are given, other 
parameters of the system are unknown, an adaptive fuzzy neural network controller (AFNNC) is 
designed, and when 𝑡 → ∞ to make sure that 𝑞 → 𝑞 , 𝑞 → 𝑞 .  
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3.2. Controller design 

The angle error is defined as follows: 𝑒 = 𝑞 − 𝑞  (8)

Then, the angular velocity error is: 𝑒 = 𝑞 − 𝑞 . (9)

And the sliding surface is: 𝑠 = 𝑒 + 𝑘𝑒, (10)

where the constant 𝑘 > 0  is an adjustable parameter. The added intermediate variable 𝑞  is 
defined as: 𝑞 = 𝑞 − 𝑘𝑒. (11)

Taking the derivation of Eq. (11), it yields: 𝑞 = 𝑞 − 𝑘𝑒. (12)

Substituting Eqs. (8-12) into Eq. (1), it yields: 𝜏 = 𝑀𝑞 + 𝐶𝑞 + 𝐺 + 𝑓 + 𝑑      = 𝑀𝑞 −𝑀𝑞 + 𝑀𝑞 + 𝐶𝑞 − 𝐶𝑞 + 𝐶𝑞 + 𝐺 + 𝑓 + 𝑑      = 𝑀𝑒 + 𝑀𝑞 + 𝐶𝑒 + 𝐶𝑞 + 𝐺 + 𝑓 + 𝑑      = 𝑀𝑒 + 𝑘𝑀𝑒 − 𝑘𝑀𝑒 + 𝑀𝑞 + 𝐶𝑒 + 𝑘𝐶𝑒 − 𝑘𝐶𝑒 + 𝐶𝑞 + 𝐺 + 𝑓 + 𝑑      = 𝑀𝑠 + 𝑀𝑞 + 𝐶𝑠 + 𝐶𝑞 + 𝐺 + 𝑓 + 𝑑.  (13)

Eq. (13) can be rewritten as: 𝑀𝑠 = −𝐶𝑠 + 𝜏 − 𝐹 − 𝑑,𝐹 = 𝑀𝑞 + 𝐶𝑞 + 𝑓 + 𝐺, (14)

where 𝐹 is the nonlinear function which includes LuGre friction links. The fuzzy neural network 
mentioned above is used for approximation: 𝐹 = 𝑊∗𝐿∗ + 𝜀, (15)

where 𝑊∗ and 𝐿∗ = 𝐿(𝑐∗,𝜅∗, 𝑠) are respectively the ideal weight matrix and output base vector of 
the FNN, 𝜀 means the approximation error vector, and 𝑠 is the input of the fuzzy neural network. 
The true value 𝑊∗, 𝑐∗, 𝜅∗ is unknown, and its estimated value is 𝑊, �̂�, �̂�, the estimated errors are 
defined respectively as 𝑊 = 𝑊∗ −𝑊 , �̃� = 𝑐∗ − �̂� , �̃� = 𝜅∗ − �̂� , 𝐿 = 𝐿(𝑐∗,𝜅∗, 𝑠) − 𝐿(�̂�, �̂�, 𝑠), 𝐿 
can be described as: 

𝐿 = 𝐿(𝑐∗,𝜅∗, 𝑠) − 𝐿(�̂�, �̂�, 𝑠) = ∂𝐿∂𝑐 ̂ (𝑐∗ − �̂�) + ∂𝐿∂𝜅 (𝜅∗ − �̂�) + 𝑜 = 𝑙 �̃� + 𝑙 �̃� + 𝑜 , (16)

where 𝑙 = ̂ ∈ ℝ × , 𝑙 = ∈ ℝ × , 𝑜  is the residue.  
By combining Eq. (15) and Eq. (16), the approximation error of the fuzzy neural network to 

nonlinear links is obtained: 
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𝐹 = 𝐹 −𝑊𝐿 = 𝑊∗𝐿∗ −𝑊𝐿 + 𝜀 = (𝑊 + 𝑊) 𝐿 + 𝑙 �̃� + 𝑙 �̃� + 𝑜 −𝑊𝐿 + 𝜀       = 𝑊𝐿 + 𝑊𝑙 �̃� + 𝑊𝑙 �̃� + Δ𝐹, (17)

where: Δ𝐹 = 𝑊𝑙 �̃� + 𝑊𝐼 �̃� + 𝑊∗𝑜 + 𝜀 ∈ 𝑅 . (18)

Assuming that Δ𝐹 = Δ𝐹 , … ,Δ𝐹  is bounded, and 𝑑 = 𝑑 , … ,𝑑  is an unknown 
bounded disturbance vector, then vector Δ𝐹 + 𝑑  is bounded, thus there is one active definite 
diagonal matrix Δ𝐹∗ = diag(Δ𝐹∗, … ,Δ𝐹∗) ∈ ℝ × ,  which meets 0 < |Δ𝐹 + 𝑑 | ≤ Δ𝐹∗,  𝑖 = 1, … ,𝑛.  

The control rate is taken is: 𝜏 = 𝑊𝐿 − 𝐾 𝑠 − 𝐾 sgn(𝑠), (19)

where 𝐾  and 𝐾  are the positive definite diagonal matrices, 𝑊𝐿 is the output of the fuzzy neural 
network to approximate nonlinear functions 𝐹. According to Eq. (14) and Fig. 2, 𝑊𝐿 is actually a 
feedforward term. By promptly approximating the unknown nonlinear links, the influence of 
system nonlinearity can be set to improve the controller’s ability to cope with the unknown 
nonlinear problems. −𝐾 𝑠 − 𝐾 sgn(𝑠)  is the approximation rate, which can suppress the 
approximation error of the FNN and the influence of unknown disturbance. The parameter self-
adaptive law of the FNN is selected as follows: 𝑊 = −Γ 𝑠𝐿 ,�̂� = −Γ 𝑙 𝑊 𝑠,�̂� = −Γ 𝑙 𝑊 𝑠, (20)

where Γ , Γ , Γ  are the well-dimensional positive definite diagonal matrices. 

4. Stability analysis  

Theorem 1: For the mechanical arm system where the Eqs. (1) and (3) described, the definition 
of error is described in Eqs. (8) and (10). The fuzzy neural network controller which is made up 
of the control rate of Eq. (19), and the parameter adaption rate of Eq. (20), if the conditions of 
equation 𝐾 − Δ𝐹∗ ≥ 0 are met, the closed-loop system tends to be asymptotically steady.   

Substantiation: Taking the Lyapunov function, the following formula is got: 𝑉 = 12 𝑠 𝑀𝑠 + 12 𝑡𝑟 𝑊 Γ 𝑊 + 12 �̃� Γ �̃� + 12 �̃� Γ 𝜅. (21)

Taking the derivation of Eq. (21), one yields: 𝑉 = 𝑠 𝑀𝑠 + 12 𝑠 𝑀𝑠 + 𝑡𝑟 𝑊 Γ 𝑊 + �̃� Γ �̃� + �̃� Γ �̃�. (22)

Substituting Eqs. (14), (15), and (19), one yields: 𝑉 = 𝑠 −𝐶𝑠 − 𝐾 𝑠 − 𝐾 sgn(𝑠) + 𝑊𝐿 −𝑊∗𝐿∗ − 𝜀 − 𝑑      + 12 𝑠 𝑀𝑠 + 𝑡𝑟 𝑊 Γ 𝑊 + �̃� Γ �̃� + �̃� Γ �̃�.  (23)

According to Eq. (2), substituting Eqs. (17) and (20) into Eq. (23), one yields: 
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𝑉 = 𝑠 −𝐾 𝑠 − 𝐾 sgn(𝑠) + 𝑊𝐿 −𝑊∗𝐿∗ − 𝜀 − 𝑑      +𝑡𝑟 𝑊 Γ 𝑊 + �̃� Γ �̃� + �̃� Γ �̃�      = 𝑠 −𝐾 𝑠 − 𝐾 sgn(𝑠) −𝑊𝐿 −𝑊𝑙 �̃� −𝑊𝑙 �̃� − Δ𝐹 − 𝑑      +𝑡𝑟 𝑊 𝑠𝐿 + �̃� 𝑙 𝑊 𝑠 + �̃� 𝑙 𝑊 𝑠      = 𝑠 (−𝐾 𝑠 − 𝐾 sgn(𝑠) − Δ𝐹 − 𝑑) + 𝑡𝑟 𝑊 𝑠𝐿 − 𝑠 𝑊𝐿 .
 (24)

Because of the property: 𝑡𝑟 𝑊 𝑠𝐿 = 𝑡𝑟 𝐿 𝑊 𝑠 = 𝐿 𝑊 𝑠 = 𝑠 𝑊𝐿. (25)

Therefore: 𝑉 = 𝑠 (−𝐾 𝑠 − 𝐾 sgn(𝑠) − Δ𝐹 − 𝑑) = −𝑠 𝐾 𝑠 − 𝑠 (𝐾 sgn(𝑠) + Δ𝐹 + 𝑑). (26)

As for 𝑖 = 1, … ,𝑛, there is |Δ𝐹 + 𝑑 | ≤ Δ𝐹∗, Eq. (26) can be rewritten as: 

𝑉 = −𝑠 𝐾 𝑠 − 𝑠 (𝐾 sgn(𝑠) + Δ𝐹 + 𝑑) ≤ −𝑠 𝐾 𝑠 − 𝑠 𝐾 sgn(𝑠) + |𝑠 |Δ𝐹∗       = −𝑠 𝐾 𝑠 − 𝑠 𝐾 sgn(𝑠) + 𝑠 Δ𝐹∗sgn(𝑠) = −𝑠 𝐾 𝑠 − 𝑠 (𝐾 − Δ𝐹∗)sgn(𝑠). (27)

Due to 𝐾 − Δ𝐹∗ ≥ 0,we get: 𝑉 ≤ −𝑠 𝐾 𝑠 ≤ 0. (28)

As it can be seen from the lemma Barbalat, when 𝑡 → ∞, 𝑠(𝑡) → 0. According to the Eq. (10), 𝑠 = 𝑒 + 𝑘𝑒 and 𝑘 > 0, it is found that 𝑒(𝑡) → 0 and 𝑒(𝑡) → 0 at 𝑡 → ∞, the proof is completed.  
The framework of the adaptive FNN controller is presented in Fig. 2. 

 
Fig. 2. Framework of adaptive FNN controller 

5. Numerical simulation 

AFNNC and neural network algorithm (RBF) are compared and simulated in MATLAB2019b 
environment. The planar two-joint manipulator is taken as the object, and shown in the model 
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view in Fig. 3. Among them, 𝑚 , 𝑚 , and 𝑚  are the masses of two connecting rods and the load 
respectively, 𝑙  and 𝑙  are the sizes of two connecting rods respectively, and 𝑙  and  𝑙  are the 
distances of the centroid. The parameters of the mechanical arm are selected as follows:  𝑚 = 4 kg, 𝑚 = 3 kg, 𝑙 = 1 m, 𝑙 = 1 m, 𝑙 = 0.5 m, 𝑙 = 0.5 m; 𝑞 = 𝑞 ,𝑞  is the joint 
angle vector of the robotic modulator, and the initial values are taken as: 𝑞(0) = 0,0 ,  𝑞(0) = 0,0 . 

The desired trajectory of the joint angle of the robotic modulator is taken as: 𝑞 = 0.8sin(𝑡), 0.5sin(1.5𝑡 + 𝜋)  rad. 
The disturbing moment subjecting the mechanical arm system is taken as:  𝑑 = 3sin(4𝜋𝑡), 2sin(5𝜋𝑡)  Nm. 
The parameters within the LuGre Friction model are selected as: 𝜎 = 10000 Nm, 𝜎 = 35 Nm, 𝜎 = 0.2 N⋅m⋅s/rad, 𝐹 = 0.3 Nm, 𝐹 = 0.45 Nm, 𝑞 = 0.005 Nm. 

 
Fig. 3. Industrial mechanical arm model of two connecting rods  

The parameters of the joint space trajectory tracking controller based on the fuzzy neural 
network are selected as follows: parameter 𝑘 is related to the steady state accuracy of the system, 
a large overshoot may occur when the 𝑘 value is too large, thus this number shall take a moderate 
value; parameter 𝐾  significantly affects the convergence speed of the sliding mode surface and 
the steady-state accuracy of the system, thus this parameter shall be a large value; parameter 𝐾  
can restrain the approximation error of the fuzzy neural network and system disturbance, thus this 
parameter shall be a moderate value. The specific selection of value is as follows: 𝑘 =  10,  𝐾 = diag(20,10), 𝐾 = diag(200,80). 

Since the control quantity contains discontinuous terms −𝐾 sgn(𝑠), it will inevitably lead to 
buffeting. In order to suppress buffeting, a hyperbolic tangent function tanh(s) is adopted instead 
of the symbolic function sgn(𝑠) in the simulation. In the following simulations, all the controller 
parameters are consistent with the above simulation conditions except for the friction parameter 𝜆  of the LuGre friction model. 𝑠  is regarded as the input of the FNN. Because of 𝑠 ∈ ℝ , the number of inputting and 
outputting layers of the fuzzy neural network is selected as: 𝑛 = 2, 𝑛 = 2. The number of fuzzy 
membership functions for each input is 𝑛 = 7,  which corresponds to 𝑁𝐿,𝑁𝑀,𝑁𝑆,𝑍𝑂,𝑃𝑆,𝑃𝑀,𝑃𝐿  respectively. 

Since the fuzzy neural network contains parameters 𝑊 , �̂� , �̂�  and self-adaptation rate 
parameters Γ , Γ , Γ , it is necessary to select appropriate parameters for better controller 
performance. As a result, the selection of above parameters was first studied.  
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5.1. Influence of fuzzy neural network parameters on control performance 

5.1.1. Influence of initial parameter value 

The influence of the initial value 𝑊(0) of the weight matrix on the control performance is 
studied firstly. Three sets of simulation for the different initial values 𝑊(0) are compared in cases 
of zero load (𝑚 = 0 kg) on the mechanical arm, and the friction parameter 𝜆 = 1  is constant. 
Case 1: All elements of 𝑊(0) are equal to 0; Case 2: All elements of 𝑊(0) are equal to 10; Case 3: 
All elements of 𝑊(0) are set to a random number between 0 and 10. The initial values of the other 
parameters and the renewal law parameters are the same: 𝑐 (0) = 2𝑗 − 8,  𝜅 (0) = 2,  Γ = 5 × 10 𝐼, Γ = 50𝐼, Γ = 50𝐼, where 𝐼 is the appropriate dimensional unit matrix. 

The trajectory tracking errors of the mechanical arm in three cases are shown in Fig. 4. In case 
of the different initial values, the convergence time, overshoot and steady state errors of the system 
are almost indifferent. It means that the selection of the initial value 𝑊(0) of the output weight 
has no obvious effect on the controller performance. The main reason is that 𝑊 can be updated in 
the real time according to the system response. As a result, the selection of 𝑊(0) is quite simple. 
In order to avoid the problem of excessive control amount at the initial time, it is required just to 
select a relatively moderate value of 𝑊(0). 

Then the influence of the initial value selection of the basis system function was studied. The 
simulation cases of the following three different initial values are compared. Case 1:  𝑐 (0) = 2𝑗 − 8 , 𝜅 (0) = 2 ; Case 2: 𝑐 (0) = 𝑗 − 4 , 𝜅 (0) = 1 ; Case 3: 𝑐 (0) = 0.5𝑗 − 2 , 𝜅 (0) = 0.5. 

 
a) Joint 1 

 
b) Joint 2 

Fig. 4. Trajectory tracking errors of initial values of different FNN weight matrices 

 
a) Joint 1 

 
b) Joint 2 

Fig. 5. Trajectory tracking errors of initial values of different FNN fuzzy basis functions 
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The trajectory tracking errors obtained in these three cases are shown in Fig. 5. Similar to the 
various initial value selection of the weight matrices 𝑊(0), the initial value selection of the basis 
function does not differ significantly in controller performance. As a result, compared with the 
fuzzy logic and other methods, the domain selection in the process of constructing the controller 
using fuzzy neural network is relatively simple, and only needs to be selected according to the 
experience. The center and width 𝑐, 𝜅 of the fuzzy set function can track the system response for 
online adjustment. 

5.1.2. Influence of adaptive law parameters 

The influence of adaptive law parameters on controller performance was analyzed as follows. 
Firstly, the different values of Γ  are compared and simulated. Case 1: Γ = 1 × 10 𝐼; Case 2: Γ = 5 × 10 𝐼 ; Case 3: Γ = 2 × 10 𝐼 . The trajectory tracking errors of the three cases are 
presented in Fig. 6. The selection of Γ  influences both the convergence speed and steady-state 
errors of tracking. When choosing a smaller value (Case 1), the error convergence is slower, and 
the steady-state error is larger. The reason might be in that in the control process, too small Γ  
restricts the approximation performance of the FNN to the unknown nonlinear links. At this time, 
the fuzzy neural network has a limited ability to deal with nonlinear links. When choosing a larger 
value (Case 3), the error converges quickly, and the steady-state error is small. But when Γ  is too 
large, a certain overshoot occurs. 

 
a) Joint 1 

 
b) Joint 2 

Fig. 6. Trajectory tracking errors of different FNN updating law parameters Γ  

Different adaptive law parameters Γ , Γ  of the fuzzy basis function are simulated and analyzed 
in this paper. Case 1: Γ = Γ = 200; Case 2: Γ = Γ = 50; Case 3: Γ = Γ = 10. The trajectory 
tracking errors of the three cases are presented in Fig. 7. It illustrates that the values of Γc,Γκ have 
no significant impact on the steady-state performance, and its influence is mainly reflected in the 
joint commutation of the mechanical arm and the jumping time of friction force. So, the robustness 
of the controller to abrupt non-linearity can be improved only by selecting a suitable value  
of Γ , Γ . 

In conclusion, the selection method of the FNN parameters is as follows: In order to avoid the 
problem of excessive control amount at the initial time, 𝑊(0) shall not be too large; In the 
selection process of 𝑐 , 𝜅 , appropriate values can be selected according to the experience; 
Parameter Γ  is related to the approximation performance of the fuzzy neural network to the 
nonlinear function, as well as to the steady-state error, thus a larger value shall be taken; The 
selection of parameters Γ , Γ  will affect the system robustness to sudden interference, thus a 
moderate value shall be taken. As a result, the initial values of the FNN can be selected as:  𝑐 = 2𝑗 − 8, 𝜅 = 2, 𝑖 = 1, 2, 𝑗 = 1,…,7, and: 



FUZZY NEURAL NETWORK CONTROL FOR MECHANICAL ARM BASED ON ADAPTIVE FRICTION COMPENSATION.  
HUI YANG, SAIYAN WU, GANG HUANG 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1109 

𝑊(0) = 10 10 10 10 10 10 1010 10 10 10 10 10 10 . 
The adaptive law parameters can be selected as: Γ = 5 × 10 𝐼, Γ = 50𝐼, Γ = 50𝐼. 

 
a) Joint 1 

 
b) Joint 2 

Fig. 7. Trajectory tracking errors of different FNN updating law parameters Γ , Γ  

5.2. Robust performance 

To further verify the tracking performance of the controller, the robust performance of the 
control strategy and the approximation performance of FNN to the nonlinear function 𝐹, two 
algorithms: AFNNC and RBF are compared.  

The absolute error integral is set as the error index function: 𝐽 = | 𝑒(𝑖)|𝑑𝑡. The function 
of the system friction coefficient changing with time is: 𝜆 = 4 + 2sin(6𝜋𝑡). The initial load is 𝑚 = 2 kg; when 𝑡 = 4 s the load changes to 3 kg; when 𝑡 = 14 s the load changes again to 1 kg. 
The simulation outcomes are shown in Figs. 8-9. 

 
a) RBF tracking error (Joint 1) 

 
b) AFNNC tracking error (Joint 1) 

 
c) RBF tracking error (Joint 2) 

 
d) AFNNC tracking error (Joint 2) 

Fig. 8. Comparison of tracking errors between FNN and RBF  
when friction coefficient is time-varying and load is mutation 
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The two control strategies are both based on the combination of sliding mode control and 
compensation for nonlinear link 𝐹 . In order to verify the effectiveness of the algorithm as 
objectively as possible, the same sliding surface and approach law are adopted for the RBF 
controller. And the selection of the center and width of the RBF controller’s basis function is the 
same as the initial value of the FNN basis function parameter. The only difference between the 
two controllers is that the basis function center and width of RBF are fixed, while the basis 
function center and width of fuzzy neural network in AFNNC controller can be adjusted online 
according to the system response. 

The tracking errors of the system can both converge quickly under the two control algorithms. 
However, the convergence speed of the errors under the AFNNC control strategy is slightly faster 
than that of the RBF controller, and the steady-state error and the error jump at the time of load 
mutation is also smaller (Fig. 8). Since the two control strategies are compensated by 
approximating the nonlinear link 𝐹 and the feed-forward, the approximation performance of the 
nonlinear link 𝐹 affects the control performance directly. 

The approximation contrast and error of the nonlinear function 𝐹 of the system using FNN and 
RBF are shown in Fig. 9. Both compensation strategies can realize the effective compensation of 
the nonlinear function 𝐹. When the load jumps (𝑡 = 4 s, 𝑡 = 14 s), 𝐹 produces the corresponding 
jumps. (Fig. 9(a) and 9(c)). Since the 𝑐, 𝜅 of the fuzzy basis function adopted by the FNN can be 
dynamically adjusted according to the system response, the convergence speed of the FNN 
approximation error is faster than that of the RBF. Throughout the process, the approximation 
error of FNN is smaller than that of the RBF (see Fig. 9(b) and 9(d)). 

 
a) 𝐹 and its approximation (Joint 1) 

 
b) Approximation error of 𝐹 (Joint 1) 

 
c) 𝐹 and its approximation (Joint 2) 

 
d) Approximation error of 𝐹 (Joint 2) 

Fig. 9. Comparison of compensation effects between FNN and RBF  
when the friction coefficient is time-varying and load is mutation 

The error comparison between the two control strategies is shown in Table 1. Benefiting from 
the good approximation performance of FNN, the tracking accuracy of the system is higher, and 
the robustness is better when adopting the AFNNC control strategy. 
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Table 1. Comparison of system tracking errors when friction and load change 

 
Tracking error comparison at steady-state and jump time 

Steady-state error Jump error when 𝑡 = 4 s Jump error when 𝑡 = 14 s 
Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2 

RBF 2×10-4 rad 2×10-4 rad 8×10-4 rad 5×10-4 rad 1.3×10-3 rad 1.3×10-3 rad 
AFNNC 1×10-4 rad 1×10-4 rad 3×10-4 rad 2×10-4 rad 0.6×10-3 rad 0.6×10-3 rad 

 Error index comparison 
Joint 1 𝐽  Joint 2 𝐽  

RBF 2.0263×10-3 rad (0.1161) 1.8644×10-3 rad (0.1068) 
AFNNC 8.6735×10-4 rad (0.0497) 5.4568×10-4 rad (0.0313) 

6. Conclusions 

In this paper, the LuGre friction model was introduced into the mechanical arm system. An 
adaptive fuzzy neural network controller was designed under the condition that the system 
dynamics parameters were unknown, and the steadiness of the mechanism was proved by 
Lyapunov method. The simulation results show that the fuzzy neural network can approximate 
the nonlinear link quickly and accurately. In case of changes in load and working environment, 
the control strategy proposed in this paper can realize high-precision trajectory tracking of the 
mechanical arm in the joint space, and it has good robustness to load mutation.  
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