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Abstract. Switch mode power suppliers based on isolated flyback topology have voltage stresses 
on semiconductor switches caused by transformer leakage inductance. Those voltage stresses have 
to be mitigated by implementing active or passive clamp preferably with partial leakage energy 
recovery. In this paper a new integrated semi-active regenerative (lossless) snubber is proposed. 
The proposed snubber topology is featured by the snubber inductor integrated into the main 
transformer thus decreasing component count and saving the PCB space. Partial coupling of 
snubber inductor with a secondary side makes it possible to recover part of the transformer leakage 
energy directly to the secondary side with potential to increase snubber efficiency. The operation 
of the proposed snubber is analyzed and simulation results are presented. Interesting is that with 
the proposed snubber various side effects can be reached like reduction of RMS current in 
secondary side, ZCS and ZVS modes for secondary side rectifier and primary main switch along 
with achieved primary goal – voltage stress limitation and transformer leakage energy recovery. 
Keywords: regenerative snubber circuit, flyback, auxiliary inductance integrated with the main 
transformer, transformer leakage energy recovery, semi-active snubber. 

1. Introduction 

The improvements in power semiconductors and magnetic components make converters based 
on flyback topology more efficient and hence make it more attractive to implement flyback 
topology into practical applications. Flyback topology finds broadening usage due to its low 
component count, simple schematics, robustness and possibility to provide galvanic isolation. But 
the main problem with flyback topology are voltage stresses on semiconductor switches caused 
by flyback transformer leakage inductance. There are number of solutions [1] proposed to limit 
voltage spikes on a main switch. The most desirable of them would be a non-dissipative snubber 
for better power efficiency and a cost effective one to keep low cost. The RCD snubber circuits 
are the simplest and robust solutions but unfortunately cannot match increasing power efficiency 
requirements [2].  

In a scientific literature there are well known active clamp snubbers with regenerative 
capabilities [3-10]. Active clamp can help effectively recover the transformer leakage energy 
clamped in snubber capacitor; it can also help to provide zero voltage switching mode for the main 
power switch [3, 5, 9]. But all of these benefits come with the complexity of an active clamp. 
Other feature of an active clamp in flyback topology, that it increases current RMS value for a 
secondary circuit and high current peak for secondary rectifier diode before switch off. Also, 
active clamp reduces the robustness of a flyback, because the auxiliary clamp switch commutates 
snubber capacitor to output capacitor through transformer leakage inductance [9]. 

There are also number of passive non-dissipative snubber circuits for flyback converter  
[11-19]. These passive snubbers significantly and cost effectively reduce turn off switching losses 
and regenerate leakage energy from snubber capacitor. They recover energy back to power supply 
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DC bus or store in the magnetizing inductor of a flyback transformer. There are some integrated 
regenerative circuits [15-18], that offer advantage of reducing component count and circuit 
simplification. Other advantage of these passive integrated regenerative snubbers is that they can 
partially recover transformer leakage energy forward to the secondary output, thus can potentially 
demonstrate higher efficiency. The considered regenerative snubbers work in discontinues 
conduction mode or resonant mode thus with increased RMS in snubber circuits. 

There are also some snubber solutions [20, 21] that are worth to mention. Their idea is quiet 
straight forward and involves commutation of clamp capacitor to the input to restore transformer 
leakage energy temporarily caught in that clamp capacitor. The snubber [20] actually exploits the 
idea of a DC/DC converter that recovers energy from clamp capacitor back to input. It is 
complicated but potentially has the best recovery efficiency, therefore better suits for high power 
applications. The snubber [21] is a semi-active one with auxiliary switch that synchronously with 
the flyback main switch commutates clamp capacitor to an input through an auxiliary inductor. 
The snubber is simpler but potentially has the same best recovery efficiency as the snubber in [20].  

In this paper a novel regenerative semi-active snubber circuit with an auxiliary inductor 
integrated with a main transformer is proposed [22]. It consists of the voltage spike limiting clamp 
capacitor to catch most of the leakage energy and a transformer auxiliary winding with auxiliary 
semiconductor switches to recover most of the energy from clamp capacitor. The auxiliary 
winding is integrated with the main flyback transformer and connected to the flyback schematic 
in a way to have stage voltages conformed with main transformer windings. The integration of the 
snubber inductor with the main transformer reduces components count and safes space on a PCB. 
The main advantage of the proposed snubber over the snubber in [21] is that it have potential to 
recover most of the energy to the secondary output, therefore promises higher leakage energy 
recovery efficiency. The behavior of the proposed solution is dependent on multiple parameters, 
therefore the desirable snubber properties and its side effects can be achieved through particular 
realization. The snubber can be designed to operate in non-resonant continues conduction mode 
(CCM) or discontinues conduction mode (DCM). Therefore, the advantage is that it has reduced 
RMS currents in the snubber circuits compared to the conventional regenerative LCD snubbers 
[15-18] with recharging in a resonant way flying capacitor. In this work only one of the promising 
recover strategies has been analyzed. The simulation has been provided to reveal the advantages 
of the proposed solution. Stage-by-stage consideration has been given, and equivalent schematics 
was provided for stages along with principal governing equations where it is needed for better 
comprehension of stage processes. 

2. The proposed regenerative snubber circuit for flyback topology 

The advantage of the proposed snubber have been achieved by integration of auxiliary 
inductance with the main transformer, thus the transformer have the third auxiliary winding now. 
The advantage with this is that the energy can be recovered directly to the secondary output with 
potential to increase efficiency. The principal schematic of the proposed recovering solution is 
presented in Fig. 1. 

On Fig. 1 one can see a flyback topology converter with a clamp voltage limiter consisting of 
clamp capacitor 𝐶  and clamp diode 𝐷 , and to drain clamp energy here is the circuit formed by 
auxiliary transistor 𝑄 , auxiliary diode 𝐷  and auxiliary transformer winding 𝑊 . The 
auxiliary switch 𝑄  is synchronized with the main switch and can be driven passively or  
actively. The synchronization and driving of 𝑄  with the main switch can be accomplished by 
tapping from 𝑊  winding or by means of additional 4th winding. It is clearly seen that the 
behavior of the circuit is highly dependent on parameters like leakage inductance between 
transformer windings and auxiliary winding, turns ration 𝑊 / 𝑊  and switching timing 
parameters of auxiliary transistor 𝑄 . The governing equation system for the proposed three 
winding transformer looks like Eq. (1): 
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⎩⎪⎨
⎪⎧𝑈 = 𝐿 ∗ 𝑑𝑖𝑑𝑡 + 𝐿 ∗ 𝑑𝑖𝑑𝑡 + 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 , (1)

where 𝐿  – transformer primary winding inductance, 𝐿  – transformer secondary winding 
inductance, 𝐿  – auxiliary winding inductance, 𝐿 = 𝐿  – transformer primary to secondary 
windings mutual inductance, 𝐿 = 𝐿 - primary to auxiliary mutual inductance, 𝐿 = 𝐿  – 
secondary to auxiliary mutual inductance. The winding’s current positive directions and voltage 
drop positive directions on the transformer windings are shown in the Fig. 2. 

Fig. 1. The proposed regenerative integrated  
snubber circuit and flyback converter 

 

 
Fig. 2. The proposed transformer winding 

voltages and currents designations  
and chosen positive directions 

We propose to start studying of the schematic on Fig. 1 with some clear assumptions: the 
auxiliary winding turns number is equal to the primary winding turns number, 𝑊 = 𝑊 ; 
coupling between 𝑊  and other transformer windings is weaker than coupling between primary 𝑊  and secondary 𝑊  windings. For analytical proposes we consider that all semiconductor 
switches are ideal. We consider the case when auxiliary transistor 𝑄  switches complementary 
to the main transistor 𝑄 , and here is a delay after 𝑄  switch off and 𝑄  turn on. With these 
assumptions let’s consider six operating stages in a steady state condition for the circuit on the 
Fig. 1, and they are all presented in a Table 1. 

Table 1. Switches operation scheduler 
Stage 1 2 3 4 5 6 𝑄  ON off off off off off 𝑄  off off off ON off off 𝐷  mostly off ON ON ON ON ON 𝐷  off ON off off off off 𝐷  off off off off ON off 

The equivalent circuit diagrams are given in Fig. 3 for each of six stages. 
The waveforms have been generated in the simulation software LTspice for the particular 

circuit parameters: transformer magnetizing inductance 𝐿 =  6400 uH, coupling coefficient 
between primary and secondary windings 0.98, coupling coefficients between auxiliary to primary 
winding and between auxiliary to secondary windings are both 0.8; switching frequency about 
67 kHz; input voltage 𝑉 = 400 V, output voltage 14 V and output power 145 W. The duration 
of the stages and simulated operation waveforms are presented in Fig. 4. From Fig. 4 one can see 
that in our particular study case the auxiliary winding current 𝐼  flows in discontinues 
conduction manner. We will consider the case in which the main switch 𝑄  turns on at the time 
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moment 𝑡  after the current in the auxiliary winding 𝑊  calms down to zero. By the moment 𝑡  
all primary side semiconductor switches are non-conducting only secondary diode 𝐷  is 
conducting current to the output helping the flyback transformer to discharge it’s remaining power 
energy through secondary winding 𝑊 . 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 3. Equivalent stage circuits. 𝑉  – auxiliary winding voltage during non-conducting condition,  𝑉  – primary winding voltage during non-conducting condition,  𝑉  – output voltage, 𝑉  – clamp capacitor voltage 

2.1. Stage 1 (𝒕𝟎-𝒕𝟏) 

In this stage, see Fig. 3(a) main switch 𝑄  is turned on, the transformer primary side 𝑊  is 
connected to the input mains 𝑉 , the secondary current rapidly goes down. After the output 
rectifier 𝐷  gets reversed biased the transformer starts to gain power. On Fig. 3(a) the secondary 
winding 𝑊  and rectifier diode 𝐷  are partially shadowed, because most of the stage time they do 
not provide any current. At the same time the auxiliary diodes 𝐷  and 𝐷  remain 
non-conducting. Clamp diode 𝐷  is under reversed voltage of the clamp capacitor 𝐶 . The 
transformer governing equations at this stage will look like Eq. (2): 

⎩⎪⎨
⎪⎧𝑉 = 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 , ⇒ ⎩⎪⎪⎨

⎪⎪⎧𝑑𝑖𝑑𝑡 = 𝑉𝐿 ,𝑈 = −𝐿𝐿 𝑉 𝑛,|𝑈 | = 𝐿𝐿 𝑉 < 𝑉 . (2)
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On the auxiliary winding 𝑊  here is a reflected voltage from the primary winding 𝑊 , and 
because in this specific example it happened that 𝑊 = 𝑊  thus the voltage applied to the 
auxiliary diode 𝐷  is near zero. Actually, diode 𝐷  under slight stress of reversed voltage 
because reflected voltage on 𝑊  is less than input voltage by voltage drop on equivalent primary 
side leakage inductance. The auxiliary winding is non-conducting, and the auxiliary switch 𝐷  
is under stress of clamp capacitor voltage. 

 
Fig. 4. Simulation waveforms of the flyback converter circuit with the proposed regenerative snubber. 𝑉𝑄  – drain to source voltage on the 𝑄  switch, 𝐼𝑄  – current of the 𝑄  switch, 𝜑  and 𝜑  are the 
potentials of the corresponding nodes on secondary and primary sides (see Fig. 1), 𝐼  – current of the 
secondary side, 𝐼𝐶  – current of the clamp capacitor 𝐶 , 𝐼  – current of the auxiliary winding 𝑊  

2.2. Stage 2 (𝒕𝟏-𝒕𝟐) 

At the moment 𝑡  the main switch turns off, see Fig. 3(b) and the transformer primary current 
starts charging clamp capacitor 𝐶  through the diode 𝐷  until transformer leakage energy is 
depleted, that happens by the time moment 𝑡 . During this stage secondary diode current rises 
from zero. The transformer governing equations for stage 2 will look like Eq. (3): 

⎩⎪⎨
⎪⎧𝑈 = 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑉 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 , ⇒ ⎩⎪⎪⎨

⎪⎪⎧𝑈 = −𝐿𝐿 ∗ 𝑉 ,𝑑𝑖𝑑𝑡 = −𝑉𝐿 ,𝑈 = 𝐿𝐿 ∗ 𝑉 < 𝑉 ∗𝑊𝑊 . (3)
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The reflected voltage on the auxiliary winding 𝑊  equals to the clamp voltage minus voltage 
drop on a leakage inductance of the transformer. As the potential of 𝑄  source terminal 𝜑  is 
lower than the clamp voltage, therefore switch 𝑄  will stay reversed biased and internal diode 
of 𝑄  as well as diode 𝐷  are remain non conducting. But 𝑄  is under slight reverse voltage 
thus it is the good moment for switch 𝑄  to turn on. But we will make some longer delay before 𝑄  turns on. The delay duration is optional, and may not last for two stages as we made. As the 
potential of 𝑄  source terminal 𝜑  is lower than the clamp voltage, therefore internal diode 
of 𝑄  as well as diode 𝐷  are remain non conducting.  

2.3. Stage 3 (𝒕𝟐-𝒕𝟑) 

Equivalent schematic of this stage is on Fig. 3(c). By the moment 𝑡  the transformer leakage 
energy is depleted and diode 𝐷  is closed. Here is still some time after the main switch 𝑄  turned 
off and before the auxiliary switch 𝑄  turns on. During this time interval transformer primary 
and auxiliary windings are non-conducting, all semiconductors on the primary side are 
non-conducting. Only transformer secondary side discharges energy gained at stage 1 into output 
through the diode 𝐷  and the transformer governing equations will look like Eq. (4): 

⎩⎪⎨
⎪⎧𝑈 = 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑉 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 , ⇒ ⎩⎪⎪⎨

⎪⎪⎧𝑈 = −𝐿𝐿 ∗ 𝑉 ,𝑑𝑖𝑑𝑡 = −𝑉𝐿 ,𝑈 = 𝐿𝐿 ∗ 𝑉 < 𝑉 ∗𝑊𝑊 . (4)

In this short stage current of the secondary side decreases. 

2.4. Stage 4 (𝒕𝟑-𝒕𝟒) 

At the moment 𝑡  the auxiliary switch 𝑄  turns on in order to discharge the clamp capacitor 𝐶 , Fig. 3(d). Thus, the capacitor 𝐶  discharges directly into secondary side through the coupled 
windings 𝑊  and 𝑊 , also onto the transformer leakage and transformer magnetizing  
inductance. The linear current rise on 𝑊  is determined by the leakage inductance, see Eq. (5): 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑈 = 𝐿 ∗ 𝑑𝑖𝑑𝑡 + 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑉 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑉 − 𝑉 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 , ⇒ ⎩⎪⎪⎪

⎨⎪
⎪⎪⎧ 𝑈 < 𝑉 − 𝑉 ,𝑑𝑖𝑑𝑡 = 𝐿𝐿 𝑉 − 𝑉 − 𝑉𝐿 − 𝐿𝐿 ,
𝑑𝑖𝑑𝑡 = − 𝑉 − 𝑉 − 𝑉 ∗ 𝐿𝐿𝐿 − 𝐿𝐿 ,

 (5)

where 𝐿 − 𝐿 /𝐿  is the equivalent leakage inductance between auxiliary and secondary sides 
seen/measured from auxiliary side. Because of the leakage between 𝑊  and primary 𝑊  the 
reflected voltage on 𝑊  is not big enough to open clamp diode 𝐷  and hence primary winding 
remain non-conducting. From moment 𝑡  secondary current slows down it’s decrement and in our 
particular case we can observe some increasing due to energy supply from clamp 𝐶  through 
auxiliary switch 𝑄 . It is possible to select the value of leakage inductance and duration of 
stage 3 to make secondary current flat during conduction of the secondary rectifier 𝐷 , from time 
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𝑡  to 𝑡 , thus RMS current could be reduced. Simulation shows that if we made more time for 𝑄  to be open, for example at the expense of time delay between 𝑄  turn off and 𝑄  turn on 
(stages 2, 3), then the clamp voltage would be lower due to increased discharge time and secondary 
current slope would be declining. Also, simulation shows that decreasing the leakage between 
auxiliary winding and other transformer windings will reduce the clamp voltage as the discharge 
rate will be faster, will increase peak current for 𝑄  and increase upward slope of the secondary 
current. 

2.5. Stage 5 (𝒕𝟒-𝒕𝟓) 

During this time period, see Fig. 3(e), the auxiliary switch turns off but here is some delay up 
to the time moment 𝑡  then the main switch turns on. At the time 𝑡  when 𝑄  switches off 
auxiliary winding current starts to flow through auxiliary diode 𝐷  until it diminishes to zero. 
The transformer governing equation for this stage will look like Eq. (6): 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑈 = 𝐿 ∗ 𝑑𝑖𝑑𝑡 + 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 − 𝐿 ∗ 𝑑𝑖𝑑𝑡 , ⇒ ⎩⎪⎪⎪

⎨⎪
⎪⎪⎧ 𝑈 < 𝑉 − 𝑉 ,𝑑𝑖𝑑𝑡 = 𝐿𝐿 ∗ 𝑉 + 𝑉𝐿 − 𝐿𝐿 ,
𝑑𝑖𝑑𝑡 = −𝑉 + 𝑉 ∗ 𝐿𝐿𝐿 − 𝐿𝐿 .

 (6)

Thus, the leakage energy associated with 𝑊  fully discharges back to the input. As a result, 
the clamp energy fully recovered mostly forward to the secondary output, partly back to the input 
and partly in the form of transformer magnetizing energy gained at stage 5 from clamp 𝐶  through 
winding 𝑊 . While 𝑊  current depletes at the same time secondary diode 𝐷  current goes 
down as current from clamp capacitor no longer feeds secondary output and leakage energy 
associated with 𝑊  exhausts. Magnetizing current gained at stage 5 also starts to flow in 
secondary side reducing diode 𝐷  current in forward direction! It is potentially possible to make 
soft turn-off of the diode 𝐷  and soft turn on of 𝑄  by turning parameters of a transformer, for 
example it could happen if the flyback topology was closer to the discontinues conduction mode. 
Delay duration between 𝑄  turn-off and 𝑄  turn-on should be taken as long just to decrease 
secondary current as much as possible before the main switch turns on. But in our particular case 
for the research purposes again we made this delay to last for one more additional stage. 

2.6. Stage 6 (𝒕𝟓-𝒕𝟔) 

Equivalent schematic of this circuit is on Fig. 3(f). From the time moment 𝑡  up to the moment 𝑡  both auxiliary 𝑊  and primary 𝑊  windings are non-conducting. All semiconductors on the 
primary side are switched off. The flyback transformer continues to provide remaining energy to 
the output secondary side through the diode 𝐷  with descending secondary current: 

⎩⎪⎪⎨
⎪⎪⎧𝑈 = 𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑉 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 ,𝑈 = −𝐿 ∗ 𝑑𝑖𝑑𝑡 , ⇒ ⎩⎪⎪⎨

⎪⎪⎧𝑈 = −𝐿𝐿 ∗ 𝑉 ,𝑑𝑖𝑑𝑡 = 𝑉𝐿 ,𝑈 = 𝐿𝐿 ∗ 𝑉 < 𝑉 ∗𝑊𝑊 . (7)
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3. Discussion 

The better the coupling coefficient between auxiliary and secondary transformer windings the 
more portion of the transformer leakage energy is recovered directly to the secondary output. This 
is a promising feature to increase the snubber efficiency. The value of a magnetic leakage between 
auxiliary and main transformer windings influences the RMS currents of the secondary side. The 
simulation shows that the leakage parameter could be adjusted to reduce secondary side RMS. 
The conditions to provide secondary side reduced RMS can be found from Eq. (5) valid for  
stage 4, see the Eq. (8): 𝑑𝑖𝑑𝑡 = 0 ⇒ 𝐿𝐿 𝑉 − 𝑉 − 𝑉 = 0. (8)

The synchronization and driving of an auxiliary switch of the proposed snubber could be done 
with tapping from the auxiliary transformer winding or with help of an additional forth transformer 
winding. This driving solution could help keep snubber implementation cost-effective. Slight 
delay between main switch turn-off and auxiliary switch turn-on facilitates ZVS for auxiliary 
switch. In particular consideration given in the paper it was proposed to make another delay 
between auxiliary switch turn-off action and main switch turn-on action. This delay reduces 
secondary current before secondary rectifier turns off. That delay could be made for example by 
adaptive adjusting based on previous time period measurement. Insertion of that kind of delay is 
optional and will certainly complicate the snubber. Simulation shows that if a flyback converter 
is working close to discontinues conduction mode that delay facilitates ZCS and ZVS for both 
secondary rectifier and primary main switch. This is because after auxiliary switch off the 
transformer magnetizing inductance current gained during stage 4 starts to flow in secondary side 
reducing secondary current.  

G. Balbayev designed the theoretical basics and proposed regenerative snubber circuit for 
flyback topology. A. Nussibaliyeva developed the circuit simulation in software, literature search 
and manuscript preparation. B. Tultayev made literature search, data analysis. E. Dzhunusbekov 
and G. Yestemessova worked on literature search, data acquisition, circuit design and paper 
preparation. A. Yelemanova worked on literature search, simulation and paper preparation. 

4. Conclusions 

In this paper a new integrated semi-active regenerative (lossless) snubber is analyzed. In the 
proposed novel regenerative snubber an auxiliary inductor is integrated with the flyback 
transformer, thus the power supply schematics has less magnetic component count and saves PCB 
space. The properties of the proposed solution is critically dependent on multiple parameters, 
therefore the resulting snubber effect and it side effects are sensitive to the particular realization. 
The promising feature to increase the snubber efficiency is that most of a transformer leakage 
energy is recovered directly to the secondary output. The value of a magnetic leakage between 
auxiliary and main transformer windings influences the RMS currents of the secondary side and 
playing with that parameter could reduce secondary side RMS and increase efficiency further. 
Delay between main switch turn-off and auxiliary switch turn-on facilitates ZVS for auxiliary 
switch. It can also help to provide zero voltage switching mode for the main power  
semiconductors. 
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