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Abstract. This paper presents an approach to the problem about vibration of automobiles in 
one-fourth model where both road deformation and the loss of contact are taken into account. 
Contact characteristics such as the geometry of the contact area, pressure distribution, the relation 
between the contact force and the dimensions of the contact area, and therefore the change in 
dimensions of the contact area with respect to time are mentioned. Deformed road is modeled as 
an elastic beam which is simply supported at the two ends and lies on Kelvin’s visco-elastic 
ground. The differential equations of motion for both states of contact and losing contact are 
unified by introducing a so-called contact state parameter. The partial differential equation among 
the differential equations of motion of the vehicle-road coupled system is transformed into a 
system of all ordinary differential equations by applying the Bubnov-Galerkin’s method. A 
procedure for numerically solving the ordinary differential equations of motion of the vibration 
system under consideration is proposed and some numerical results for illustration are also 
presented in the paper. 
Keywords: vibration, automobile, one-fourth model, road deformation, loss of contact. 

1. Introduction 

In fact, due to the unevenness of the road surface and the inherent imbalance of parts, a moving 
automobile is always lying in vibration state and its vertical vibration is a considerable component. 
Vertical vibration makes the changes in contact pressure and area between the wheels and the road 
surface. This is the reason of the appearance of dynamic forces acting on the road. When the level 
of vibration is large enough, the wheels may separate from the road surface and cause the 
phenomenon of losing contact. This phenomenon is also known as wheel separation, wheel 
hopping and in this paper, it is called as the loss of contact. The loss of contact results in the loss 
of control (in terms of speed and direction) and reduces the safety of movement. 

Depending on the geometrical and dynamic characteristics of the vehicle itself, the geometry 
of the road surface and the speed of movement, the loss of contact may occur or not, frequently or 
infrequently. Conditions for the loss of contact appearing, the limit of speed to avoid losing contact, 
the rate of time of losing contact over total time of movement, etc. are the factors that deserve to 
be attended. 

Vibration of automobiles in the one-fourth model has been mentioned in [1-7]. In particular, 
the references [1, 3-5, 7] ignore the deformation of road, and the references [1, 3, 5, 7] do not take 
into account the phenomenon of losing contact between the wheel and the road surface. The 
references [2, 6] take account of road deformation but ignore the phenomenon of losing contact. 
Moreover, these references consider vibration without taking account of the change in dimensions 
of the contact area or considering different laws of pressure distribution on the contact area. In 
this paper, the above aspects are mentioned simultaneously. 
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2. Contact characteristics of the wheel-road couple 

Contact characteristics of the wheel-road couple directly involve the formulation of the 
problem under consideration. The characteristics mentioned here consist of: a) the contact state 
(in contact or separation state); b) the shape and dimensions of the contact area; c) relations of 
wheel vertical deformation with the contact area dimensions and the contact force; d) distribution 
of pressure in the contact area. 

Fig. 1 shows the original dimensions of a wheel with the standard air pressure inside for 
readiness to be used. The wheel in free state (not subjected to load) is assumed to be exactly 
rounded. The values of 𝑟଴ and 𝑏௅ are called as calculation radius and width, respectively. 

 
Fig. 1. The original dimensions of a wheel 

2.1. Contact states, geometry of contact area and relations of quantities 

Fig. 2 shows three possible relative positions between a rounded wheel and a road with planar 
surface. In Fig. 2(a), the wheel lies in contact state with the road surface and it is deformed under 
the contact force 𝑄. The shape of the contact area is accepted to be rectangular [6]. For simplicity, 
we add here two assumptions as follows: a) the off-contact-area part of wheel profile is still exactly 
rounded with the radius unchanged; b) the width of the wheel is not changed under loading. 

With the assumptions mentioned above, the contact area in this relative position has the 
dimensions as 𝑏௅ × 𝑑஼ with the length 𝑑஼ determined as: 𝑑𝐶 = 2ඥ𝑟02 − (𝑟0 − Δ𝑧)2, (1)

where Δ𝑧 is vertical deformation of the wheel (or tyre). 
Once the linearity in behavior of the wheel is accepted, between the contact force 𝑄  and 

vertical deformation Δ𝑧 exists the following relation: 

𝑄 = 𝑘Δ𝑧 + 𝑐 𝑑(Δ𝑧)𝑑𝑡 , (2)

where 𝑘 and 𝑐 are stiffness and damping coefficient of the spring-damper couple which represents 
the elastic and damping properties of the wheel, respectively. 

Eqs. (1) and (2) describe the relations of wheel vertical deformation with the contact area 
length and the contact force. 

The second relative position of the wheel-road couple is shown in Fig. 2(b). In this situation, 
the wheel still lies in the contact state with the road surface but has no deformation. The contact 
area now reduces to a straight line segment with the length 𝑏௅ and the contact force is equal to 
zero. 

In Fig. 2(c), the wheel completely loses contact with the road surface and it is not deformed. 
The contact area is absent and the contact force is also equal to zero. 

Because the value of wheel vertical deformation and that of the contact force are 
simultaneously differ from zero in the first case and simultaneously equal to zero in the two others, 
so we can unify the equations which express the relation of contact force 𝑄 and wheel vertical 
deformation ∆𝑧 for three cases in Fig. 2 as follows: 
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𝑄 = 𝑠 ൤𝑘Δ𝑧 + 𝑐 𝑑(Δ𝑧)𝑑𝑡 ൨. (3)

Parameter 𝑠 in Eq. (3) is taken the value of 0 for cases where ∆𝑧 = 0, 𝑄 = 0, and taken the 
value of 1 in cases ∆𝑧 ≠ 0, 𝑄 ≠ 0. Because 𝑠 reflects the state of contact or separation of the 
wheel-road couple, it is called as the contact state parameter. The introduction of the contact state 
parameter facilitates making the differential equations of motion of the considered mechanical 
system as presented in the next section. 

In the process of vibration of automobiles, the values of 𝑄 and ∆𝑧 change with respect to time. 
They can be determined only by solving the differential equations of motion of the mechanical 
system under consideration. 

 
Fig. 2. Three possible relative positions between a rounded wheel and a planar road surface:  

a) contact with wheel deformed; b) contact with wheel undeformed; c) no contact 

2.2. Distribution of pressure in the contact area 

The distribution of pressure in the contact area between the wheel and the road surface depends 
on many factors such as the geometrical and physical properties of the tire, those of the road and 
the speed of movement, etc. In fact, the distribution of pressure is very complicated [6]. However, 
for simplicity in considering vertical vibrations of automobiles, we assume that the distribution of 
pressure is symmetrical about the coordinate plane 𝑂𝑦𝑧, a vertical plane passing through the axle 
of the wheel as shown in Fig. 3 (where the axis 𝑂𝑦 is not described), and moreover, the pressure 
distribution function does change only in the 𝑥-direction, not change in the 𝑦-direction [6, 8]. 

 
Fig. 3. Pressure distribution laws assumed: 1 – even or rectangle,  

2 – parabola, 3 – cosine, 4 –squared cosine) 
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Accordingly, the pressure distribution function in the contact area can be written in the 
following form: 𝑝(𝑥, 𝑡) = 𝑃(𝑡)𝑈(𝑥), (4)

where 𝑃(𝑡) is a time function that reflects the change of pressure with respect to time, 𝑈(𝑥) is an 𝑥  – variable function which represents the changing of pressure in the 𝑥  direction, 𝑈(𝑥) is a 
dimensionless function that depends on the pressure distribution law chosen. The four typical 
forms of function 𝑈(𝑥) proposed in the reference [8] are plotted in Fig. 3 and consist of the 
following laws: 

– Even distribution: 𝑈(𝑥) = 1 (∀𝑥); 

– Parabola distribution: 𝑈(𝑥) = 1 − ቀଶ௫ௗ೎ቁଶ. 

– Cosine distribution: 𝑈(𝑥) = cos గ௫ௗ೎. 
– Squared cosine distribution: 𝑈(𝑥) = cosଶ గ௫ௗ೎ = ଵଶ ቀ1 + cos ଶగ௫ௗ೎ ቁ. 
From the force equilibrium in vertical direction, we have: 

𝑄 = 𝑅େ = න 𝑝(𝑥, 𝑡)ௗ಴ ଶ⁄
ିௗ಴ ଶ⁄ 𝑏௅𝑑𝑥 = 𝑃(𝑡)𝑏௅ න 𝑈(𝑥)ௗ಴ ଶ⁄

ିௗ಴ ଶ⁄ 𝑑𝑥 = 𝑃(𝑡)𝑏௅𝐼଴, (5)

where 𝑅஼ is the reaction force from the road upwards to the wheel and: 

𝐼଴ = න 𝑈(𝑥)ௗ಴ ଶ⁄
ିௗ಴ ଶ⁄ 𝑑𝑥. (6)

For rectangle, parabola, cosine and squared cosine distributions, the values of 𝐼଴  can be 
obtained from Eq. (6) is 𝑑஼, 2𝑑஼ 3⁄ , 2𝑑஼ 𝜋⁄  and 𝑑஼ 2⁄ , respectively. 

The Eqs. (3) and (5) allow to deduce a relation between function 𝑃(𝑡) and vertical deformation ∆𝑧 of the wheel: 

𝑃(𝑡) = 𝑠𝐼଴𝑏௅ ቈ𝑘Δ𝑧 + 𝑐 𝑑(Δ𝑧)𝑑𝑡 ቉. (7)

It is noted that when the wheel is not in contact with the road surface, both 𝑠 and 𝐼଴  are 
simultaneously equal to zero. At this time, although the Eq. (7) of 𝑃(𝑡) has an infinite form 0/0, 
but the value of contact force 𝑄 is equal to zero. 

3. One-fourth vibration model and differential equations of motion 

3.1. One-fourth vibration model of automobiles 

An one-fourth vibration model of automobiles with road deformation taken into account is 
shown in Fig. 4(a). The automobile is modeled as a vertical vibration system of two masses and 
the deformable road is model as an elastic beam which is simply supported at the two ends and 
lies on the Kelvin’s visco-elastic ground. 

Vertical vibration of the automobile takes place at the middle of the beam. The effect of 
automobile movement on vibration is represented by time changing in depth or height of the center 
point of the contact area due to road roughness. Deformation of the road with respect to time is 
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represented by vibration of the beam. 
The beam with the length 𝐿 has uniform rectangular cross-section whose width and height are 

denoted as 𝑏 and ℎ, respectively. Material of the beam is assumed to be homogeneous, isotropic, 
and has mass density 𝜌 and Young’s modulus 𝐸. 

The position presented in Fig. 4(a) of the vibration system is a so-called natural position where 
the wheel is in contact with the road surface and all the springs in the model are completely free. 
In this figure, 𝑚ଵ and 𝑚ଶ are the suspended and unsuspended masses of the vehicle in one-fourth 
model; ሼ𝑘ଵ, 𝑐ଵሽ is the spring-damper couple which represents the vehicle suspension; ሼ𝑘ଶ, 𝑐ଶሽ is 
the spring-damper couple representing the elastic and damping properties of the wheel; 𝑘ௌ and 𝑐ௌ 
are the ground stiffness and damping coefficient per unit area. For simplicity, ሼ𝑘ଵ, 𝑐ଵሽ and ሼ𝑘ଶ, 𝑐ଶሽ 
are also denoted for the stiffness and damping coefficient of the corresponding spring-damper 
couples. Vibrations of the two masses and the elastic beam are respectively expressed by the 
displacement functions 𝑢ଵ = 𝑢ଵ(𝑡), 𝑢ଶ = 𝑢ଶ(𝑡) and 𝑤 = 𝑤(𝑥, 𝑡) those are measured from the 
natural position. 

 
Fig. 4. One-fourth vibration model of automobile with road deformation taken into account:  

a) vibration model and characteristic parameters; b) force diagram of masses 

3.2. Differential equations of motion of the vibration system 

3.2.1. Differential equations of motion of the automobile 

Fig. 4(b) shows the force diagram of the two masses in the mechanical system. On the diagram, ሼ𝐺ଵ,𝐺ଶሽ are the forces of gravity, 𝐹ଵଶ and 𝐹ଶଵ are the resultant force of spring and damping forces 
in the spring-damper couple ሼ𝑘ଵ, 𝑐ଵሽ . The expressions for 𝐹ଵଶ  and 𝐹ଶଵ  can be written as  
[4, 6, 8, 9]: 𝐹ଵଶ = 𝐹ଶଵ = 𝑘ଵ(𝑢ଵ − 𝑢ଶ) + 𝑐ଵ(𝑢ሶଵ − 𝑢ሶ ଶ). (8)

The calculating vertical deformation of the spring representing the tire elasticity (quantity ∆𝑧 
in Eq. (3)) in case the deformation of uneven road is taken into account can be approximately 
calculated as: Δ𝑧 = 𝑢ଶ − 𝑧஼ = 𝑢ଶ − (𝑤஼ + 𝑟஼), (9)

where 𝑧஼ = 𝑤஼ + 𝑟஼  is the 𝑧-coordinate of the contact area center (point O in Figs. 2 and 3) 
measured from the natural position of the nominal road surface, 𝑤஼ is vertical displacement of the 
middle cross-section of the beam, and 𝑟஼ vertical fluctuation (the depth or height of road profile 
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caused by road unevenness) at the contact area center. For simplicity, here we give one more 
assumption that the effect of road unevenness on vertical deformation of the wheel concerns the 
center point of the contact area only. 

From the vibration model, we can get: 

𝑤஼ = 𝑤(𝑥, 𝑡)‖௫ୀ௅ ଶ⁄        𝑤ሶ ஼ = ∂𝑤(𝑥, 𝑡)∂𝑡 ฯ௫ୀ௅ ଶ⁄ . (10)

By applying the Newton’s second law to the force diagrams of the two masses in Fig. 4(b), 
one can obtain: 𝑚ଵ𝑢ሷଵ = 𝐺ଵ − 𝐹ଶଵ,    𝑚ଶ𝑢ሷ ଶ = 𝐺ଶ + 𝐹ଵଶ − 𝑅஼ .  (11)

Using Eqs. (3), (5), (8) and relations 𝐺ଵ = 𝑚ଵ𝑔 , 𝐺ଶ = 𝑚ଶ𝑔  in Eq. (11), we can get the 
differential equations of motion of the automobile: 𝑚ଵ𝑢ሷଵ + 𝑐ଵ𝑢ሶ ଵ − 𝑐ଵ𝑢ሶ ଶ + 𝑘ଵ𝑢ଵ − 𝑘ଵ𝑢ଶ = 𝑚ଵ𝑔, (12)𝑚ଶ𝑢ሷ ଶ − 𝑐ଵ𝑢ሶ ଵ + (𝑐ଵ + 𝑠𝑐ଶ)𝑢ሶ ଶ − 𝑠𝑐ଶ𝑤ሶ ஼ − 𝑘ଵ𝑢ଵ + (𝑘ଵ + 𝑠𝑘ଶ)𝑢ଶ      −𝑠𝑘ଶ𝑤஼ = 𝑚ଶ𝑔 + 𝑠(𝑘ଶ𝑟஼ + 𝑐ଶ𝑟ሶ஼).  (13)

In problems about predeterministic vibration of automobiles, the road profile has been 
predescribed, so that 𝑟஼ is given as a definite function of time. 

3.2.2. Differential equation of motion of the road 

The differential equation of motion of the road can be made by considering the equilibrium of 
a typical beam element which has the length of 𝑑𝑥 and locates at the position determined by 𝑥 
coordinate as shown in Fig. 5. 

 
Fig. 5. Force diagram of a typical beam element in vibration model 

Forces acting on the element include: 
– Axial forces ቄ𝑁,𝑁 + ቀడேడ௫ቁ 𝑑𝑥ቅ, shear forces ቄ𝑄,𝑄 + ቀడொడ௫ቁ 𝑑𝑥ቅ and bending moments around 

the y-axis ቄ𝑀,𝑀 + ቀడெడ௫ቁ 𝑑𝑥ቅ at the left and the right sections. 
– The force of gravity 𝑑𝐺, 𝑑𝐺 = 𝑟𝑔𝑏ℎ𝑑𝑥 (𝑔 – gravitational acceleration). 
– Contact force 𝑑𝑄 which may exists in the contact area, 𝑑𝑄 = 𝑝(𝑥, 𝑡)𝑏௅𝑑𝑥. If the element is 

not in contact with the wheel then 𝑝(𝑥, 𝑡) and 𝑑𝑄 are equal to zero. 
– Inertial force 𝑑𝐹, 𝑑𝐹 = 𝜌𝑏ℎ பమ௪ப௧మ 𝑑𝑥. 

– Reaction force from the ground 𝑑𝐹ௌ, 𝑑𝐹ୗ = 𝑘ୗ𝑤(𝑥, 𝑡)𝑏𝑑𝑥 + 𝑐ୗ ப௪(௫,௧)ப௧ 𝑏𝑑𝑥. 
The force equilibrium in horizontal and vertical directions, and the moment equilibrium about 

the center point of the left cross-section of the element combining with neglecting the infinitesimal 
quantities lead to these equations: 
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∂𝑁∂𝑥 = 0, (14)𝜌ℎ ∂ଶ𝑤∂𝑡ଶ + 𝑐ௌ ∂𝑤∂𝑡 + 𝑘ௌ𝑤(𝑥, 𝑡) − 1𝑏 ∂𝑄∂𝑥 − 𝑝(𝑥, 𝑡) = 𝜌𝑔ℎ, (15)𝑄 = ∂𝑀∂𝑥 . (16)

Eq. (14) gives 𝑁 = 0 for all 𝑥, 𝑡 since no external force acts in the 𝑥-direction. 
By substituting Eq. (16) into (15) and noting that 𝑀 = −𝐸𝐼 ቀడమ௪డ௫మ డమ௪డ௫మቁ [6], one obtains the 

differential equation of motion of the beam: 

𝜌ℎ ∂ଶ𝑤∂𝑡ଶ + 𝑐ௌ ∂𝑤∂𝑡 + 𝑘ௌ𝑤(𝑥, 𝑡) + 1𝑏 𝐸𝐼 ∂ସ𝑤∂𝑥ସ − 𝑝(𝑥, 𝑡) = 𝜌𝑔ℎ, (17)

where 𝐸 – the Young’s modulus of beam material, 𝐼 – the inertial moment of bending around the 𝑦-axis of beam cross-section, 𝐼 = 𝑏ℎଷ 12⁄ . 
The differential equations of motion of the vehicle-road system are combination of ordinary 

differential Eqs. (12), (13) and partial differential Eq. (17). 
If the loss of contact is not taken into account, the differential equations of motion of the 

vehicle-road coupled system can be obtained from the equations mentioned above by fixing  𝑠 = 1. In case road deformation is neglected, 𝑤(𝑥, 𝑡) = 0 for all 𝑥 and 𝑡, Eq. (17) is obviously 
satisfied and the differential equations of motion of the mechanical system reduces to the 
differential equations of motion Eqs. (12), (13) of the automobile only. 

3.3. Transforming the differential equations of motion to a system of all ordinary differential 
equations (ODE) 

In order to obtain the response of the automobile under consideration according to some initial 
conditions, it is necessary to solve the differential equations of motion mentioned above. Solution 
given here to reaching that purpose is applying the Bubnov – Galerkin’s method to transform the 
partial differential Eq. (17) to a system of all ordinary differential equations. 

Firstly, the function 𝑤(𝑥, 𝑡) is approximated by the series of 𝑁 terms as: 

𝑤(𝑥, 𝑡) = ෍𝑇௟(𝑡)𝑋௟(𝑥)ே
௟ୀଵ = ෍𝑇௟(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே

௟ୀଵ , (18)

where 𝑇௟(𝑡) (𝑙 = 1, 2, ..., 𝑁) are time functions to be found, and 𝑋௟(𝑥) = sin (ଶ௟ିଵ)గ௫௅  are functions 
those satisfy the boundary conditions of the beam, 𝑤(𝑥, 𝑡)‖௫ୀ଴  = 𝑤(𝑥, 𝑡)‖௫ୀ௅  = 0, and match the 
symmetry of 𝑤(𝑥, 𝑡) about the middle cross-section of the beam. 

The functions 𝑋௟(𝑥)  in Eq. (18) are also linearly independent and have the property of 
orthogonality as follows: 

න𝑋௟𝑋௟ᇱ𝑑𝑥௅
଴ = න sin (2𝑙 − 1)𝜋𝑥𝐿 sin (2𝑙′ − 1)𝜋𝑥𝐿 𝑑𝑥௅

଴ = ൜0,     𝑙 ≠ 𝑙ᇱ,𝐿 2⁄ ,      𝑙 = 𝑙ᇱ. (19)

Substituting the Eq. (18) of 𝑤(𝑥, 𝑡)  and the Eq. (4) of 𝑝(𝑥, 𝑡)  into Eq. (17) leads to the 
following equation: 
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𝜌ℎ෍𝑇ሷ௟(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே
௟ୀଵ + 𝑐ௌ෍𝑇ሶ௟(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே

௟ୀଵ + 𝑘ௌ෍𝑇௟(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே
௟ୀଵ      + 1𝑏 𝐸𝐼෍ቈ𝑇௟(𝑡) (2𝑙 − 1)ସ𝜋ସ𝐿ସ sin (2𝑙 − 1)𝜋𝑥𝐿 ቉ே

௟ୀଵ − 𝑃(𝑡)𝑈(𝑥) = 𝜌𝑔ℎ.  (20)

In succession, multiplying both two sides of Eq. (20) by the expression: 𝑋௞(𝑥) = sin (ଶ௞ିଵ)గ௫௅  
(𝑘 = 1, 2, ..., 𝑁). 

Then integrating the two sides of the obtained equation over the entire length of the beam, 
paying attention to the orthogonality Eq. (19), we obtain a system of 𝑁  ordinary differential 
equations of the form: 12𝜌ℎ𝐿𝑇ሷ௞(𝑡) + 12 𝑐ௌ𝐿𝑇ሶ௞(𝑡) + 12𝑘ௌ𝐿𝑇௞(𝑡) + 12𝑏 𝐸𝐼 (2𝑘 − 1)ସ𝜋ସ𝐿ଷ 𝑇௞(𝑡) − 𝑃(𝑡)𝐼௞ = 2𝜌𝑔ℎ𝐿(2𝑘 − 1)𝜋 ,                      (21)

where 𝑘 = 1, 2, ..., 𝑁 and: 

𝐼௞ = න𝑈(𝑥)sin (2𝑘 − 1)𝜋𝑥𝐿 𝑑𝑥௅
଴ = න 𝑈(𝑥)sin (2𝑘 − 1)𝜋𝑥𝐿 𝑑𝑥(௅ାௗ಴) ଶ⁄

(௅ିௗ಴) ଶ⁄ . (22)

Because the functions to be determined are 𝑢ଵ(𝑡), 𝑢ଶ(𝑡) and 𝑇௟(𝑡) (𝑙 = 1, 2, ..., 𝑁), so it is 
needed to express 𝑃(𝑡) in Eq. (21) in terms of those unknown functions. The expression of 𝑃(𝑡) 
can be obtained by using the Eq. (9) of Δ𝑧 in Eq. (7): 𝑃(𝑡) = 𝑠𝐼଴𝑏௅ ሾ𝑘ଶ(𝑢ଶ − 𝑤஼ − 𝑟஼) + 𝑐ଶ(𝑢ሶ ଶ − 𝑤ሶ ஼ − 𝑟ሶ஼)ሿ. (23)

The expressions of 𝑤஼  and 𝑤ሶ ஼  in Eq. (23) can also be written in terms of the unknown 
functions by using the Eq. (18) of 𝑤஼ and Eq. (10): 

𝑤஼ = ෍𝑇௟(𝑡)sin (2𝑙 − 1)𝜋2ே
௟ୀଵ = ෍(−1)௟ାଵ𝑇௟(𝑡)ே

௟ୀଵ , (24)

𝑤ሶ ஼ = ෍𝑇ሶ௟(𝑡)sin (2𝑙 − 1)𝜋2ே
௟ୀଵ = ෍(−1)௟ାଵ𝑇ሶ௟(𝑡)ே

௟ୀଵ . (25)

Substituting Eqs. (24) and (25) into Eq. (23) and putting the result into Eq. (21), then taking 
some arrangements, we obtain the following equations: 

𝜌ℎ𝑇ሷ௞(𝑡) − 𝜇௞𝑐ଶ𝑢ሶ ଶ + 𝑐ௌ𝑇ሶ௞(𝑡) + 𝜇௞𝑐ଶ෍(−1)௟ାଵ𝑇ሶ௟(𝑡)ே
௟ୀଵ − 𝜇௞𝑘ଶ𝑢ଶ

      +𝐻௞𝑇௞(𝑡) + 𝜇௞𝑘ଶ෍(−1)௟ାଵ𝑇௟(𝑡)ே
௟ୀଵ = 4𝜌ℎ𝑔(2𝑘 − 1)𝜋 − 𝜇௞(𝑘ଶ𝑟஼ + 𝑐ଶ𝑟ሶ஼), (26)

where: 
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𝜇௞ = 2𝑠𝐼௞𝐼଴𝑏௅𝐿 ,      𝐻௞ = 𝑘ௌ + 𝐸𝐼 (2𝑘 − 1)ସ𝜋ସ𝑏𝐿ସ ,      (𝑘 =  1, 2, . . . ,𝑁). (27)

With the Eqs. (24), (25) of 𝑤஼  and 𝑤ሶ ஼ , Eq. (13) is also written in terms of the unknown 
functions (𝑢ଵ, 𝑢ଶ and 𝑇௟(𝑡)) as follows: 

𝑚ଶ𝑢ሷ ଶ − 𝑐ଵ𝑢ሶ ଵ + (𝑐ଵ + 𝑠𝑐ଶ)𝑢ሶ ଶ − 𝑠𝑐ଶ෍(−1)௟ାଵ𝑇ሶ௟(𝑡)ே
௟ୀଵ − 𝑘ଵ𝑢ଵ + (𝑘ଵ + 𝑠𝑘ଶ)𝑢ଶ

      −𝑠𝑘ଶ෍(−1)௟ାଵ𝑇௟(𝑡)ே
௟ୀଵ = 𝑚ଶ𝑔 + 𝑠(𝑘ଶ𝑟஼ + 𝑐ଶ𝑟ሶ஼).  (28)

The original differential Eqs. (12), (13), (17) has now been transformed into a system of all 
ordinary differential Eq. (12), (28) and (26) those can be called as the transformed differential 
equations and written in matrix form: ሾ𝑀ሿ𝑞⃗ሷ + ሾ𝐶ሿ𝑞⃗ሶ + ሾ𝐾ሿ𝑞⃗ = 𝐹⃗, (29)

where 𝑞⃗ is the vector of generalized coordinates, 𝐹⃗ is the vector of excitation force and [𝑀], [𝐶], 
[𝐾] are the mass, damping and stiffness matrices, respectively. The dimension of the two vectors 
is (𝑁 + 2)×1 and that of the three matrices is (𝑁 + 2)×(𝑁 + 2). Those vectors and matrices can 
be written in detail as follows: 𝑞⃗ = [𝑢ଵ(𝑡),𝑢ଶ(𝑡),𝑇ଵ(𝑡),𝑇ଶ(𝑡), … ,𝑇ே(𝑡)]் , (30)

𝐹⃗ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

𝑚ଵ𝑔𝑚ଶ𝑔 + 𝑠(𝑘ଶ𝑟஼ + 𝑐ଶ𝑟ሶ஼)4𝜌𝑔ℎ𝜋 − 𝜇ଵ(𝑘ଶ𝑟஼ + 𝑐ଶ𝑟ሶ஼)4𝜌𝑔ℎ3𝜋 − 𝜇ଶ(𝑘ଶ𝑟஼ + 𝑐ଶ𝑟ሶ஼)…4𝜌𝑔ℎ(2𝑁 − 1)𝜋 − 𝜇ே(𝑘ଶ𝑟஼ + 𝑐ଶ𝑟ሶ஼)⎦⎥⎥
⎥⎥⎥
⎥⎥⎤, (31)

[𝑀] =
⎣⎢⎢
⎢⎢⎡
𝑚ଵ 0 0 0 … 00 𝑚ଶ 0 0 … 00 0 𝜌ℎ 0 … 00 0 0 𝜌ℎ … 0… … … … … …0 0 0 0 … 𝜌ℎ⎦⎥⎥

⎥⎥⎤, (32)

[𝐶] =
⎣⎢⎢
⎢⎢⎢
⎡ 𝑐ଵ −𝑐ଵ 0 0 … 0−𝑐ଵ 𝑐ଵ + 𝑠𝑐ଶ −𝑠𝑐ଶ 𝑠𝑐ଶ … (−1)ே𝑠𝑐ଶ0 −𝜇ଵ𝑐ଶ 𝑐ௌ + 𝜇ଵ𝑐ଶ −𝜇ଵ𝑐ଶ … (−1)ேାଵ𝜇ଵ𝑐ଶ0 −𝜇ଶ𝑐ଶ 𝜇ଶ𝑐ଶ 𝑐ௌ − 𝜇ଶ𝑐ଶ … (−1)ேାଵ𝜇ଶ𝑐ଶ… … … … … …0 −𝜇ே𝑐ଶ 𝜇ே𝑐ଶ −𝜇ே𝑐ଶ … 𝑐ௌ + (−1)ேାଵ𝜇ே𝑐ଶ⎦⎥⎥

⎥⎥⎥
⎤, (33)
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[𝐾] =
⎣⎢⎢
⎢⎢⎢
⎡ 𝑘ଵ −𝑘ଵ 0 0 … 0−𝑘ଵ 𝑘ଵ + 𝑠𝑘ଶ −𝑠𝑘ଶ 𝑠𝑘ଶ … (−1)ே𝑠𝑘ଶ0 −𝜇ଵ𝑘ଶ 𝐻ଵ + 𝜇ଵ𝑘ଶ −𝜇ଵ𝑘ଶ … (−1)ேାଵ𝜇ଵ𝑘ଶ0 −𝜇ଶ𝑘ଶ 𝜇ଶ𝑘ଶ 𝐻ଶ − 𝜇ଶ𝑘ଶ … (−1)ேାଵ𝜇ଶ𝑘ଶ… … … … … …0 −𝜇ே𝑘ଶ 𝜇ே𝑘ଶ −𝜇ே𝑘ଶ … 𝐻ே + (−1)ேାଵ𝜇ே𝑘ଶ⎦⎥⎥

⎥⎥⎥
⎤. (34)

3.4. Determination of static displacements of the masses and elastic beam 

Determination of static displacements of the components is needed in case the vehicle is moving 
on a completely smooth road when entering a rough road and static displacements are chosen as the 
corresponding initial conditions to consider vertical vibration of the mechanical system. 

Conventionally, the subscript or superscript “0” is used to refer to the values of the 
corresponding quantities in static state. Because the phenomenon of losing contact and vertical 
vibrations of the whole system do not occur in static state so 𝑠 = 1 and 𝑞⃗ሷ଴ = 0ሬ⃗ , 𝑞⃗ሶ଴ = 0ሬ⃗ . At this 
time, the spring 𝑘ଶ is subjected to the force equal to the total weight of the two masses 𝑚ଵ and 𝑚ଶ, so its static deformation is Δ𝑧଴ = (௠భା௠మ)௚௞మ . As the result, the corresponding length of the 
contact area can be calculated as: 

𝑑஼଴ = 2ට𝑟଴ଶ − (𝑟଴ − Δ𝑧଴)ଶ = 2ඨ𝑟଴ଶ − ൤𝑟଴ − (𝑚ଵ + 𝑚ଶ)𝑔𝑘ଶ ൨ଶ. (35)

The values 𝐼௞଴ of the quantities 𝐼௞ in Eq. (22) can be determined according to the pre-chosen 
law of pressure distribution. Then, we can calculate the value [𝐾]଴ of the matrix [𝐾] by using 
Eqs. (27) and (34), then deduce static displacements 𝑞⃗଴ based on Eq. (29) as follows: 𝑞⃗଴ = [𝑢ଵ଴,𝑢ଶ଴,𝑇ଵ଴,𝑇ଶ଴, … ,𝑇୒଴]் = [𝐾]଴ି ଵ𝐹⃗଴, (36)

where 𝐹⃗଴ is the value of 𝐹⃗ in static state. It is determinned from Eq. (31) by setting 𝑟஼ =  𝑟ሶ௖ = 0. 
The displacement expression of the beam is deduced from Eq. (18): 

𝑤଴ = 𝑤(𝑥, 𝑡)||௧ୀ଴ = ෍𝑇௟଴sin (2𝑙 − 1)𝜋𝑥𝐿ே
௟ୀଵ , (37)

where the values of quantities 𝑇௟଴ are last 𝑁 components of vector 𝑞⃗଴ which has been calculated 
as in Eq. (36). 

3.5. Method for numerically solving the differential equations of motion 

Differential Eq. (29) are ODEs with the matrices [𝐶] and [𝐾] depending on time. Let’s consider 
the case where the vehicle is moving on a smooth road when entering the rough road and the time 
point 𝑡 = 0 is chosen as the time point of transition between the two road profiles. In this situation, 
the relevant initial values are taken as those of static state. 

The procedure for numerically solving the differential equations of motion Eq. (29) can be 
described as follows: 

1) Assigning values to the quantities 𝑔, 𝑚ଵ, 𝑚ଶ, 𝑘ଵ, 𝑘ଶ, 𝑘ௌ, 𝑐ଵ, 𝑐ଶ, 𝐸, 𝑏, ℎ, 𝐼, 𝐿, 𝑟଴, 𝑏௅ and the 
vehicle speed of movement.  

2) Describing the profile of road surface as the time functions 𝑟஼ = 𝑟஼(𝑡), 𝑟ሶ௖ = 𝑟ሶ௖(𝑡). 
3) Choosing the pressure distribution function 𝑈(𝑥) and the value of 𝑁, the number of terms 
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of the series which is used to approximate function 𝑤(𝑥, 𝑡). 
4) Selecting the computing time interval [0, 𝑡௠௔௫] and the computing time step Δ𝑡. 
5) Assigning 𝑖 = 0, 𝑡௜ = 0, 𝑠 = 1, 𝑞⃗௜ = 𝑞⃗଴, 𝑞⃗ሶ ௜ = 0ሬ⃗  for starting step of computing. 
6) Calculating the values of 𝑑஼଴, I0 and 𝐼௞଴ by using Eqs. (35), (6) and (22). 
7) Calculating the values of matrices [𝐶]௜, [𝐾]௜ according to Eqs. (33), (34) and the exciting 

vector 𝐹⃗௜ according to Eq. (31). 
8) Calculating vectors 𝑞⃗௜ାଵ , 𝑞⃗ሶ ௜ାଵ  and 𝑞⃗ሷ ௜ାଵ  using a known method such as Runge-Kutta’s 

method. 
9) Determining displacement function 𝑤௜ାଵ(𝑥, 𝑡)  of the beam according to Eq. (18) and 

deducing the values of 𝑤஼௜ାଵ, 𝑤ሶ ஼௜ାଵ. 
10) Calculating 𝑄௜ାଵ = 𝑘ଶ[𝑢ଶ௜ାଵ − (𝑤஼௜ାଵ + 𝑟஼௜ାଵ)] + 𝑐ଶ[𝑢ሶ ଶ௜ାଵ − (𝑤ሶ ஼௜ାଵ + 𝑟ሶ஼௜ାଵ)]  and following 

one from the two possibilities: 
– If 𝑄௜ାଵ ൐ 0 then the loss of contact does not occur, so 𝑠 = 1. At this point of time, it is needed 

to calculate the values of 𝑑஼௜ାଵ, 𝐼଴௜ାଵ, 𝐼௞௜ାଵ. 
– If 𝑄௜ାଵ ൑ 0 then the loss of contact occurs or starts to occur and 𝑠 = 0. Now 𝑝(𝑥, 𝑡) = 0 and 

the terms concerning 𝑝(𝑥, 𝑡) in Eq. (26) are absent and 𝜇௞௜ାଵ = 0. 
11) Assigning 𝑖 = 𝑖 + 1, 𝑡௜ = 𝑡௜ + ∆𝑡 and repeating the process of calculation from step 7. The 

process of calculation ends when reaching the condition 𝑡௜ ൐ 𝑡௠௔௫. 
At the end of the process of calculation, we obtain the following functions 𝑢ଵ(𝑡), 𝑢ଶ(𝑡), 𝑇ଵ(𝑡), 𝑇ଶ(𝑡) , …, 𝑇ே(𝑡)  together with their first and second derivatives. The displacement function 𝑤(𝑥, 𝑡)  which describes the road deformation at each time point is determined by applying 

Eq. (16). 

4. Some results from numerical computation 

This section presents some typical results obtained from numerical computation. The situation 
under consideration is that the automobile is moving on a completely smooth road surface with a 
constant velocity 𝑉 when passing a bump that has the profile of parabolic type as shown in Fig. 6. 
In the figure, the origin 𝑂 corresponds to the initial time (𝑡 = 0) of the process of computation,  𝑥଴ = 𝑉𝑡଴ – the distance of moving before the vehicle enters the bump (𝑡଴ the corresponding time), ℎா and 𝐿ா – the height and the length (in direction of movement) of the bump, respectively. 

 
Fig. 6. Road profile of parabolic type and geometrical characteristics 

The input data of consideration are taken as follows: 
– The values of parameters concerned with the vehicle (automobile): 𝑚ଵ = 1500 kg,  𝑘ଵ = 246000 N/m, 𝑐ଵ = 1500 N.s/m, 𝑚ଶ = 500 kg, 𝑘ଶ =  800000 N/m, 𝑐ଶ = 62000 N.s/m,  𝑏௅ = 0.25 m, 𝑟଴ = 0.45 m. 
– The data belonging to Kelvin’s visco-elastic ground and the elastic beam: 𝑘ௌ = 48×106 N/m2, 𝑐ௌ = 30000 N.s/m, 𝐸 = 1.6×109 Pa, 𝐿 = 20 m, 𝑏 = 0.45 m, ℎ = 0.50 m. 
– The values of parameters concerned with the bump (𝐿ா ,ℎா),  the time interval of 

consideration (𝑇 ) and the number 𝑁  of terms of the series used to approximate 𝑤(𝑥, 𝑡) :  𝐿ா = 0.80 m, ℎா = 0.15 m, 𝑡଴ = 0.5 s, 𝑡௠௔௫ = 5 s, 𝑁 = 5. 
The above value of 𝑁 is taken after a process of considering on convergence of results has 

been carried out. 
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The results will be given in both graphical and table forms. Two considerable quantities are 
the acceleration of the vehicle body (which is represented by mass 𝑚ଵ) and the contact force (ie. 𝑢ሷଵ and 𝑄). The results in case of taking the loss of contact into account are compared to the 
corresponding results in case of not taking the loss of contact into account. 

The plots in Fig. 7 and Fig. 8 present the change in acceleration of the vehicle body and the 
change in contact force with respect to time in case the automobile moves with constant velocity 𝑉 = 15 km/h. The plot with some flat pieces lying on the abscissa in Fig. 7 shows that the loss of 
contact really appears in the conditions of consideration. The clear differences of the two curves 
in both plots prove the need of taking the loss of contact into account. 

 
Fig. 7. The change in acceleration of the vehicle body, 𝑢ሷଵ = 𝑢ሷଵ(𝑡) 

 
Fig. 8. The change in contact force, 𝑄 = 𝑄(𝑡) 

Table 1 shows the root-mean-squared values of the vehicle acceleration and the contact force 
(𝑄𝑅𝑀𝑆) versus the velocity of movement (𝑉) in both cases of taking (𝑢ሷ 1𝑌𝐸𝑆𝑅𝑀𝑆 , 𝑄𝑌𝐸𝑆𝑅𝑀𝑆) and not taking 
(𝑢ሷ 1𝑁𝑂𝑅𝑀𝑆 , 𝑄𝑁𝑂𝑅𝑀𝑆) the loss of contact into account. The total time (𝑇௅஼ ) of losing contact in each 
considered case is also given in the Table 1. 

The data in the above table also show the significant differences between the two cases of 
taking and not taking the loss of contact into account. However, the law of changing in values of 
the five quantities considered above is not clear. It may be concerned with the excitation – 
response relation and needs some consideration in more detail. 

0 0.5 1 1.5 2 2.5 3 3.5 4
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25
Accelerations of mass m1

Time, [s]

d2
(u

1)
/d

t2
, [

m
/s

2]

Loss of contact taken into account

Loss of contact not taken into account

0 0.5 1 1.5 2 2.5 3 3.5 4

-8

-6

-4

-2

0

2

4

6

8

x 104 Contact force

Time, [s]

Q
 =

 Q
(t)

, [
N

]

0.5 0.55 0.6 0.65 0.7 0.75 0.8

-5

0

5

x 104

Loss of contact taken into account

Loss of contact not taken into account



CONSIDERATION OF THE PROBLEM ABOUT VIBRATION OF AUTOMOBILE IN ONE FOURTH MODEL WITH TAKING ROAD DEFORMATION AND THE LOSS 
OF CONTACT INTO ACCOUNT. HAM VU CONG, CUONG PHUNG MANH, DUNG TRAN QUANG 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 957 

Table 1. Analysis results 𝑉 [km/h] 5 10 15 20 25 30 𝑢ሷଵ௒ாௌோெௌ , [m/s2] 4.1897 5.9293 4.5593 3.7019 3.9686 4.2066 𝑢ሷଵேைோெௌ, [m/s2] 4.6052 7.2719 6.2176 5.2483 4.5286 3.9934 𝑄௒ாௌோெௌ, [N] 20860 21677 20904 20657 21025 21441 𝑄ேைோெௌ, [N] 21052 22877 22605 22948 23841 25135 𝑇௅஼ , [s] 0.2111 0.2736 0.1955 0.0976 0.1422 0.2370 

5. Conclusions 

The article has modeled and expressed the relations of parameters which characterize the 
contact between the wheel of an automobile and the road surface. A description of the change in 
dimensions of the contact area is mentioned and some typical laws of pressure distribution are 
given. A physical model of the vehicle-road coupled system is introduced where the one-fourth 
model of the vehicle is applied, the road deformation and the phenomenon of losing contact are 
taken into account. The use of contact state parameter allows to unify the differential equations of 
motion in both states of contact and losing contact. The differential equations of motion which 
include a partial differential equation are transformed into a system of all ordinary differential 
equations by applying the Bubnov-Galerkin’s method. A procedure for numerically solving the 
transformed differential equations is given and some typical numerical results are also presented. 
The results have showed significant differences in behaviour of the mechanical system between 
the two cases taking and not taking the loss of contact into account. Hence, taking the loss of 
contact into account in consideration of problems on vibration of automobiles is needed. 
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