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Abstract. Due to the disadvantages that rely on prior knowledge and expert experience in 
traditional order analysis methods and deep learning cannot accurately extract the features in 
time-varying conditions. A fault diagnosis method for rotating machinery under time-varying 
conditions based on tacholess order tracking (TOT) and deep learning is proposed in this paper. 
Firstly, frequency domain periodic signals and estimated speed information are obtained by order 
tracking. Secondly, the frequency domain periodic signal is speed normalized using the estimated 
speed information. Finally, normalized features are extracted by deep learning network to form 
feature vector. The feature vector is fed into a softmax layer to complete fault diagnosis of the 
gearbox. The fault diagnosis of the gearbox results are compared with other traditional methods 
and show that the proposed fault diagnosis method can effectively identify the faults and obtain 
higher fault diagnosis accuracy under time-varying speed. 
Keywords: tacholess order tracking, time-varying speed, deep learning, fault diagnosis. 

1. Introduction 

As the mechanical equipment become larger and more complicated, it is more and more 
difficult to implement health condition monitoring and fault diagnosis. However, these large 
machines are often the core equipment in the production site, once the failure will cause serious 
economic losses and even safety accidents. Therefore, it is necessary to study appropriate fault 
diagnosis methods in real application scenarios. For rotating machinery, one of the most important 
reasons for poor diagnosis results is the fluctuation of rotation speed. Variations in speed, 
especially large speed variations, will lead to the failure of traditional time-domain and 
frequency-domain analysis, as well as difficulties in convergence of machine-learning-based fault 
diagnosis methods. So, it is necessary to realize intelligent fault identification by deep learning 
method after equal-angle sampling of signals by order tracking technology. 

There has been a long time research on the variable speed analysis of rotating machinery. In 
the early research, computing order tracking (COT) is made mainly by arranging speed sensors to 
obtain speed signals [1]. On this basis of speed sampling, Vold-Kalman filter and other methods 
can be used to extract and analyze vibration signals of a specific order [2, 3], and equal-angle 
sampling method can be used to transform vibration signals from time domain to angle domain, 
so as to achieve order extraction of fault features [4]. However, the speed sensor cannot be 
installed in many tests, which makes the speed information difficult to obtain. TOT technique can 
be used for order extraction and rotation frequency fitting through time-frequency analysis, thus 
obtaining the virtual speed. But the TOT also has some shortcomings, especially the estimation is 
not accurate under large speed variations. Some scholars proposed improved methods of order 
tracking for this problem and achieved good results [5, 6]. After the equal-time sampling signal is 
converted into equal-angle sampling signal by order tracking, fault determination needs to be 
realized by means of fault feature extraction and identification. However, methods of fault 
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diagnosis by vibration signal analysis are established on a large amount of professional knowledge. 
It is difficult to utilize the methods without sufficient knowledge of signal analysis. So, a large 
number of factories have a strong demand for intelligent diagnosis. 

Deep learning is an effective feature identification method which can learn deep features to 
represent data distribution without prior knowledge and expert experience [7]. Deep neural 
networks (DNNs) can adaptively extract deeper and more essential features based on the internal 
structure of massive data than traditional machine learning model. DNNs have been successfully 
applied in many fields such as speech recognition, image classification, motion recognition, and 
text processing. In recent years, it has become an active trend to apply deep learning into fault 
diagnosis fault diagnosis research field. Xia et al. [8] designed a convolutional neural network 
(CNN) for fault detection and verified the method by Case Western Reserve University data and 
gearboxes data. Bruin et al. [9] used long short-term memory (LSTM) network for detection and 
identification of faults in railway track circuits. Furthermore, scholars have designed some novel 
deep learning models for fault diagnosis to solve variable-speed problems. Lu et al. [10] added a 
maximum mean discrepancy term to the loss function of auto-encoders to force them to learn 
features that are not affected by operating conditions. Qian et al. [11] proposed a new transfer 
learning method and solved data distribution problems caused by rotating speed variation. Peng 
et al. [12] proposed a novel deeper 1D CNN based on 1D residual block and the experimental 
results show that this method is effective in the case of strong noise and variable load. 

Although in the above research, deep learning model shows many advantages. But the 
following problems are still not well solved.  

1. There is a lack of research on the continuous variation of rotation speed. The existing data 
set usually has only a few data collected at a fixed speed. However, in reality, the variation of 
mechanical working conditions is usually continuous and uncertain. 

2. Generally, the existing methods can only solve the problem of small range of velocity 
fluctuation, and lack of intelligent fault diagnosis methods under the condition of drastic and 
continuous changes of rotating speed. 

Aiming at these problems, this paper combined with the advantages of order tracking 
technology and deep learning method, creatively proposed a rotating machinery fault diagnosis 
method based on TOT and long short-term memory and batch normalization (LSTMBN) to solve 
the intelligent diagnosis problem of time-varying rotating speed. Firstly, the TOT technology is 
used resample to the input signal to obtain the frequency domain periodic signal. Secondly, the 
frequency domain periodic signal is energy normalization using the RSN method. Thirdly, 
LSTMBN is used to extract temporal features and form a feature vector. Finally, the feature vector 
is fed into a fully connected (FC) layer and a softmax layer to obtain the fault classification 
category. The results of gearbox fault diagnosis experiment show that the model can effectively 
identify the faults and obtain higher fault diagnosis accuracy. The main contributions of this paper 
are summarized as follows: 

1. A signal processing method under time-varying speed condition is proposed. Firstly, the 
angle-domain resampling of the signal is carried out by using the TOT technology, and then the 
influence caused by the speed change is eliminated by the RSN method. 

2. A model based on LSTMBN intelligent diagnosis is proposed, which can improve the 
generalization ability of the model and enhance the robustness of the model. 

3. A fault diagnosis method based on TOT and LSTMBN is proposed, which has higher 
accuracy and does not require domain knowledge and expert experience under the condition of 
varying rotating speed. 

The remainder of the paper is organized as follows: In Section 2, the relevant knowledge is 
briefly described. In Section 3, procedure of the proposed method is illustrated. In Section 4, a 
gearbox fault diagnosis experiment is used to validate the effectiveness of the proposed method. 
Finally, conclusions are drawn in Section 5. 
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2. Relevant knowledge 

2.1. TOT based on Gabor transform 

The COT technique converts the equal time-interval sampled signals into equal angle sampled 
signals by signal processing algorithms [13, 14]. Based on the proposed Vold-Kalman order 
tracking technology, the order extraction and adjacent cross-order extraction under large-speed 
fluctuation are realized [15]. However, the Vold-Kalman order tracking technology requires a 
large number of matrix calculations. In contrast, less computation is required using the Gabor 
order tracking technique. Therefore, Gabor-based TOT is used in this paper. 

2.1.1. Gabor transform 

In 1946, British physicist Dennis Gabor proposed a method for simultaneously describing the 
time-frequency features of signals using a discretized time-frequency grid, namely Gabor 
expansion. However, the continuous Gabor transform is difficult to apply in engineering 
application. Wexler and Raz derived Gabor transform pairs of periodic finite discrete time series 
by discrete Poisson sum formula. In application, an approximate orthogonal Gabor expansion 
algorithm is used. The algorithm can be expressed by Eqs. (1-2): 

𝑥௅ሺ𝑘ሻ = ෍ ෍𝐶௠,௡ℎ௅ሺ𝑘ሻ,ேିଵ
௡ୀ଴

ெିଵ
௠ୀ଴  (1)

𝐶௠,௡ሺ𝑘ሻ = ෍𝑥ሺ𝑘ሻ௅ିଵ
௞ୀ଴ 𝛾௅∗ሺ𝑘ሻ ≈ ‖𝛾ሺ𝑘ሻ‖෍𝑥ሺ𝑘ሻℎ௅∗ሺ𝑘ሻ.௅ିଵ

௞ୀ଴  (2)

In Eqs. (1-2), 𝐿 is the period of the signal, 𝑀 and 𝑁 are the numbers of time domain samples 
and the number of frequency domain samples, 𝐶௠,௡ is Gabor coefficient, and ℎ௅ሺ𝑘ሻ and 𝛾௅ሺ𝑘ሻ are 
defined as Eqs. (3-4). 𝛾௅∗ሺ𝑘ሻ and 𝛾௅ሺ𝑘ሻ are conjugate functions. The bi-orthogonal relationship 
can be expressed by Eq. (5): ℎ௅ሺ𝑘ሻ = ℎሺ𝑘 −𝑚∆𝑀ሻ𝑒ଶగ௡∆ே௞ ௅⁄ , (3)𝛾௅ሺ𝑘ሻ = 𝛾ሺ𝑘 − 𝑚∆𝑀ሻ𝑒ଶగ௡∆ே௞ ௅⁄ , (4)෍ℎሺ𝑘 + 𝑚∆𝑀ሻ௅ିଵ
௞ୀ଴ 𝑒ିଶగ௡ெ௞𝛾௅∗ሺ𝑘ሻ = 𝛿ሺ𝑚ሻ𝛿ሺ𝑛ሻ,     ሺ0 ≤ 𝑚 ≤ ∆𝑀 − 1,   0 ≤ 𝑛 ≤ ∆𝑁 − 1ሻ. (5)

In Eqs. (3-5), ∆𝑀 and ∆𝑁 are the time sampling interval and the frequency sampling interval 
respectively, and ∆𝑀∆𝑁 = 𝐿. 

2.1.2. Signal order extraction based on Gabor transform 

In signal order extraction based on Gabor transform, the central frequency is usually 
determined by linear interpolation method. On this basis, the bandwidth of the filter can be 
determined by the equal frequency method or the equal order method. If the 𝑞-th center frequency 𝑓௤ሺ𝑡ሻ and the equal-frequency bandwidth ∆𝑓  is a constant, the filtering neighborhood can be 
represented by Eq. (6). The equal-order bandwidth ∆𝑜 varies with the filter center frequency, and 
its ratio to the center frequency 𝑓௤ሺ𝑡ሻ is a constant. The filtering neighborhood of the equal order 
method can be represented by Eq. (7). Then, the Gabor coefficient of the corresponding order in 
the signal is obtained by the masking algorithm. The algorithm is to set a binary masking array 
with the same dimension as 𝐶௠,௡ according to the time-varying filtering neighborhood, then, the 
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Gabor coefficient subset is extracted according to the operation of Eq. (8): 

𝑓௤ሺ𝑡ሻ ± ∆𝑓2 = ൤𝑓௤ሺ𝑡ሻ − ∆𝑓2 , 𝑓௤ሺ𝑡ሻ + ∆𝑓2 ൨, (6)

ቐ𝑓௤ሺ𝑡ሻ ± ∆𝑓2 = ൤൬𝑞 − ∆𝑜2 ൰ × 𝑓ଵሺ𝑡ሻ, ൬𝑞 + ∆𝑜2 ൰ × 𝑓ଵሺ𝑡ሻ൨ ,∆𝑓 = ∆𝑜 × 𝑓ଵሺ𝑡ሻ,  (7)

𝐶௠,௡௤ = ൜𝐶௠,௡, ∅௠,௡ = 1,0, ∅௠,௡ = 0. (8)

2.1.3. Instantaneous frequency estimation and signal re-sampling 

The instantaneous frequency function 𝐼𝐹௤ሺ𝑡ሻ  is obtained by estimating the instantaneous 
frequency of the 𝑞-th order component according to the local extremum search algorithm of 
Eq. (9). 𝐼𝐹௤ሺ𝑡ሻ  is obtained by Eq. (10). The angle interval of equal angle re-sampling ∆𝜃  is 
calculated by Eq. (11): 𝐼𝐹௤ሺ𝑡 + 1ሻ = Argmaxห𝑀௤ሺ𝑡, 𝑓ሻห,     𝑓 ∈ ൣ𝑓௤ሺ𝑡ሻ − ∆𝑓, 𝑓௤ሺ𝑡ሻ + ∆𝑓൧, (9)𝐼𝐹௤ሺ𝑡ሻ = 𝑎𝑡ଶ + 𝑏𝑡 + 𝑐, (10)∆𝜃 = 𝜋 𝑄௠௔௫⁄ . (11)

In Eq. (11), 𝑄௠௔௫ is the max order for analysis. 
The data length 𝑅 after re-sampling can be calculated by Eq. (12): 

𝑁∆𝜃 = 2𝜋න 𝐼𝐹௤ሺ𝑡ሻ𝑑𝑡்
଴ . (12)

In Eq. (12), 𝑇 is the sampling time of time domain signal. 
Equal angle re-sampling of the bond phase time scale 𝑇௡ is calculated by Eq. (13): 𝑎3 𝑇௡ଷ + 𝑏2𝑇௡ଶ + 𝑐𝑇௡ = 𝑛2𝑄௠௔௫ + ൤𝑎3 𝑇଴ଷ + 𝑏2𝑇଴ଶ + 𝑐𝑇଴൨ ,     ሺ𝑛 = 1,2,⋯𝑁ሻ. (13)

In Eq. (13), 𝑇଴ is the initial time of time domain sampling. 
According to the calculated time scale 𝑇௡, the time-domain signal 𝑥(𝑡) can be sampled using 

Lagrange linear interpolation algorithm as Eq. (14): 

𝑥(𝑇௡) = 𝑥(𝑡௜) + 𝑥(𝑡௜ାଵ) − 𝑥(𝑡௜)𝑡௜ାଵ − 𝑡௜ (𝑇௡ − 𝑡௜),     (𝑡௜ ≤ 𝑇௡ ≤ 𝑡௜ାଵ). (14)

2.2. Speed normalization method 

Existing domain adaptation methods are mostly based on statistical methods, and few studies 
focus on the different data distribution of different domains. In tasks such as image and video 
recognition, this difference in distribution is often difficult to interpret. However, in the fault 
diagnosis field, the main source of this difference is the change in operating conditions, which can 
be analyzed and explained. For example, in fault diagnosis under variable speed condition, the 
difference of data distribution between source domain and target domain is caused by the great 
speed fluctuation in training and testing stages. That is to say, to eliminate the difference of 
distribution between two domains, it is necessary to eliminate or reduce the influence of rotational 
speed on model input. 
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In literature [16] proposed a load demodulation normalization to solve the cross-domain 
learning problem caused by the change of rotating mechanical load. In order to eliminate the 
influence of load change on vibration signal, the original signal is divided by the load modulation 
signal obtained by filtering. 

Similar to the literature [16], a RSN method is used to reduce the influence of the change of 
the rotational speed on the vibration signal. The method processes the original signal with the 
rotational speed of the spindle based on the centrifugal force experienced by the object as it rotates 
according to Eq. (15): 𝑓 = 𝑚𝑤ଶ𝑟. (15)

In Eq. (15), 𝑚  is the mass of a particle, 𝑤  is the angular velocity of its rotation (linear 
relationship with the rotational speed), 𝑟 is the radius of rotation. The centrifugal force of a particle 
is proportional to the square of its rotational speed, so the vibration amplitude measured by the 
sensor is also related to the square of the mechanical speed. Based on this, the normalization of 
the rotational speed is to divide the amplitude of the original vibration signal by the square of the 
instantaneous value of the corresponding rotational speed. 

In order to convert different magnitudes of data into the same magnitude, the 𝑧-score method 
is used for normalization. The conversion function can be expressed as Eq. (16): 𝑋௓ = 𝑋 − 𝜇𝜎 . (16)

In Eq. (16), 𝑋 is the time series of the sensor channel. 𝜇 and σ are the mean and standard 
deviation of 𝑋. 𝑋௓ is 𝑧-score normalized time series data. 

2.3. LSTM model 

In recent years, deep learning frameworks including auto-encoder (AE), deep belief network 
(DBN), CNN, recurrent neural network (RNN) and its variants [17, 18] has been developed for 
machine health monitoring. LSTM is an advanced RNN variant which can solve the problem of 
the disappearing gradient of the basic RNN [19, 20]. The forget gate in each time step unit enables 
LSTM to adaptively capture the long-term correlation and nonlinear dynamics of time series data 
[21]. Raw data as input is allowed in LSTM model [22, 23], and the literature [9] confirmed that 
LSTM is more suitable than CNN for fault diagnosis based on time series data. 

× ×

σ σ σ tanh

tanh

× +

ht+1

xt+1

A× ×

σ σ σ tanh

tanh

ht

xt

× +

ht-1

xt-1

× ×

σ σ σ tanh

tanh

× +

A

 
Fig. 1. LSTM cell structure 

As shown in Fig. 1, the memory unit c is controlled through three gate structures in LSTM 
model. The input gate mainly controls inputting the temporary status information into the memory 
unit c; the forget gate mainly controls information which is forgotten at the last moment; the output 
gate is responsible for controlling whether the status information is output at this time. In the 
LSTM hidden layer unit structure diagram, 𝑥௧ is the input vector of the current sample, ℎ௧ିଵ is the 
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same hidden layer output, ℎ௧ is the hidden layer output of the current sample, and the input gate 
includes two parts, 𝑖௧ and 𝑎௧. 𝑓௧ is the output of the forget gate, 𝑜௧ is the output of the output gate, 𝑐௧ is the update of the current state, and 𝑐௧ିଵ is the last state. 

The LSTM single memory unit 𝑐 can be expressed as Eqs. (17-22): 𝑓௧ = 𝜎൫𝑊௙ℎ௧ିଵ + 𝑈௙𝑥௧ + 𝑏௙൯, (17)𝑖௧ = 𝜎(𝑊௜ℎ௧ିଵ + 𝑈௜𝑥௧ + 𝑏௜), (18)𝑎௧ = tanh(𝑊௔ℎ௧ିଵ + 𝑈௔𝑥௧ + 𝑏௔), (19)𝑐௧ = 𝑐௧ିଵ°𝑓௧ + 𝑖௧°𝑎௧ , (20)𝑜௧ = 𝜎(𝑊௢ℎ௧ିଵ + 𝑈௢𝑥௧ + 𝑏௢), (21)ℎ௧ = 𝑜௧° tanh(𝑐௧). (22)

In Eqs. (17-22), 𝑊 and 𝑈 are weight matrices corresponding to each gate structure, and 𝑏 are 
biases. 

3. Proposed method 

The data-driven fault diagnosis method shows its advantages in condition monitoring. In recent 
studies, deep learning methods using multi-scale deep models have been able to realize fault 
identification under variable speed conditions. But these methods are based on the assumption that 
the rotating speed is fast and the machine does not need to start or stop frequently. It is impossible 
to realize effective fault identification in the stage of start-up and shutdown or the stage of large 
speed variation. At the same time, due to the limitation of field conditions, machines cannot be 
equipped with speed sensor, which makes the traditional order tracking method difficult to 
implement. 

Accordingly, in order to solve the problem of intelligent fault diagnosis of time-varying speed, 
the intelligent diagnosis of equipment is realized by integrating TOT technology, speed 
normalization and LSTMBN model in this research. The framework of proposed fault diagnosis 
system for planetary gearbox is presented in the Fig. 2. 

Model Training StagePreprocessing Stage

Start

Order Tracking

LSTMBN Model

End

Raw Data

Diagnostic Results

Monitoring Signal(X)

LSTMBN Model Of 
Training Completion

Constructing Feature Set
（X,Y）

RSN

Data Standardization

Sample Segmentation

Diagnostic 
Stage

Preprocessing 

 
Fig. 2. Flow chart of the proposed method 

As it shown in the flowchart of preprocessing stage, firstly, the angular domain re-sampling of 
the data is performed by using Gabor transform based on TOT. After that, the influence of rotation 
speed on amplitude is eliminated by using rotation speed normalization and 𝑧-score normalization. 
The TOT based on Gabor transformation is shown in Fig. 3, and the details are described as 
follows. 
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Frequency spectrums of the collected signals are at first calculated by Gabor transformation. 
That’s because the Gabor transform is the best short-time Fourier transform and can well describe 
the instantaneous condition of signals with large changes. Afterwards, signal order extraction 
based on Gabor transform is carried out. In order to be suitable for large speed fluctuation and 
non-linear speed fluctuation, the center frequency is determined by linear interpolation of the order 
feature points in the Gabor time spectrum. This method can completely avoid the order recognition 
error caused by the interference of the spectrum ridges or the large fluctuations of the rotational 
speed caused by the interference. Then the Gabor coefficients of the corresponding order in the 
signal are obtained by the occlusion algorithm. The spectrum can be reconstructed by substituting 
Gabor coefficient into Eqs. (1-2), and the spectrum with only the 𝑞-th order component can be 
obtained. According to the local extremum search algorithm, the instantaneous frequency of the 𝑞-th order component is estimated, and the instantaneous frequency function is obtained. Further, 
the signals are re-sampled at the same angle by using the bond phase time scale method. 

In the stage of training, a fault diagnosis method of LSTMBN model is proposed in this paper. 
The process is shown in Fig. 4, and the details are described as follows: 

1) Data intercepting. 
A sliding window is used to intercept the raw data to obtain samples 𝑋 ∈ 𝑅௅, 𝐿 represents the 

length of the sample data sequence. It is clear that a small 𝐿 does not yield distinctive local  
features. On the contrary, if 𝐿 value is large, a large amount of global space-time information will 
be lost. Therefore, we select the appropriate length 𝐿 of sample data sequence through comparison 
experiments. 

2) Feature extraction. 
After obtaining sample 𝑋, LSTMBN model is used to extract the temporal sequence features 

of each component. The LSTMBN model is shown in Fig. 3. Two LSTMBN layers are used to 
extract the local temporal sequence features. 

3) Batch normalization (BN). 
The model parameters change constantly during the training process due to the multilayer 

structure. It leads to the continuous change of the input distribution of the subsequent layers. The 
learning process must adapt each layer to the new input distribution, so the learning speed must 
be reduced, which leads to the slower convergence rate of the model. Batch normalization layer 
normalizes the output of each layer into normal distribution, reduce the deviation of internal 
covariance and speed up the training process of deep model. The output calculation formula of 
BN layer is: 𝑦௜ = 𝛾𝑥௜ᇱ + 𝛽, (23)𝑥௜ᇱ = 𝑥௜ − 𝜇஻ඥ𝜎஻ଶ + 𝜀, (24)

𝜇஻ = 1𝑚෍𝑥௜௠
௜ୀଵ , (25)

𝜎஻ଶ = 1𝑚෍(𝑥௜ − 𝜇஻)ଶ௠
௜ୀଵ , (26)

which, 𝑥 is the input vector, 𝑥 ∈ 𝑅௠, 𝜇஻ is the mean value of 𝑥௜, 𝜎஻ଶ is the variance of 𝑥௜, 𝜀 is a 
very small constant, 𝛾  and 𝛽  are the learned parameters in the model. BN can accelerate the 
convergence of the model and prevent overfitting. Using BN layer can reduce dropout rate and 
improve learning efficiency. 

4) Defects classification. 
Transfer the eigenvector v to another FC layer and classification layer. The formula is defined 

as: 
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𝑃(𝑦 = 𝑗) = 𝑒ఏೕ೅௩∑ 𝑒ఏೕ೅௩௄௞ୀଵ , (27)

which, 𝐾 is the number of labels, 𝜃 is a parameter of softmax layer. 
Then calculate the error between the predicted value and the true value in the training data, the 

parameters of the whole model are trained by back propagation. Finally, the trained model can be 
applied to the machine health monitoring. 
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Fig. 3. Flow chart of the proposed TOT method 
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Fig. 4. Flow chart of the proposed LSTMBN model 

To sum up, detailed process of the fault diagnosis method proposed is shown in Fig. 5, and the 
details are described as follows: 

1) For the collected signals 𝑥(𝑡),  the frequency spectrums are calculated by Gabor 
transformation. 

2) An obvious order component is selected in the Gabor time-frequency diagram, and the filter 
center frequency line is obtained by connecting the control points placed on its ridge line. 

3) The Gabor coefficient 𝐶௠,௡௤  of the order is obtained by the masking algorithm, and the time 
spectrum 𝑀௤(𝑡, 𝑓) only for the order component is obtained. 

4) Instantaneous frequency estimation and quadratic fitting is performed according to the local 
extremum search algorithm as in Eq. (9). 

5) Bond phase time scale calculation and equal-angle re-sampling is performed by fitting the 
instantaneous frequency function. 

6) Re-sampled signals are segmented. 
7) Segmented signals constitute the 𝑋 ∈ 𝑅ெ×்  of the sample sets (𝑋,𝑌). 𝑀  represents the 

number of samples; 𝑇 represents the length of data sequence. 
8) The fault label 𝑌 is added. 
9) The sample sets are divided into training sets and test sets, and the appropriate batch size is 

selected. 
10) Deep learning model is built. 
11) The parameters of the deep learning model are selected. 
12) The error between predicted values and truth values in training data can be calculated and 

back propagated to train the parameters of the whole model. 
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13) The monitoring signals are preprocessed. 
14) The preprocessed signals are sent to the trained model. 
15) Diagnostic results can be obtained. 

Model Training 
Stage

Preprocessing 
Stage

Start

Gabor Transformation

BN

End

Raw Data

Diagnostic Results

Training Set
（X,Y）

Monitoring 
Signal(X)

Model Of Training 
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（X,Y）

RSN

Data Standardization

Sample SegmentationFrequency estimation 

Equal Angle Sampling

Order Extraction

Order Tracking

LSTM 

FC Layer

Diagnostic 
Stage

Preprocessing 

Classifier

 
Fig. 5. The detailed flow chart of the proposed method 

4. Experimental verification 

4.1. Validation of speed estimation by simulated signal 

Accurate speed estimation is the basis of high precision diagnosis. Therefore, we use the 
simulation signal of time-varying rotational speed vibration to verify the accuracy of the rotational 
speed estimation results of the order tracking method. 

Taking the simulation signal of Eq. (28) as an example, the signal consists of three parts: 
impulse component, frequency conversion and harmonics caused by rotation, and noise: 

𝑥(𝑡) = ෍𝐴௜ଷଶ
௜ୀଵ 𝑠(𝑡 − 𝑇௜) + ෍𝐵௡cos൫2𝜋𝑛𝑓(𝑡) + 𝛽௡ + 𝑁(𝑡)൯ଷ

௡ୀଵ . (28)

In Eq. (28), 𝐴௜  is the amplitude of the 𝑖-th impact, 𝑇௜  is the moment when the 𝑖-th impact 
occurs, the frequency at which the impact occurs is 1.75 times the rotational frequency, 𝐵௡ is the 
amplitude of the nth harmonic, and 𝛽௡ is the nth time. The initial phase of the harmonic, 𝑠(𝑡) is 
the impulse signal of Eq. (29), 𝑓(𝑡) is the instantaneous frequency shift of Eq. (30), and 𝑁(𝑡) is 
the noise: 𝑠(𝑡) = 𝑒ିହ଴଴௧sin(4000𝜋𝑡), (29)𝑓(𝑡) = ሾ250 + 400cos(0.25𝜋𝑡)ሿ 60⁄ . (30)

Take the time domain waveforms of the simulated signals of 𝐵ଵ = 0.3, 𝐵ଶ = 0.5, 𝐵ଷ = 0.4, 𝛽ଵ = 𝜋/6, 𝛽ଶ = −𝜋/3, 𝛽_3 = 𝜋/2 as shown in Fig. 6. The order tracking analysis of the simulated 
signal, the estimated speed and theoretical value obtained by the analysis are shown in Fig. 7. 

It can be seen from the Fig. 7 that the speed estimation result is ideal, and the estimated value 
is not much different from the theoretical value. 
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Fig. 6. Simulated vibration signal 

 
Fig. 7. Revolving speed of the simulation signal 

4.2. Comparisons of tests and results 

4.2.1. Diagnostic object 

In the test, the turning gearbox with high workload and importance is selected as the diagnostic 
object. The transfer gearbox is a Siebenhaar CLP220 gearbox as shown in the Fig. 8(a), the 
gearbox is a three-stage gear, and its internal structure is shown in Fig. 8(b). Gear box failure types 
are tooth surface wear and bearing wear. Tooth surface wear is shown in the Fig. 9(a), bearing 
wear is shown in the Fig. 9(b). The method proposed in this paper uses the method of sample 
training to diagnose the fault, which can get rid of the expert knowledge and basic theory, so it 
does not need to know the internal structure of the gear box. 

 
a) 

 
b) 

Fig. 8. a) Siebenhaar CLP220 Slewing gear, b) internal structure of the gearbox 

  

Fig. 9. a) Defective parts of tooth, b) defective parts of bearing 



FAULT DIAGNOSIS OF ROTATING MACHINERY UNDER TIME-VARYING SPEED BASED ON ORDER TRACKING AND DEEP LEARNING.  
TAIYONG WANG, LAN ZHANG, HUIHUI QIAO, PENG WANG 

376 JOURNAL OF VIBROENGINEERING. MARCH 2020, VOLUME 22, ISSUE 2  

4.2.2. Test method 

Due to the environmental constraints of the reduction gearbox, a portable data acquisition 
analyzer is used for vibration signal acquisition in the test. Gearbox is closed structure, the speed 
sensor cannot be placed on the test site. The field test is shown in the Fig. 10. The location of the 
accelerometer is shown in the red box in Fig. 10. The accelerometer is attached to the outside of 
the gearbox with a magnet, and the direction is parallel to the vibration direction. 

In the experiment, LC0108T unidirectional piezoelectric accelerometer is used. Its parameters 
are shown in Table 1.  

Table 1. Parameters of LC0108T acceleration transducer 
Sensitivity / 

(mV/g) 
Range / 

g 
Frequency 
Range / Hz 

Mounting the 
resonance point / kHz 

Resolution / 
g 

Mounting 
thread /mm 

500 10 0.35-4000 15 0.00004 M5 

 
Fig. 10. Field test 

Because the door crane rotates manually by the driver, the working condition of the transfer 
gearbox is intermittent and non-uniform. In order to match the working condition, the starting and 
ending time of data acquisition is also controlled manually. The sampling rate is 10240 Hz. From 
October 16, 2015 to August 3, 2016, 14 turning gearboxes of 7 portal cranes were tracked and 
tested. 101 groups of valid samples were obtained through 20 tests. Among them, 18 # portal crane 
right-handed gearbox broke down in September 2015 and was repaired in October 2015.  

4.2.3. Signal processing and sample allocation 

The acquired vibration signal is preprocessed using TOT based on Gabor transform and RSN 
method, then the rotational speed is normalized by Eq. (23). 

 
Fig. 11. Vibration signal of left-handed  

rotation slewing gear 
 

Fig. 12. Resampled vibration signal  
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Taking the vibration data of a 15 # door reducer as an example, its time-domain waveform is 
shown in the Fig. 11. The signal sampled from equal angles is shown in the Fig. 12. Gabor 
time-frequency spectrum is shown in the Fig. 13. The speed curve fitted by order tracking analysis 
is shown in the Fig. 14. And the normalized signal is shown in the Fig. 15. 

After re-sampling and normalizing vibration signals, the training sets and test sets are 
established. According to the known equipment failure situation, the training set and the test set 
are divided into two categories: fault and health. The input sample of the model is 1024  
sub-signals, and the training sets and test sets are allocated according to the ratio of 0.25. 

The Gabor time-frequency transformation is performed on the vibration signal shown in 
Fig. 11 to obtain the time-frequency map in Fig. 13. The trend of speed change can be clearly seen 
from Fig. 13; the local extreme value algorithm is used to extract the speed signal, and the data is 
resampled according to the speed signal to obtain Fig. 12. Fig. 14 is the estimated speed signal, 
by comparison with Fig. 13, it can be seen that the extracted speed signal can be consistent with 
the actual. It can be seen from the amplitude of Fig. 12 that the signal energy after resampling is 
still affected by the rotational speed, so the re-sampling data is normalized by the rotational speed, 
and the result is shown in Fig. 15. It can be seen from Fig. 15 that the vibration signal after 
pre-processing by the TOT and the RSN method substantially eliminates the influence of the 
rotational speed change on the signal.  

 
Fig. 13. Gabor time-frequency map of vibration signal of left-handed rotation slewing gear 

 
Fig. 14. Rotating speed of left-handed  

rotation slewing gear 

 
Fig. 15. Normalized signal 

4.2.4. Parameters of the LSTM 

The architecture of the proposed method is built according procedures described in Section 3. 
It should be noted that the hyperparameters of the LSTM model are selected through 
cross-validated experiments. The hyperparameters such as cell number are displayed in Table 2. 
BN is used right after each main layer to improve the performance of the model. The activation 
function of the last layer is softmax and activation functions of other layers are all set to sigmoid.  

sp
ee

d/
rp

m
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Table 2. Parameters of the LSTM model used in gearbox fault diagnosis experiments 
No. Layer type Cell number BN axis Activation 
1 LSTM 100 – Sigmoid 
2 LSTM 50 –1 Sigmoid 
3 FC layer 10 –1 Sigmoid 
4 Supervised learning layer 2 – Softmax 

The categorical cross-entropy is adopted as the loss function and Adam is employed for model 
training. The dropout rate is set to 0.2. Dataset is used to train the model for 20 epochs with the 
batch size of 10. The fault classification accuracy is used to evaluate the model performance. 

4.2.5. Comparative experiments and results 

In this paper, the time-domain statistical indexes of vibration signals are compared with the 
proposed method. Time-domain statistical indexes are used to evaluate the vibration signal by five 
indicators: average value, kurtosis, margin, twist and waveform factor. The time domain statistical 
indexes of normal equipment and faulty equipment are analyzed, and the results are shown in 
Fig. 16. It can be seen from the comparison that the time domain indicator cannot effectively 
indicate the fault. 

To prove the advantage of the proposed TOT-LSTMBN, the same sensor data is processed by 
some comparative models: the proposed network model (LSTMBN), TOT and feature-level 
fusion method based on support vector machine method (TOT-SVM), TOT and dictionary method 
(TOT-KSVD), TOT and convolutional neural network (TOT-CNN), the proposed TOT-LSTMBN 
model without batch normalization (TOT-LSTM) and the proposed TOT-LSTMBN model 
without RSN (TOT-LSTMBN without RSN). 

In order to verify the essential role of TOT in time-varying speed, LSTMBN is adopted as a 
comparative model. The Parameter settings of the LSTMBN keep the same as the proposed 
TOT-LSTMBN model. To compare the performance of traditional fusion machine learning 
models based on handcrafted features with the deep learning models based on raw sensor data, 
TOT-SVM is adopted as a comparative model. In TOT-SVM, the data is decomposed by EMD 
firstly and the normalized energy, kurtosis, kurtosis and variance of the top five intrinsic mode 
functions are extracted as handcrafted features. All features are obtained to constitute a feature 
vector, which is used as the input of the SVM. To compare the performance of traditional machine 
learning models with the deep learning models based on raw sensor data, TOT-KSVD is adopted 
as a comparative model. 

 
Fig. 16. Result of time domain statistical analysis 

It should be noted that, all the deep learning models in this experiment are consist of five main 
layers. The last two layers in each model are a FC layer with size of [100] with dropout and a 
softmax layer with size of [2]. In CNN, three pairs of convolutional layers and pooling layers are 
stacked. The filter size, stride and pooling size of three pairs of layers are set to [(4, 1), (4, 1), 
(2, 1)], [(1, 4), (1, 1), (2, 1)] and [(2, 1), (1, 1), (2, 1)] respectively. Parameters of the proposed 
TOT-LSTMBN are shown in Section 4.2.4. The Parameter settings of the TOT-LSTM keep the 
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same as the proposed TOT-LSTMBN model, except that all the batch normalization layers are 
removed. The Parameter settings of the TOT-LSTM without RSN keep the same as the proposed 
TOT-LSTMBN model, except that the data are not normalized for rotational speed. 

The testing results are listed in Fig. 17. It is shown that our proposed TOT-LSTMBN model 
can diagnose the faults of the gearbox effectively with the highest test accuracy. 

As shown in Fig. 17, All models with order tracking are superior to those without order 
tracking, which is also expected, because order tracking converts non-stationary time-domain 
signals into stationary angular periodic signals, eliminating most of the influence of repetition on 
signal characteristics. 

After order tracking, all the deep learning models based on raw sensor data can achieve better 
performance than the shallow machine learning model, which can be explained that the deep 
model can adaptively extract the deep sensitive fault features. 

The proposed TOT-LSTMBN model can achieve higher test accuracy than TOT-CNN, which 
can be explained that the proposed TOT-LSTMBN model can extract temporal features of time 
series, which enables the TOT-LSTMBN layer to discover more hidden information than 
TOT-CNN.  

The comparison of TOT-LSTMBN and TOT-LSTM proves that BN can improve the fault 
diagnose accuracy of the model. The comparison of TOT-LSTMBN and TOT-LSTMBN without 
RSN proves that RSN can improve the fault diagnose accuracy of the model. In the case of drastic 
rotation speed change, although the angular domain period is stable after re-sampling, the energy 
change caused by rotation speed still has an impact on the extraction of fault sensitive features. 
RSN normalizes the data according to the estimated rotational speed information eliminating the 
influence. Therefore, the proposed model can deliver better performance under the condition of 
drastic rotation speed change. 

 
Fig. 17. Comparative result 

4.2.6. Feature visualization 

As we know, deep learning models work like a black box, so it is hard to understand its process 
of extracting features. In this section, the t-SNE method is used to show the features extracted in 
our proposed model. T-SNE is an effective dimensionality reduction method, which can help us 
to visualize high-dimensional data by mapping the data from high-dimensional space to a 
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two-dimensional space. Features extracted by each layer are respectively converted to a 
two-dimensional feature map. The feature maps of raw data and the FC layer are shown in Fig. 18, 
in which features of different types are distinguished by different colors. As shown in the 
Fig. 18(a), raw data of two types are all mix together; in the Fig. 18(b), until the FC layer, the 
features of the two types is separated and the features of the same type is clustered. 

 
a) Raw data 

 
b) FC layer 

Fig. 18. Feature visualization 

5. Conclusions 

In this paper, an intelligent fault diagnosis method based on TOT and LSTMBN was proposed. 
With the Gabor transform and the TOT combination algorithm, rotating speed can be estimated 
accurately without tachometer signal as reference. Based on this, the proposed method is capable 
of diagnosing faults under varying rotating speed. Furthermore, the RSN method is applied to 
solve the problem that the signal energy varies with the speed. The effectiveness was verified by 
detection fault on gearboxes and an accuracy of 99.78 % on fault detection approaches with 
varying rotating speed was achieved. It shows that the proposed method is potentially applicable 
for fault detection and location of planetary gearboxes in wind turbines. In the future research, the 
proposed method will be applied to other complex rotor-bearing systems, especially for diagnosis 
of distributed gear and bearing faults under more extensive non-stationary operating conditions. 
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