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Abstract. The Floquet theory that is used in order to find the stop-bands is not defined for 
non-linear cases. The eigenfrequencies of a symmetrical periodicity cell can serve as alternative 
indicators of stop-band boundaries. In the linear cases, eigenfrequencies of a structure with 
symmetrical boundary conditions are exactly placed on stop-bands boundaries. In the non-linear 
cases, however, the notion of the Floquet zones are not clearly defined. However, the 
eigenfrequencies method show the stop-band positions that agree with the energy flow analysis. 
In the cases are considered, the axial rod vibration, the radial-periodic membrane case, the axial 
rods connected with spring with non-linear stiffness. 
Keywords: periodic structures, Floquet theorem, non-linear stiffness, eigenfrequency, polar 
coordinates. 

1. Introduction 

The classical Floquet theory is developed in numerous papers, starting from classical book by 
L. Brillouin [1] and papers by D. Mead [2] to the contemporary research [3]. However, the 
classical theory has several drawbacks. One of them is the inapplicability to the non-linear cases. 

Works within the non-linear periodic structures mostly analyze the energy flow using WFEM 
(wave finite element method) [4]. In some papers, authors attempted to use Floquet theory in the 
non-linear case [5]. However, the general approach remains questionable. The boundary problem 
may be formulated for the finite counterpart of the infinite periodic waveguide. Thus, it is useful 
to find the connection between the infinite periodic waveguide and its finite counterpart. 

It turns out that the symmetrical periodicity cell with symmetrical boundary conditions allow 
one to find the stop-band boundaries without analyzing the infinite structure. In the paper, several 
applications of the unit symmetrical cell are shown. While it is working as the exact method in the 
linear cases, in the non-linear cases it could be considered as the stop-band equation  
approximation. 

The paper contains three infinite periodic structure problems. In Section 2 the classical Floquet 
theory application is considered. The axial rod vibration case is a typical linear equation and 
Floquet theory may be used to analyze the infinite periodic structure. The unit symmetrical cell, 
in this case, gives the exact stop-band boundaries positions. Section 3 is dedicated to the infinite 
periodic membrane case. In this case, the modified Floquet theory may be used. On contrary, the 
unit symmetrical cell eigenfrequencies may be used without any additional assumptions. Section 4 
describes the non-linear interface case, which requires additional techniques to obtain the 
symmetrical unit cell backbone curve. 

2. Floquet theory for the axial rod vibration case 

Within the paper, we consider the one-dimensional periodic structures. The structure is meant 
to have two different components that have different waveguide properties. The typical periodic 
structure is shown in Fig. 1. 

It is assumed, that each part in the Fig. 1 has its own parameters such as length 𝑙ଵ and dilatation 
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wave sound velocity 𝑐ଵ = ඥ𝐸ଵ 𝜌ଵ⁄ . We use the Floquet theorem to analyze the infinite periodic 
structure spectra. Let us consider the infinite periodic axial rod vibration problem. We assume that 𝑖th part of the periodic structure with displacement 𝑢௜(𝑥, 𝑡) has the governing equation: 

𝑢௧௧ = 1𝑐ଶ 𝑢௫௫. (1) 

We consider a time-harmonic state 𝑢(𝑥, 𝑡) = 𝑢(𝑥) exp(െ𝑖𝜔𝑡). Therefore, below the time-
dependence is omitted. With time-dependence introduced we use following dimensionless 
parameters Ω = 𝜔𝑙ଵ 𝑐ଵ⁄ , 𝛾 = 𝑙ଶ 𝑙ଵ⁄ . 

 
Fig. 1. A schematic diagram of a periodic structure 

To solve the spectral problem of the infinite periodic structure two types of conditions are 
required. The interfacial conditions represent the mass and force balance in the periodic structure. 
For the axial rod vibration case, they have a form Eq. (2): 𝑢ଵ(1) = 𝑢ଶ(1),𝑢ଵᇱ (1) = 𝑢ଶᇱ (1). (2) 

To complete the spectral problem solution one has to introduce the periodicity conditions. 
They are provided by the Floquet theorem and have the form: 𝑢ଵ(0) = Λ(Ω)𝑢ଶ(1 + 𝛾),𝑢ଵᇱ (0) = Λ(Ω)𝑢ଶᇱ (1 + 𝛾). (3) 

In Eq. (3) Λ(Ω) is the periodicity parameter, which depends only on the non-dimensional 
frequency parameter. We will refer to it below as the Floquet parameter. 

When solution in a form 𝑢௜(𝑥) = 𝑏௜,ଵ exp(𝑖 Ω𝑥) + 𝑏௜,ଶ exp(െ𝑖 Ω𝑥)  is substituted into the 
system Eqs. (2)-(3), we obtain the homogenous system of the algebraic equations with respect to 
the unknown displacements 𝑏௜,௝. The determinant of the system defines the spectra, which is in 
this case the second-order polynomial in Λ(Ω). For each frequency Ω, the polynomial has two 
roots which are schematically shown in Fig. 2. 

 
Fig. 2. The roots Λ(Ω) of the system Eqs. (2)-(3) determinant 

In the zones with property 𝑎𝑏𝑠(Λ ) ൐ 1, the wave propagation is blocked by the interference, 
following Bloch’s notation they are called stop-bands. Vice versa, in the zones with property 𝑎𝑏𝑠(Λ) = 1 waves are propagating freely, these zones are pass-bands. 

In the paper [6] is proven that eigenfrequencies of a unit symmetrical periodicity cell with 
symmetrical boundary conditions are exactly placed on stop-band boundaries. The symmetrical 
unit cell is the structure that schematically can be shown as in Fig. 3. 

For finite counterpart, the periodicity conditions are replaced with the boundary conditions. 
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The interfacial conditions have the same form. The symmetrical boundary conditions for 
symmetrical periodicity cell eigenfrequency problem in case of the axial rod vibration have the 
form: 𝑢 ൬12൰ = 0,   𝑢 ൬32 + 𝛾൰ = 0, (4) 𝑢′ ൬12൰ = 0,    𝑢′ ൬32 + 𝛾൰ = 0. (5) 

 
Fig. 3. The symmetrical periodicity cell 

The symmetrical boundary conditions more strict formulation for more complex cases. In [3]. 
the symmetrical boundary conditions are defined with bi-orthogonality conditions for reduced 
elastic layer theories. 

The eigenfrequencies of a symmetrical periodicity cell are placed on stop-band boundaries as 
in Fig. 4. In the Fig. 4 the eigenfrequencies for graphical matters are placed on a line 𝑎𝑏𝑠(Λ) = 1. 

 
Fig. 4. Eigenfrequencies of the systems Eqs. (2), (4) and (2), (5) (different colors)  

compared with the roots Λ(Ω) of the system Eqs. (2)-(3) determinant 

In a linear case, the spectra of the infinite periodic structure and the finite symmetrical unit cell 
are exactly the dual problems. We can find the stop-band boundaries and thus define them in two 
ways. The eigenfrequencies problem is less computationally intensive, so it allows one to find the 
stop-band boundaries more quickly. 

3. Floquet theory for the radially-periodic membrane vibration case 

In the polar coordinates, the Floquet theory cannot be formulated in the classical form Eqs. (3). 
Let us consider the simple problem of the periodic membrane vibration case. The example of the 
radially periodic membrane is shown in Fig. 5. 

 
Fig. 5. The radially periodic membrane 

The radially periodic membrane problem is close to the axial rod vibration problem. The 
membrane vibration has the governing equation that is in limiting case 𝑟 → ∞ gives exactly the 
axial rod vibration problem. The governing equation for the radial membrane has the form: 
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𝑢௧௧ = 1𝑐ଶ ൬𝑢௥௥ + 1𝑟 𝑢௥൰. (6) 

However, we still can formulate the symmetrical cell eigenfrequency problem, which in this 
case schematically can be shown as in Fig. 6. 

 
Fig. 6. The symmetrical periodicity cell 

The specter of the symmetrical periodicity cell, in this case, is depend on how close to the 
polar coordinates origin unit cell is placed. Thus, it is expedient to introduce the polar coordinates 
parameter 𝑅଴ that shows how close to the polar coordinates origin we are. 

With the general solution of the governing equation in form 𝑢(𝑟) = 𝑏௜,ଵ𝐽௠(𝑟) + 𝑏௜,ଶ𝑌௠(𝑟). 
With 𝐽௠(𝑟), 𝑌௠(𝑟) Bessel functions of first and second kind of integer order 𝑚 are designated. 
With the symmetrical boundary conditions Eqs. (4)-(5), we can obtain the eigenfrequency 
equation, which gives the stop-band boundaries at the limiting case 𝑅଴ → ∞ as it is shown in 
Fig. 7. 

 
Fig. 7. Eigenfrequencies (in polar coordinates for 𝑅଴ = 0, 0.1, …, 1) of the systems Eqs. (2), (4) and (2), 

(5) (different colors) compared with the roots Λ(Ω) of the system Eqs. (2)-(3) determinant 

In Fig. 7 is seen that in the periodic membrane case, the stop-band position depends on polar 
origin proximity. For the polar coordinates case, we can formulate Floquet theory as it is done in 
[7]. Instead of the Floquet polynomial, we can obtain a differential equation that defines 
stop-bands. Nevertheless, it is out of the scope of the paper. However, we note that the 
eigenfrequencies of a unit periodicity cell agree with Floquet theory. 

Thus, one can obtain the stop-band boundaries prediction with the symmetrical eigenfrequency 
problem. The symmetrical unit periodicity cell eigenfrequency does not require specific Floquet 
theory extension and can be considered as a dual problem to a Floquet theory spectral problem for 
the infinite periodic membrane. We emphasize that the eigenfrequency problem does not require 
to formulate any additional theory assumptions. 

4. Symmetrical unit cell eigenfrequencies for a unit weakly non-linear periodicity cell case 

The periodic membrane case in the polar coordinated can also be considered as a non-linear 
case. The linearity property is broken in the translational symmetry part. This property is essential 
for Floquet theory formulation. The more common, but rather still weak non-linearity can be 
achieved with non-linear stiffness spring interface. This can be schematically illustrated as in 
Fig. 8. 

The waveguides have an arbitrary governing equation. For simplicity, let us consider the axial 
rod vibration Eq. (1), i.e. the case considered in Section 2. The non-linear interface conditions can 
be written as Eq. (7): 
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𝑢ଵ(1, 𝑡) = 𝜅൫𝑢ଵ(1, 𝑡) െ 𝑢ଶ(1, 𝑡)൯ ∗ ൬1 + 𝑁𝜅 ൫𝑢ଵ(1, 𝑡) െ 𝑢ଶ(1, 𝑡)൯ଶ൰,   𝑢ଵᇱ (1, 𝑡) = 𝑢ଶᇱ (1, 𝑡).  (7) 

 
Fig. 8. The symmetrical periodicity cell 

In Eq. (7) we refer to 𝜅 as the linear stiffness and 𝑁 as the non-linear stiffness. We use the 
same symmetrical boundary conditions Eqs. (4)-(5) as in the previous cases and the axial rod 
vibration case common solution in a form 𝑢௜(𝑥, 𝑡) = (𝑏௜,ଵ exp(𝑖 Ω𝑥) + 𝑏௜,ଶ exp(െ𝑖 Ω𝑥)) ∗ cos(𝜔𝑡). 
We can rewrite the system Eqs. (7), (4)-(5) in the form Eq. (8): 𝐿 ∗ cos 𝜔𝑡 + 𝐶 ∗ cosଷ(𝜔𝑡) = 0. (8) 

The non-linear interfacial conditions do not allow to cancel the time dependency. To cancel 
the time dependency out, we use the harmonic balance method and write the time-dependent part 
as cosଷ 𝜔𝑡 = ଷସ cos(𝜔𝑡) + ଵସ cos(3𝜔𝑡). Term cos(3𝜔𝑡) is omitted and the resulting system with 
the time-dependance cancelled out is written as: 𝐿 + 34 𝐶 = 0. (9) 

The system Eq. (9) has the cubic equation with respect to the unknown displacements 𝑏௜,௝. 
Therefore, we cannot find the usual determinant for the system Eq. (9). We use the resultants 
method [8] to obtain the symmetrical cell backbone equation that shows how the eigenfrequencies 
depend on a non-linearity parameter 𝛽 = 𝑏ଵ,ଵଶ 𝑁 (the displacement may be chosen arbitrary). The 
solution of the backbone equation has the form shown in Fig. 9. 

 
Fig. 9. Eigenfrequencies (for non-linear interface) of the systems Eqs. (7), (4) and (7), (5) (different colors) 

We note that the eigenfrequencies give the same result for 𝛽 = 0 as the determinant in non-
linear interfacial conditions with non-linear stiffness 𝑁 set to zero. 

The Fig. 9 may be considered as the stop-band position approximation for the non-linear case. 
However, the Floquet theory extension formulation is required in order to check the 
correspondence between the exact stop-band position and the unit symmetrical periodicity cell 
eigenfrequencies. 

5. Conclusions 

In the paper, we describe the unit symmetrical cell method for the stop-band location position. 
This method in contrast with the existing method like Floquet theorem in the linear case and the 
WFEM method at one hand does not require the additional assumptions (like the linearity of the 
problem) and at the other hand require intensive computations. 

In the linear case, the unit symmetrical cell eigenfrequencies with the symmetrical boundary 
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conditions exactly define the stop-band positions. Thus, it is an exactly dual problem to the 
classical Floquet theory spectra for the infinite periodic structure in the linear case. 

In the non-linear case, however, the exact position of the stop-bands is a discussion topic. 
However, the unit symmetrical cell eigenfrequencies may be at least an approximation to the 
stop-band boundaries equation. The method does not require any additional assumptions and may 
be implemented for any type of the non-linear structures from problems in the polar coordinates 
to the non-linear stiffness interface.  
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