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Abstract. The effect of variation in density and Poisson’s ratio is examined, on the vibration of 
rectangle plate with linear variable thickness. Bi parabolic temperature effect on the plate is also 
studied and vibrational modes of rectangular plate is calculated by using Rayleigh Ritz method. 
Authors also compared the present finding with the published results. 
Keywords: vibration, density, Poisson’s ratio, variation. 

1. Introduction 

Isotropic rectangle plate is used in various engineering like civil, mechanical, automobile, 
aerospace and aircraft engineering. Due to it’s wide applications, it is required to know the 
vibration characteristics of isotropic rectangular plates. The plates made of non-homogeneous 
material along with variable thickness has significant impact rather than the homogeneous and 
uniform plates. 

An excellent study related to plate vibration, on different edge conditions is given in [1-7]. A 
finite layer method [8] is used to developed three dimensional linear and small deformation 
solution for the vibration of rectangular plate on different boundary conditions. The mean square 
bending moment of a rectangular plate has been discussed in [9]. Rayleigh Ritz technique is used 
to calculate vibrational frequency of non-homogeneous trapezoidal plate [10] on clamped and 
simply supported edge condition. The effect of rotary inertia [11] on vibration of rectangular plate 
with central cutout is studied, using first order shear deformation theory. Forced vibration of 
orthotropic circular plate with linear variation in thickness, resting on elastic foundation is 
discussed in [12]. The effect of axial tension, viscosity coefficients and ratio of length-to-depth is 
studied on transverse vibration of viscoelastic Timoshenko beam columns [13]. Vibration of 
square and skew plate [14, 15] is discussed with variation in thickness, density and temperature 
using Classical plate theory. The effect of circular variation in thickness and Poisson’s ratio on 
frequency of square plate is presented in [16]. Vibration of circular plate with parabolic thickness, 
exponential variation in density and Young’s modulus is discussed in [17] using Ritz method. The 
effect of various plate parameters [18, 19] on vibration of skew and rectangular plate is presented, 
on clamped edge, using Rayleigh Ritz method. The temperature effect on vibration of rectangular 
plate made of non-homogeneous material, with variable thickness, is discussed in [20, 21] using 
Classical plate theory. 

The present paper provides the effect of variation in density as well in Poisson’s ratio on 
frequency parameter of the plate. Authors also computed the effect of thickness and temperature 
on frequency. A comparison of frequency with [20] and [21], with respect to thermal gradient is 
also given, to validate the finding of the present study. 

2. Analysis 

Consider a thin rectangular plate with length 𝑎, breadth 𝑏, thickness 𝑙, density 𝜌 and Poisson’s 
ratio 𝜈referred to cartesian coordinates (𝜁, 𝜓).  

The maximum kinetic energy of the plate is given by: 
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𝑇௦ = 12 𝜔ଶ න௔
଴ න௕

଴ 𝜌𝑙Φଶ𝑑𝜓𝑑𝜁, (1) 

where Φ is deflection function and 𝜔 is natural frequency. 
The maximum strain energy of the plate is given by: 

𝑉௦ = 12 න௔
଴ න௕

଴ 𝐷ଵ ൥ቆ∂ଶΦ∂𝜁ଶ ቇଶ + ቆ∂ଶΦ∂𝜓ଶቇଶ + 2𝜈 ∂ଶΦ∂𝜁ଶ ∂ଶΦ∂𝜓ଶ + 2(1 − 𝜈) ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ൩ 𝑑𝜓𝑑𝜁, (2) 

where 𝐷ଵ = 𝐸𝑙ଷ 12(1 − 𝜈ଶ)⁄ , here 𝐸 is Young’s modulus of the plate. 
Rayleigh Ritz method requires: 𝐼 = 𝛿(𝑉௦ − 𝑇௦) = 0. (3) 

Using Eq. (1) and Eq. (2), we get: 

𝐼 = 12 න௔
଴ න௕

଴ 𝐷ଵ ⎣⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଶ ቇଶ + ቆ∂ଶΦ∂𝜓ଶቇଶ + 2𝜈 ∂ଶΦ∂𝜁ଶ ∂ଶΦ∂𝜓ଶ   +2(1 − 𝜈) ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ ⎦⎥⎥

⎥⎤ 𝑑𝜓𝑑𝜁 − 12 𝜔ଶ න௔
଴ න௕

଴ 𝜌𝑙Φଶ𝑑𝜓𝑑𝜁 = 0. (4) 

Now introducing non-dimensional variable 𝜁ଵ = 𝜁 𝑎⁄ , 𝜓ଵ = 𝜓 𝑎⁄  together with linear 
variation in thickness, circular variation in density and exponential variation in Poisson’s ratio: 

𝑙 = 𝑙଴ ൬1 + 𝛽 𝜁𝑎൰ ,   𝜌 = 𝜌଴ ቎1 + 𝑚ଵ ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏ ,   𝜈 = 𝜈଴𝑒௠మ఍௔, (5) 

where 𝑙଴, 𝜌଴ and 𝜈଴ are the thickness, density and Poisson’s ratio, respectively at origin. Also 𝛽 (0 ≤ 𝛽 ≤ 1), 𝑚ଵ (0 ≤ 𝑚ଵ ≤ 1) and 𝑚ଶ (0 ≤ 𝑚ଶ ≤ 1) are taper constant and non-homogeneity 
parameters. 

The temperature variation is parabolic on the plate and is given by: 

𝜏 = 𝜏଴ ቆ1 − 𝜁ଶ𝑎ଶቇ ቆ1 − 𝜓ଶ𝑏ଶ ቇ, (6) 

where 𝜏 and 𝜏଴ are the temperature on the plate at any point and at the origin respectively. The 
temperature dependent modulus of elasticity is: 𝐸 = 𝐸଴(1 − 𝛾𝜏), (7) 

where 𝛾 is called slope of variation. Using Eq. (6), Eq. (7) becomes: 

𝐸 = 𝐸଴ ቈ1 − 𝛼 ቆ1 − 𝜁ଶ𝑎ଶቇ ቆ1 − 𝜓ଶ𝑏ଶ ቇ቉, (8) 

where 𝛼 (0 ≤ 𝛼 < 1) is called temperature gradient. Using non-dimensional variable along with 
Eq. (5) and Eq. (8), the functional in Eq. (4) become: 



VIBRATION OF RECTANGLE PLATE WITH VARIABLE DENSITY AND POISSON’S RATIO.  
AMIT SHARMA, VIJAY KUMAR, REETA BHARDWAJ 

70 VIBROENGINEERING PROCEDIA. MARCH 2019, VOLUME 22  

𝐼 = 𝐷଴2 නଵ
଴ න௕௔଴

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡൤1 − 𝛼(1 − 𝜁ଵଶ) ൬1 − 𝑎ଶ𝜓ଵଶ𝑏ଶ ൰൨ ሾ1 + 𝛽𝜁ଵሿଷ(1 − 𝜈଴ଶ𝑒ଶ௠మ఍భ)
⎣⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଵଶ ቇଶ + ቆ∂ଶΦ∂𝜓ଵଶቇଶ + ൫2𝜈଴𝑒௠మ఍భ൯ ∂ଶΦ∂𝜁ଵଶ ∂ଶΦ∂𝜓ଵଶ+2൫1 − 𝜈଴𝑒௠మ఍భ൯ ቆ ∂ଶΦ∂𝜁ଵ ∂𝜓ଵቇଶ ⎦⎥⎥

⎥⎤
⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ 𝑑𝜓ଵ𝑑𝜁ଵ

     −𝜆ଶ නଵ
଴ න௕௔଴ ቈቊ1 − 𝑚ଵ ቆ1 − ට1 − 𝜁ଵଶቇቋ (1 + 𝛽𝜁ଵ)቉ Φଶ𝑑𝜓ଵ𝑑𝜁ଵ = 0,

 (9) 

where 𝐷଴ = 𝐸଴𝑙଴ଷ 12⁄  and 𝜆ଶ = 𝜌଴𝜔ଶ𝑙଴𝑎ସ 𝐷଴⁄ . 
Now assuming the deflection function as: 

Φ(𝜁, 𝜓) = ቈ൬𝜁𝑎൰௣ ൬𝜓𝑏൰௤ ൬1 − 𝜁𝑎൰௥ ൬1 − 𝜓𝑏൰௦቉ ൥෍ Ω௜ ൜൬𝜁𝑎൰ ൬𝜓𝑏൰ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰ൠ௜௡
௜ୀ଴ ൩, (10) 

where Ωଵ and Ωଶ represents arbitrary constants and 𝑝, 𝑞, 𝑟. 𝑠 take values 0, 1 and 2 depending 
upon the support edge condition i.e., take value 0 for free edge, 1 value for simply supported and 
2 value for clamped edge. 

In order to minimize the functional given in Eq. (9), we require that: ∂𝐼∂Ω௜ = 0,    𝑖 = 0,1,2, … , 𝑛. (11) 

After simplifying we get a homogenous system of equations in Ω௜ whose non-zero solution 
gives equation of frequency as: |𝐶 − 𝜆ଶ𝐷| = 0, (12) 

where 𝐶 = ൣ𝑐௜௝൧  and 𝐷 = ൣ𝑑௜௝൧ are square matrix of order (𝑛  + 1) and 𝑖 =  0, 1, 2, ..., 𝑛  and  𝑗 = 0, 1, 2, ..., 𝑛. 
3. Numerical illustration and discussions 

The frequency Eq. (12) is solved for first two modes of vibration on clamped edges for various 
values of temperature gradient 𝛼, taper constant 𝛽 and non-homogeneity parameters 𝑚ଵ, 𝑚ଶ and 
presented with the help of figures. The value of aspect ratio is taken as 𝑎/𝑏 = 1.5. 

Fig. 1 shows the effect of non-homogeneity 𝑚ଶ on vibrational frequency for three set of taper 
constants 𝛽 = 0.2, 0.4, 0.6, thermal gradient 𝛼 = 0.2, 0.4, 0.6 and non-homogeneity parameter 𝑚ଵ = 0.2, 0.4, 0.6. It has been observed that on all set values, frequency parameter increases with 
the increasing value of non-homogeneity parameter 𝑚ଶ. 

Fig. 2 shows the effect of another non-homogeneity parameter 𝑚ଵ on vibration frequency of 
the plate on three set value of taper constant 𝛽 = 0.2, 0.4, 0.6, thermal gradient 𝛼 = 0.2, 0.4, 0.6 
and non-homogeneity parameter 𝑚ଶ =  0.2, 0.4, 0.6. Here, increase in non-homogeneity 𝑚ଵ 
results the decrease (opposite to the frequency presented in Fig. 1) in vibration frequecy, on all 
the set values.  

Fig. 3 shows the effect of taper constant 𝛽 on vibration frequency of the plate on three set 
value of thermal gradient 𝛼 = 0.2, 0.4, 0.6 and non-homogeneity parameters 𝑚ଵ = 𝑚ଶ = 0.2, 0.4, 
0.6. It is seen that increase in taper constant results the increase in vibrational frequency, on all 
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the three set values. Although the combined increase in mentioned plate parameters results the 
decrease in vibration frequency. 

Fig. 4 depicts the behavior of frequency with respect to increasing value of thermal gradient 𝛼 
on three set value of taper constant 𝛽 =  0.2, 0.4, 0.6 and non-homogeneity parameters  𝑚ଵ = 𝑚ଶ = 0.2, 0.4, 0.6. Here, increase in thermal gradient results the decrease in vibrational 
frequency on all the three set values. Although the combined increase in mentioned plate 
parameters results the increase in frequency parameter. 

 
a) 

 
b) 

Fig. 1. Non-homogeneity 𝑚ଶ vs frequency 

 
a) 

 
b) 

Fig. 2. Non-homogeneity 𝑚ଵ vs frequency 

 
a) 

 
b) 

Fig. 3. Taper constant 𝛽 vs frequency 
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a) 

 
b) 

Fig. 4. Thermal gradient 𝛼 vs frequency 

4. Comparison of results 

A comparison of frequency parameters of present paper has been made with [20] and [21] in 
Fig. 5. 

Fig. 5 shows the comparison of frequency modes of present study with [20] and [21] with 
respect to temperature gradient 𝛼 for fixed value of non-homogeneity constant 𝑚ଵ i.e., 𝑚ଵ = 0.0, 
for two cases 𝑚ଶ = 𝛽 = 0.0 and 𝑚ଶ = 0.0, 𝛽 = 0.6. The frequecy modes of present study is less 
when compared to frequency modes presented in [20] and [21]. At 𝑚ଶ = 𝛽 = 0.0 the frequency 
modes of present study, [20] and [21] are coincides. At 𝑚ଶ = 0.0, 𝛽 = 0.6 the frequency modes 
of present study is concides with frequency modes reported in [21] and less in comparison to the 
frequency modes reported in [20]. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5. Comparison of frequency modes with [20] and [21]  
corresponding to thermal gradient 𝛼 for fixed value of 𝑚ଵ = 0.0 

5. Conclusions 

From the results discussion and comparison, authors would like to record the followings 
conclusions: 
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1) The frequency in case of parabolic temperature variation (present study) is very less in 
comparison to exponential variation in temperature [20] and linear variation in temperature [21] 
as shown in Fig. 5. 

2) Increase in non-homogeneity 𝑚ଶ  results the increase in frequency parameter while the 
increase in non-homogeneity 𝑚ଵ results the decrease in frequency parameter. The rate of increase 
in frequency is high in comparison to rate of decrease in frequency. 

3) The frequency parameters increasing with the increment in tapering parameter 𝛽 of the plate 
i.e., as thickness of the plate increasing, frequencies are also increasing as shown in Fig. 3. 

4) The frequency parameter decreases with the increment in thermal gradient i.e., as the 
temperature on the plate increasing, frequencies are decreasing as shown in Fig. 4. 
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