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Abstract. Form function matrix is created by introducing high order displacement interpolation 
function in the node. Based on the virtual work principle and dynamic finite element theory, the 
spatial element stiffness matrix, mass matrix and earthquake mass matrix of a thin-walled box 
girder having 9 freedom degrees at each node are deduced. The D’Alembert vibration equation is 
also established. Newmark-𝛽 method is used through MATLAB to solve the seismic response of 
a long-span continuous curved box girder bridge under El-centro seismic waves. Meanwhile the 
spatial finite element model of the whole bridge is established by ANSYS. The results indicate 
that the dynamic responses of pier columns exhibit spatiality. The dynamic response of a bridge 
structure under 2D coupling horizontal seismic excitation is much bigger than that under 1D 
horizontal seismic excitation. The critical angle of seismic waves is 50° for radial displacement 
response. Theoretical calculation results are in agreement with the finite element analysis results. 
The deduced element matrix not only can be used to calculate the seismic response of long-span 
curved beam bridge structures but also can provide significant references for the structures in 
vibration response caused by moving traffic. 
Keywords: long-span curved box girder bridge, seismic response, Newmark-𝛽 method, element 
matrix, finite element. 

1. Introduction 

Thin-walled box girder is widely used in bridge structures. Spatial mechanical behavior of 
thin-walled box girder is complex, as the fundamental deformation include vertical bending and 
shear lag [1, 2] under symmetrical loads. In addition, there are torsion and distortion effects [3, 4] 
when vehicle eccentric loads are imposed. However, for thin-walled curved box girder, coupling 
deformation prevails in terms of bending, torsion, warping, distortion and shear lag, regardless of 
whether the load is symmetric or not. Hence, the complex mechanical behavior of thin-walled box 
girder needs to be further investigated. 

Based on the stiffness method, spatial element stiffness matrix and stiffness equation of a 
straight box girder having 10 freedoms at each node were deduced [5], in which the restricted 
torsion, distortion and shear lag effect were considered. According to the finite element theory, 
spatial element stiffness matrix of a thin-walled curved box girder having 14 freedoms at each 
node was proposed [6], the compression-tension, bending, torsion, warping, distortion and shear 
lag effect were considered. Zheng et al. [7] established an elastic governed differential equation 
of thin-walled curved beam and obtained the exact analytic solution, the bending torsion warping, 
distortion and shear lag effect were considered. It can be seen that these researches have improved 
the static load analysis theory of thin-walled box girder. 

Earthquakes have brought great damages to the bridge structures, therefore it is imperative to 
study the dynamic characteristics and seismic responses of box girder bridges. Based on the 
generalized coordinate method and energy principle, Chan et al. [8] deduced the vibration 
governed differential equation of curved bridges and provided the explicit stiffness matrix and 
mass matrix, whilst the distortion and shear lag effect were neglected. Hugo et al. [9] studied the 
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vibration characteristics of a curved box girder bridge under vehicle load by field experiments. 
Taysi et al. [10] explored the elastic free vibration of a box girder bridge by the finite strip method 
and automatic mesh generated technology. Zhou et al. [11] deduced the differential equations and 
corresponding boundary conditions of a steel-concrete composite continuous box girder based on 
Hamilton principle. Ji et al. [12] extended the calculation of free vibration characteristics of a 
thin-walled box girder to a composite box girder with corrugated steel webs. Chen et al. [13] 
investigated the effects of higher modes on the seismic performance of tall-pier bridges by shaking 
table test. Tubaldi E. et al. [14] studied the influence of both axial load and higher-order modes 
on the dynamic behavior and seismic response of slender bridge piers by an analytical formulation 
and a continuous model. Elkady et al. [15] carried out an experimental research on the behavior 
of a typical cable-stayed bridge subjected to lateral earthquake excitation. Base on the similarity 
principle and multi-point excitation theory, Chen et al. [16, 17] investigated the seismic responses 
of irregular high piers curved bridges by shaking table test, the different spectral seismic wave, 
peak ground acceleration and local site effect were considered. Soyluk K. [18], Nuti C. [19] and 
Lupoi A. [20] studied the seismic response of long-span curved girder bridge under multi-point 
excitation by experiment. 

The aforementioned researches have improved dynamic investigation of curved box girder 
bridges. However, for the dynamic characteristics, most of the concerned researches obtained the 
self-vibration characteristics of a box girder by energy variation principle and acquired the 
dynamic characteristics through solving high order differential equations, which consequently 
leads to a complicated calculation. Furthermore, most of the concerned research objects were 
straight box girder for simplicity rather than the curved box girder. As for seismic response, the 
current research efforts lie within the qualitative analysis of the seismic response of curved bridge 
by finite element method and experimental method, whilst there is a lack of quantitative 
calculation in the theory. Therefore, this paper attempts to provide a quantitative analysis to fill 
the theoretical blank in this filed. The element stiffness matrix, mass matrix and earthquake mass 
matrix of the thin-walled box girder are proposed in present work. The characteristic equations 
and D’Alembert vibration equation of a curved box girder bridge are deduced by assembling 
element matrix. Furthermore, eigenvalue function and Newmark-β method are used through 
MATLAB to solve the characteristic equation and seismic response of box girder bridges. 

2. Element matrix 

2.1. Fundamental assumption 

In order to simplify the spatial mechanical model of a curved box girder, the following 
assumptions are to be made:  

(1) Material is of linear elastic. 
(2) Distortion and warping of box girder are not considered.  
(3) The size of curved box girder cross section is of small magnitude compared with its length 

and curvature radius. 
Curved box girder is shown as Fig. 1, 𝑥, 𝑦, 𝑧 are respectively represent transverse, vertical and 

longitudinal direction, element node displacement is shown as follows: [𝛿]௘ = [𝑢௜, 𝑣௜, 𝑤௜, 𝑣௜′, 𝑤௜′, 𝜙௜, 𝑤௜′′, 𝛽௜, 𝜁௜, 𝑢௝, 𝑣௝, 𝑤௝, 𝑣௝′, 𝑤௝′, 𝜙௝, 𝑤௝′′, 𝛽௝, 𝜁௝]், (1) 

where 𝑖, 𝑗 are node serial numbers, 𝑢, 𝑣, 𝑤 are respectively longitudinal, vertical and transverse 
displacement, 𝜙, 𝑣′, 𝑤′ are respectively torsion angle, vertical angle and transverse angle, 𝑤′′ is 
transverse curvature, 𝛽 is restricted distortion displacement, 𝜁 is maximum shear displacement, 
this parameter is necessary for considering shear lag effects. 
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Fig. 1. Curved box girder 

2.2. Stiffness matrix 

According to the geometric equation of elastic mechanic, generalized strainεis given by: 

𝜀 = ൤𝑢ᇱ − 𝑤𝑅 ,   𝑣ᇱᇱ − 𝜙𝑅 ,   𝑤ᇱᇱ + 𝑢ᇱ𝑅 ,   𝑣ᇱ𝑅 + 𝛽,   𝑣ᇱᇱ𝑅 + 𝛽′,   𝜁′൨் (2) 

The matrix form is shown as follows: 

𝜀 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 𝜕𝜕𝑧 0 − 1𝑅 0 0 00 𝜕ଶ𝜕𝑧ଶ 0 − 1𝑅 0 0𝜕𝑅𝜕𝑧 0 𝜕ଶ𝜕𝑧ଶ 0 0 00 𝜕𝑅𝜕𝑧 0 0 1 00 𝜕ଶ𝑅𝜕𝑧ଶ 0 0 𝜕𝜕𝑧 00 0 0 0 0 𝜕𝜕𝑧⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎡
𝑢𝑣𝑤𝜙𝛽𝜁 ⎦⎥⎥

⎥⎥⎤, (3) 

where the first matrix-vector in the right side is differential operator [𝑃], the second matrix-vector 
is generalized displacement vector [𝛿], therefore, it can be denoted as 𝜀 = [𝑃][𝛿]. 

Transverse displacement is interpolated by fifth polynomial, vertical displacement and torsion 
angle are interpolated by third polynomial, longitudinal displacement is interpolated by linear 
interpolation [21], therefore, the form function matrix [𝑁] can be obtained. 

The displacement of the element can be obtained from the following equation: [𝛿] = [𝑁][𝛿]௘, (4) 

where [δ]௘is the element node displacement. Subsequently, Eq. (3) is substituted into Eq. (4), the 
following equations can be obtained: 𝜀 = [𝑃][𝑁][𝛿]௘, (5) 

here, [𝑃][𝑁] = [𝐵], [𝐵] is strain matrix, elastic matrix [𝐷] is given by: 
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𝐷 =
⎣⎢⎢
⎢⎢⎢
⎡𝐸𝐴 𝐸𝐼௑ 𝐸𝐼௬ 𝐺𝐼ௗ 𝐺𝐼௪ 𝐸𝐼௫⎦⎥⎥

⎥⎥⎥
⎤, (6) 

where 𝐸 , 𝐺  are elastic modulus and shear modulus, 𝐼௫ , 𝐼௬  are vertical and transverse inertial 
moment, 𝐼ௗ, 𝐼௪ are free torsion and restraint torsion inertial moment. The stress in the element is 
shown as follows: 𝜎 = [𝐷][𝜀] = [𝐷][𝐵][𝛿]௘. (7) 

The virtual strain of element is given by: [𝜀∗] = [𝐵][𝛿∗]௘. (8) 

The work done by the stress for the virtual strain is shown as follows: 𝛿𝑊ଵ = න[𝜀∗]்௏ [𝜎]𝑑𝑉 = [𝛿∗]௘் න[𝐵]்௏ [𝐷][𝐵]𝑑𝑉[𝛿]௘. (9) 

Meanwhile, the work done by the nodal force for a virtual displacement is shown as follows: 𝛿𝑊ଶ = [𝛿∗]௘்𝐹௘. (10) 

According to the virtual work principle [22], the nodal force column matrix 𝐹௘ can be obtained 
when the equation 𝛿𝑊ଵ = 𝛿𝑊ଶ is substituted into Eq. (9) and Eq. (10): 𝐹௘ = න[𝐵]்௏ [𝐷][𝐵]𝑑𝑉[𝛿]௘ (11) 

The element matrix is obtained from Eq. (11) and it is shown as follows: [𝐾] = න[𝐵]்[𝐷][𝐵]𝑑𝑉௏ , (12a) 

[𝐾] = ⎣⎢⎢⎢
⎢⎡ 𝐾ଵଵ 𝐾ଵଶ ⋯ 𝐾ଵ,ଵ଻ 𝐾ଵ,ଵ଼𝐾ଶଵ ⋯ 𝐾ଶ,ଵ଻ 𝐾ଶ,ଵ଼⋱ ⋮ ⋮𝑠𝑦𝑚 𝐾ଵ଻,ଵ଻ 𝐾ଵ଻,ଵ଼𝑠𝑦𝑚 𝐾ଵ଼,ଵ଼⎦⎥⎥⎥

⎥⎤. (12b) 

2.3. Mass matrix 

Considered that the mass center does not coincide with the torsion center in the box girder 
cross section, the transverse inertial force of box girder is given by: 𝑞௫ = −𝜌𝐴൫𝑤ሷ − 𝜙ሷ 𝑒൯, (13) 

where 𝜌 is the density of box girder, 𝑒 is the distance from the mass center to the torsion center. 
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The transverse inertial force will also contribute to an additional torsion moment, which is 
given by: 𝑞థ = −𝜌𝐼ఘ𝜙ሷ + 𝜌𝐴൫𝑤ሷ − 𝜙ሷ 𝑒൯𝑒, (14) 

here, 𝐼ఘ is the polar inertia moment, all inertia forces of box girder are shown as follows: 

[𝑞] = −𝜌 ⎣⎢⎢
⎢⎢⎡ 𝐴𝑢ሷ𝐴𝑣ሷ𝐴൫𝑤ሷ − 𝜙ሷ 𝑒൯𝐼ఘ𝜙ሷ − 𝐴𝑒൫𝑤ሷ − 𝜙ሷ 𝑒൯𝐴𝜁ሷ ⎦⎥⎥

⎥⎥⎤. (15) 

The corresponding matrix form is shown as follows: 

[𝑞] = −𝜌 ⎣⎢⎢
⎢⎡ 𝐴 0 0 0 0𝐴 0 0 0𝐴 −𝐴𝑒 0𝑠𝑦𝑚 𝐼ఘ + 𝐴𝑒ଶ 0𝑠𝑦𝑚 𝐴⎦⎥⎥

⎥⎤ ൣ𝛿ሷ൧, (16) 

where the first matrix-vector in the right side is denoted as matrix [𝑄]. Substituting the equation ൣ𝛿ሷ൧ = [𝑁]ൣ𝛿ሷ൧௘into Eq. (16) results in: [𝑞] = −𝜌[𝑄][𝑁]ൣ𝛿ሷ൧௘. (17) 

The equivalent nodal force is given by: 

𝐹௘ = න [𝑁]்௟
଴ [𝑞]𝑑𝑧 (18) 

Substituting Eq. (18) into Eq. (17) results in: 

𝐹௘ = න −𝜌[𝑁]்௟
଴ [𝑄][𝑁]𝑑𝑧ൣ𝛿ሷ൧௘. (19) 

The mass matrix [𝑀] can be obtained from Eq. (19) and it is shown as following equations: 

[𝑀] = න 𝜌[𝑁]்௟
଴ [𝑄][𝑁]𝑑𝑧, (20) 

[𝑀] = ⎣⎢⎢⎢
⎢⎡ 𝑀ଵଵ 𝑀ଵଶ ⋯ 𝑀ଵ,ଵ଻ 𝑀ଵ,ଵ଼𝑀ଶଵ ⋯ 𝑀ଶ,ଵ଻ 𝐾ଶ,ଵ଼⋱ ⋮ ⋮𝑠𝑦𝑚 𝑀ଵ଻,ଵ଻ 𝑀ଵ଼,ଵ଼𝑠𝑦𝑚 𝑀ଵ଼,ଵ଼⎦⎥⎥⎥

⎥⎤. (21) 

2.4. Earthquake mass matrix 

As is shown in Fig. 2, the ground acceleration is decomposed in 3 directions and it is given by: 
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𝑎௚ =
⎣⎢⎢
⎢⎢⎡
𝑢ሷ௚𝑣ሷ௚𝑤ሷ ௚𝜙ሷ௚𝜁ሷ௚ ⎦⎥⎥

⎥⎥⎤ = ⎣⎢⎢
⎢⎡−𝑔ሷ௫sin𝛼 + 𝑔ሷ௭cos𝛼𝑔ሷ௬𝑔ሷ௫cos𝛼 + 𝑔ሷ௭sin𝛼0𝑔ሷ௬ ⎦⎥⎥

⎥⎤. (22) 

Seismic action of curved box girder is given by: 

𝑞௚ = −𝜌
⎣⎢⎢
⎢⎢⎡

𝐴𝑢ሷ௚𝐴𝑣ሷ௚𝐴𝑤ሷ ௚𝐼ௗ𝜙ሷ௚ − 𝑒𝑤ሷ ௚𝐴𝜁ሷ௚ ⎦⎥⎥
⎥⎥⎤. (23) 

 
Fig. 2. Decomposition of ground acceleration 

Substituting Eq. (22) into Eq. (23) results in: 

𝑞௚ = −𝜌𝐴 ⎣⎢⎢⎢
⎡ −sin𝛼 0 cos𝛼0 1 0cos𝛼 0 sin𝛼−𝑒cos𝛼 0 −𝑒sin𝛼0 1 0 ⎦⎥⎥⎥

⎤ ቎𝑔ሷ௫𝑔ሷ௬𝑔ሷ௭ ቏, (24) 

where the third term of the right side is denoted as matrix [𝐽], therefore equivalent seismic action 
of the element is given by:  

𝐹௚ = −𝜌𝐴 න [𝑁]்௟
଴ [𝐽]𝑑𝑧[𝑔ሷ]. (25) 

According to Newton’ second law, earthquake mass matrix is shown as follows: 

[𝐺௠] = 𝜌𝐴 න [𝑁]்௟
଴ [𝐽]𝑑𝑧. (26) 

There is a geometrical relationship in Fig. 2: 𝛼 = 𝛽 − 𝑧𝑅. (27) 

Then, the following equations can be obtained: 
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൞sin𝛼 = sin𝛽cos ቀ𝑧𝑅ቁ − cos𝛽sin ቀ𝑧𝑅ቁ ,cos𝛼 = cos𝛽cos ቀ𝑧𝑅ቁ + sin𝛽sin ቀ𝑧𝑅ቁ . (28) 

Eq. (28) is expanded based on Taylor series (only the first two entries are used), the earthquake 
mass matrix can be obtained when substituting Eq. (28) into Eq. (26): 

[𝐺௠] = ⎣⎢⎢
⎢⎡ 𝐺௠ଵଵ 𝐺௠ଵଶ 𝐺௠ଵଷ𝐺௠ଶଵ 𝐺௠ଶଷ 𝐺௠ଶଷ⋮ ⋮ ⋮𝐺௠ଵ଻,ଵ 𝐺௠ଵ଻,ଶ 𝐺௠ଵ଻,ଷ𝐺௠ଵ଼,ଵ 𝐺௠ଵ଼,ଶ 𝐺௠ଵ଼,ଷ⎦⎥⎥

⎥⎤. (29) 

3. Application and analysis 

3.1. Free vibration characteristics 

A PC continuous curved box girder bridge with three spans is shown as Fig. 3. The longitudinal 
span is of 210 m, curvature radius 𝑅 = 300 m, elasticity modulus 𝐸 = 3.4×106 MPa, density 𝜌 = 2500 kg/m3. The cross section size of box girder is shown as Fig. 4. 

 
Fig. 3. Three-span curved box girder bridge (Unit: m) 

 
Fig. 4. Cross section size of box girder (Unit: m) 

Vibration equation of curved box girder bridge is shown as follows: ሺ[𝐾] − 𝜔ଶ[𝑀]ሻ[𝛿]௘ = 0, (30) 

where 𝜔 is vibration frequency, Eq. (30) has a nonzero solution when the curved box girder bridge 
vibrates freely, the following equations can be obtained: [𝐾] − 𝜔ଶ[𝑀] = 0. (31) 

The vibration frequency can be acquired when introducing corresponding boundary conditions 
according to Eq. (31). Attention should be paid that flow cylindrical coordinate system is adopted 
in the present work, therefore it is unnecessary to transform the element matrix. 

The mesh of the curved box girder bridge along the longitudinal direction at each span contains 
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2, 3 and 4 elements, respectively and the eigenvalue equation is solved through MATLAB. 
Meanwhile, a finite element model is established by ANSYS, the primary beam is simulated by 
SHELL 63 element and the piers are simulated by SOLID 45 element, TARGE170 3D element 
and CONTA175 element are used to simulate the supports. There are totally 9660 elements and 
9706 nodes in the finite element model. According to Chinese code JTG D60-2015 [23], 
estimation formulas of the natural vibration frequency of continuous beam bridge are shown as 
following equations: 

𝑓ଵ = 13.6162𝜋𝑙ଶ ඨ𝐸𝐼௖𝑚௖ , (32) 

𝑓ଶ = 23.6512𝜋𝑙ଶ ඨ𝐸𝐼௖𝑚௖ , (33) 

where 𝑙 is the span 𝐸, 𝐼௖ are elastic modulus and inertia moment 𝑚௖ is linear mass 𝑓ଵ, 𝑓ଶ are the 
first 2th order frequencies. Theoretical value and ANSYS results are shown in Table 1 and Fig. 5. 

Table 1. Vibration frequency of continuous curved box girder bridges (Hz) 

Order Theoretical results ANSYS Vibration model 2 element 3 element 4 element 
1 1.911 1.914 1.914 1.949 Vertical vibrates 
2 2.338 2.348 2.349 2.431 Vertical vibrates 
3 2.481 2.504 2.508 2.649 Transverse vibrates 
4 2.716 2.77 2.796 2.835 Transverse vibrates 
5 2.977 3.024 3.051 3.059 Torsional vibrates 

 
Fig. 5. Influence of element number on error  

From Table 1, the theoretical values present a good agreement with the ANSYS numerical 
results, satisfied results can be obtained when each span of the whole bridge is meshed with 3-4 
elements, the computing time is greatly reduced compared with ANSYS. However, the first 2th 
order frequency calculated by JTG D60-2015 [23] are 3.184 Hz, 5.531 Hz respectively, giving a 
respective discrepancy of 63.4 % and 127.5 % in comparison to the numerical results from 
ANSYS, which will lead to a larger positive bending moment at mid-span and make larger 
negative bending moment at support when the vehicle impact effects are considered. Besides, the 
first 2th order vibration models of the bridge are vertical vibration, the 3th and 4th order models 
are transverse vibration. It means vertical stiffness of long-span curved box girder bridge is smaller 
compared with its transverse stiffness. The torsional vibration is firstly occurred in the 5th order 
vibration model, which means the bridge has good torsion resistance.  

In Fig. 5, the errors between theoretical values and ANSYS are smaller and smaller with the 
increasing of element numbers, this trend is more obvious for high order frequencies. 
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3.2. Seismic responses calculation  

Rayleigh linear damping is adopted in present work, therefore D’ Alembert vibration 
differential equation of the bridge structure is given by: [𝑀]ൣ𝛿ሷ௘൧ + [𝐶]ൣ𝛿ሶ௘൧ + [𝐾][𝛿௘] = −[𝐺௠][𝑔ሷ]. (34) 

The Newmark-β method [24] is adopted to obtain the seismic response. El-Centro seismic 
waves (north-south component) is chosen as earthquake excitation in present work as shown in 
Fig. 6. 

 
Fig. 6. El-Centro seismic waves (north-south component) 

Generally, 1D horizontal seismic action (longitudinal direction or transverse direction) and 2D 
horizontal seismic action are mainly considered in bridge seismic resistance. However, vertical 
seismic action should be also considered for the long-span curved box girder bridge. 4 loading 
conditions are set in present work as shown in Table 2, peak factor in different directions are set 
up as 1 (horizontal direction1), 0.85 (horizontal direction 2) and 0.65 (vertical direction).  

Table 2. Loading conditions of seismic excitation 
Seismic excitation I II III IV 

Peak factor 
𝑋 1 – 0.85 0.85 𝑌 – – – 0.65 𝑍 – 1 1 1 

Seismic types 1D 1D 2D 3D 

Dynamic responses at 1# pier top under loading condition I are shown as Fig. 7. It can be seen 
from Fig. 7 that the theoretical results agree well with the finite element results of ANSYS. Based 
on it, peak dynamic response of all piers under 4 loading conditions are also calculated and the 
results are shown as Fig. 8, Fig. 9 and Fig. 10. 

In Fig. 8(c), Radial acceleration of 1# pier and 4# are 906 gal and 816 gal respectively under 
transverse horizontal seismic action (loading condition I), while they are 919 gal and 1063 gal 
respectively under longitudinal horizontal seismic action (working condition II), it indicates that 
continuous curved box girder bridge is likely to be damaged by transverse girder-falling at both 
ends under 1D horizontal seismic action. In Fig. 8(a) and Fig. 8(c), radial displacement and 
acceleration of 4# pier are 18.5 mm and 1063 gal under longitudinal horizontal seismic action, 
while they are 28.9 mm and 1640 gal under 2D horizontal loading(working condition III), the 
increasing rates are 56.2 % and 54.3 %, which means peak dynamic response under 2D coupling 
horizontal seismic action is greater than that under 1D horizontal seismic action. In addition to the 
1D horizontal seismic action (transverse or longitudinal direction) during bridge seismic design, 
an adverse effect of 2D coupling horizontal seismic action should also be considered. Furthermore, 
peak dynamic response of the curved box girder bridge under 3D seismic action (working 
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condition IV) is almost the same as that under 2D horizontal seismic action, which indicates that 
vertical seismic action isn’t coupled with horizontal seismic action. 

 
a) Displacement 

 
b) Acceleration 

Fig. 7. Dynamic response of 1# pier 

 
a) Radial displacement 

 
b) Tangential displacement 

 
c) Radial acceleration 

 
d) Tangential acceleration 

Fig. 8. Dynamic responses under different loading conditions 

In Fig. 9, radial dynamic responses of all piers are greater than tangential dynamic responses 
under transverse horizontal seismic action. In Fig. 10, radial dynamic responses of 1# and 2# pier 
are also greater than tangential dynamic responses under longitudinal seismic action, whilst for 3# 
pier and 4# pier, their radial dynamic responses are basically equal to their tangential dynamic 
responses, it indicates that the continuous curved box girder bridge mainly vibrates along 
transverse direction together with in-plane rotation around 3# pier and 4# pier.  

Seismic wave direction of loading condition I and II are shown as Fig. 11, 𝑅 and 𝑇 represents 
the radial direction and tangential direction respectively. Flow cylindrical coordinate system is 
adopted in the present work, therefore seismic wave direction of loading condition I is exactly 
coincident with the radial direction of 1# pier, the angle between them is denoted as 𝛼 = 0°. 
Seismic wave direction of loading condition II is also exactly coincident with the tangential 
direction of 1# pier, the angle between them is denoted as 𝛼 = 90°. There is a certain angle 
between seismic wave direction and radial direction (or tangential direction) for the rest piers. 
Under loading condition I, radial responses of each pier are basically equal. Whilst the tangential 
responses of each pier differ greatly and present obvious spatiality under loading condition II. 
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Besides, the peak displacement doesn’t occur at 1# pier but 4# pier, the radial and tangential 
displacement are respectively 18.5 mm, 14.5 mm. It indicates that mechanics behavior of the 
continuous curved box girder bridge is so complicated, and the peak responses may not occur 
along seismic wave direction. 

 
a) Displacement 

 
b) Acceleration 

Fig. 9. Dynamic response of the bridge under loading condition I 

 
a) Displacement 

 
b) Acceleration 

Fig. 10. Dynamic responses of the bridge under loading condition II 

 
Fig. 11. Seismic wave direction of loading condition I and II 

Seismic waves at any direction in the horizontal plane can be decomposed along 𝑥 and 𝑧 
direction, so there is certainly a critical angle that make the curved box girder bridge reach its peak 
displacement responses. In order to investigate the critical angle of seismic wave and acquire the 
peak dynamic response in the range of 0° to 180°, Δ𝛼 = 5° is set as the increment in present work. 

The critical angle of seismic wave is shown as Fig. 12, the peak displacement response of all 
piers roughly change in sine wave form in the range of 0° to 180°. Both the radial and tangential 
peak displacements appeared for all the 4 piers as the seismic wave angle reached at 50° and 70°. 
The radial peak displacements are 16.8 mm, 15.7 mm, 13.2 mm, 22.1 mm respectively, and the 
tangential peak displacements are 1.9 mm, 5.7 mm, 12.5 mm, 15.5 mm respectively. 
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a) 1# pier 

 
b) 2# pier 

 
c) 3# pier 

 
d) 4# pier 

Fig. 12. Critical angle of seismic wave 

4. Conclusions 

Element stiffness matrix, mass matrix and earthquake mass matrix of curved box girder bridge 
are deduced in present work, vibration characteristics and seismic waves of a long-span curved 
box girder bridge are solved by eigenvalue function and Newmark-𝛽  method, the following 
conclusions can be draw: 

1) The theoretical results present a good agreement with the finite element analysis, which can 
verify the accuracy and reliability of the deducing element matrix. Besides, satisfied results can 
be acquired when the curved box girder bridge is meshed with several elements, which shows the 
high efficiency of the proposed method in the present work. 

2) In addition to the 1D horizontal seismic action during bridge seismic design, an adverse 
effect of 2D coupling horizontal seismic action should also be considered. 

3) Long-span curved box girder bridges have a large transverse seismic response, they are 
likely to be damaged by the transverse girder-falling at both ends under 1D horizontal seismic 
action. 

4) Spatial mechanical behavior of long-span curved box girder bridges is complicated; the 
peak responses may not occur along seismic wave direction.  

5) For long-span curved box girder bridges, the vertical seismic action isn’t coupled with 
horizontal seismic action and it can be calculated separately. 

6) The deducing element matrix not only can calculate the seismic response of long-span 
curved box girder bridges but also can provide significant references for vehicle-bridge coupling 
vibration response. 
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