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Abstract. The Huge vibration data are generated continuously by many sensors in daily 
high-speed rotating machinery operations. Accurate online prediction based on big vibration data 
streaming can reduce the risks related to failures and avoid service disruptions. This paper presents 
a hybrid nonlinear autoregressive network with exogenous inputs (NARX) model to forecast the 
remaining useful life of ball bearings through health index based on big vibration data streaming. 
This approach is validated by a real data from PRONOSTIA experimentation platform and 
industrial test rig compared with backpropagation neural network (BP), Elman and general 
regression neural network (GRNN) prediction model. Root mean square error, mean absolute error 
and correlation coefficient were used as performance indexes to evaluate the prediction accuracy 
of these models. The mean absolute error, the root mean square error and the correlation 
coefficient of hybrid NARX model evaluation index are 2.04, 2.85 and 0.98 respectively. It shows 
that the model presented in this paper has higher prediction accuracy. It can meet the needs of 
actual ball bearing remaining useful life prediction and also provide reference in other fields. 
Keywords: health index, remaining useful life, ball bearings, prediction, data streaming, neural 
network. 

1. Introduction 

With the development of data acquisition, storage and analysis technology, big data analysis 
and application have become possible. Streaming data analysis is a kind of big data analysis 
technology. Streaming data analysis of big data is becoming a hot research topic in recent years 
[1-6]. The vibration data of ball bearing sensor is a kind of big stream data. For example, in 2012, 
Italy Ministry of Communications Statistics about 600000 bearings in the country. According to 
the literature, it is known that the data volume obtained by vibration sensors will be very large 
[7, 8]. Many scholars have made a lot of useful explorations for predicting the remaining useful 
life of ball bearings with a large number of vibration data. Guo et al. used recurrent neural network 
to build health index in order to predict the remaining useful life of ball bearings [9]. Wang et al. 
built health index via multiple statistical indicators and Mahalanobis distance. Then, an enhanced 
Kalman filter and EM hybrid algorithm were used to predict the remaining useful life of bearing 
adaptively [10]. Zhao et al. proposed a hybrid method of time frequency representation and 
supervised dimensionality reduction in order to predict bearing remaining useful life [11]. Every 
observation has 25,600 dimensions’ feature. Wu et al. used moving average to reduce the impact 
of noise in the bearings signal and apply BP to estimate the life percentile and failure times of 
bearings [12]. Gebraeel et al. used BP to predict bearing failure times [13]. Wang et al. used PCA 
and improved logistic regression model to predict remaining useful life of rolling bearing [14]. 
Wang et al. used time domain, frequency domain, time-frequency domain feature as the original 
features from the bearing vibration signals. Although these health indexes got good results for 
predicting bearing remaining useful life, there are still some drawbacks which are needed to be 
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solved. For example, Zhao, Wang and Guo’s methods of building health indices are complex and 
inefficient in the case of big streaming data. Another example is the moving average method is 
simple and can effectively eliminate the stochastic fluctuation in the prediction, but it makes the 
predicted value less sensitive to the actual change of the data and the timeliness is bad. It is a great 
challenge to design an effective remaining useful life scheme of ball bearing based on vibration 
big data, considering computing resources, calculation time and prediction accuracy rate. One of 
the challenges is to build an effective health indicator from the massively abundant vibration 
sensors stream data. The second challenge is the computational accuracy and time of the prediction 
model. 

In order to address the aforementioned shortcomings, this paper presents a health index and 
grey NARX model in order to predict ball bearing remaining useful life. Based on the health index, 
a modeling study on the prediction of residual life of ball bearing is carried out. In terms of model 
research, BP, Elman, NARX and GRNN prediction model were established respectively, and the 
experimental results were analyzed. 

The rest of this paper is organized as follows. In Section 2, a new health index method is put 
forward for preprocessing original vibration data in order to improve the data quality. Then, the 
generalized grey neural network prediction framework is used to predict the remaining useful life 
of ball bearings. The effectiveness of the proposed model is verified by comparative experiments 
using PRONOSTIA data and industrial bearing data in section three. Finally, conclusions are 
drawn in the last section. 

2. Health index and proposed neural network architecture 

This section introduces health index and describes NARX for predicting the remaining useful 
life of ball bearings. 

Firstly, the health index of ball bearings was got by Eq. (1) using the original streaming 
vibration data: 𝐻𝑖 = 𝑚𝑎𝑥 − 𝑚𝑖𝑛2 ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, (1) 

where 𝑚𝑎𝑥 represents the maximum value in the data segment, 𝑚𝑖𝑛 refers to the minimum value 
in the data segment, and variance is the degree of dispersion of all data in the data segment. 

To illustrate the significance of health index, an example is given. Assume two sets  𝐴 = {0; 8; 12; 20} and 𝐵 = {8; 9; 11; 12}, they have the same average, 10. The following data 
can be obtained by calculation. The variance of 𝐴 is 69.33. The variance of 𝐵 is 3.33. 𝐻𝑖 of 𝐴 is 
693.33. 𝐻𝑖 of 𝐵 is 6.67. From the result of calculations, it can be learned that the health index 
reflects the overall size and range of data set. Therefore, the health index can reflect the range and 
overall size of vibration data of the sample files during the bearing working process. 

Fig. 1 shows the challenges in predicting the remaining useful life of ball bearings. The curve 
in Fig. 1(a) shows the health index of life cycle data of PRONOSTIA ball bearing 1-1. The curve 
in Fig. 1(b) displays the health index of life cycle data of PRONOSTIA ball bearing 1-2. Two 
different curves were obtained under the same experimental environment and the same type ball 
bearings. The life span of bearing 1-1 is 2803 cycles, but it is 870 cycles for bearing1-2. The health 
index of bearing 1-1 is 1242, while the health index of bearing 1-2 is 518.6. On the one hand, it is 
difficult to find any regular pattern in life span and a threshold. On the other hand, Fig. 1 
demonstrates that health index of ball bearing is a non-monotone oscillation sequence. 

Secondly, a hybrid method is introduced to predict the remaining useful life of ball bearings 
based on health index from vibration signals. Neural network with nonlinear mapping 
characteristics is introduced to help predict data and reduce prediction error. This paper proposed 
grey NARX model in order to forecast ball bearings remaining useful life.  

The first step of the proposed model is to preprocess the health index according to accumulated 
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generating operation (AGO) method in grey theory, and get the input data which NARX needs. 
The second step is to get cumulative prediction based on input data and NARX algorithm. The 
third step is to get the prediction data of health index through inverse accumulated generating 
operation (IAGO) method.  

The original health index was set to 𝑥(଴)(1), 𝑥(଴)(2), ⋯ , 𝑥(଴)(𝑛).  Recorded as  𝑥(଴) = 𝑥(଴)(1), 𝑥(଴)(2), ⋯ , 𝑥(଴)(𝑛) . A new series 𝑥(ଵ)  was got by using cumulative sum 
according to the series 𝑥(଴): 𝑥(ଵ) = ቀ𝑥(ଵ)(1), 𝑥(ଵ)(2), ⋯ , 𝑥(ଵ)(𝑛)ቁ, (2) 

where 𝑥(ଵ)(𝑘) = ∑ 𝑥(଴)(𝑖)௞௜ୀଵ  and 𝑘 = 1,2, ⋯ , 𝑛. 

 
a) 

 
b) 

Fig. 1. Health index from the same type bearing and the same test conditions:  
a) bearing 1-1, b) bearing 1-2 

Applying dynamic neural networks for modeling and predicting data series is the major 
application of these networks. NARX is a type of recurrent dynamic neural network. NARX is an 
effective approach to solving nonlinear sequence problems [15].  

NARX neural network model can be written as: 𝑦(𝑡) = 𝑓൫𝑦(𝑡 − 1), 𝑦(𝑡 − 2), ⋯ , 𝑦(𝑡 − 𝑖), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), ⋯ , 𝑥(𝑡 − 𝑗)൯, (3) 

where 𝑥(⋅) and 𝑦(⋅) are the input and target data, respectively. The maximum lags of 𝑦 and 𝑥 are 𝑖 and 𝑗, respectively. 𝑓(⋅) is a nonlinear mapping function. 𝑦(𝑡) is the output of NARX neural 
network. 

There are two different types of NARX neural networks, open-loop NARX and close-loop 
NARX. They can be described by Eq. (4) and (5), respectively: 𝑦ො(𝑡) = 𝑓൫𝑦(𝑡 − 1), 𝑦(𝑡 − 2), ⋯ , 𝑦(𝑡 − 𝑖), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), ⋯ , 𝑥(𝑡 − 𝑗)൯, (4) 𝑦ො(𝑡) = 𝑓൫𝑦ො(𝑡 − 1), 𝑦ො(𝑡 − 2), ⋯ , 𝑦ො(𝑡 − 𝑖), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), ⋯ , 𝑥(𝑡 − 𝑗)൯, (5) 

where 𝑦ො(𝑡) is the output at time 𝑡, 𝑦(⋅) is the true past values set of the sequence. 𝑥(⋅) is the inputs 
set of the network. The number of output delays is 𝑖 and 𝑗 is the number of input lags. 𝑦ො(⋅) is the 
past predicting values set of the sequence. The difference between open loop architecture and 
closed loop architecture is that open loop architecture uses the true past values 𝑦(⋅) and closed 
loop architecture uses predictive past values 𝑦ො(⋅). 
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a) 

 
b) 

Fig. 2. Architecture of NARX: a) open loop architecture, b) close loop architecture 

In general, the training time of close loop is much longer than that of open loop and NARX 
neural network obtained by close loop training is often worse than NARX neural network obtained 
from open loop training. Therefore, NARX model is trained in open loop architecture and is used 
in closed loop architecture for multi-step prediction in this paper. 

The predicted value of the original sequence is solved by the cumulative predicted value 
sequence by Eq. (6). This process is called IAGO: 𝑥ො(଴)(𝑘) = 𝑥(ଵ)(𝑘) − 𝑥(ଵ)(𝑘 − 1). (6) 

To verify the performance of the proposed model, this paper used grey neural network 
architecture [16-19]. Fig. 3 describes the generalized grey neural network architecture. {𝑥(଴)(𝑗), 𝑥(଴)(𝑗 + 1), ⋯ , 𝑥(଴)(𝑗 + 𝑚 − 1)} is a fragment of the streaming health data. AGO is used 
to preprocess the original data into approximate monotonic sequence data [19]. The purpose of 
this transformation is to weaken the random fluctuation in series data. A neural network is 
represented in the dotted line frame. It can be a static neural network, or a dynamic neural network. 
For example, BP and GRNN are common static neural networks. For instance, Elman and NARX 
are common dynamic neural networks. Finally, the predictive value of the original vibration time 
series can be got by IAGO. 

 
Fig. 3. Generalized grey neural network prediction framework 

3. Experimental study 

The remaining useful life of ball bearings is closely related to the load, temperature and other 
factors in working environment. In the running process, the real-time monitoring signal of the ball 
bearing’s vibration and temperature can reflect the current running state. The use of vibration 
signals to predict remaining useful life of ball bearings is the most widely used and most effective 
method at present. Considering the non-linear and nonstationary characteristics of the vibration 
signals of ball bearings, this section uses health index of ball bearings. BP, GRNN and Elman 
prediction model combined with grey data preprocessing method are applied to evaluating the 
proposed grey NARX model using the PRONOSTIA accelerated life test data of ball bearings and 
industrial ball bearing test data. 
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3.1. Experimental setup 

This subsection describes the preparation and related knowledge for vibration stream 
remaining useful life data prediction of ball bearings. 

3.1.1. Datasets description 

Two experimental data sets of PRONOSTIA and industrial dataset are used to do experiments. 
These data are obtained from the test rig sensors in Fig. 4. 

 
a) 

 
b) 

Fig. 4. Ball bearing test rig: a) PRONOSTIA, b) high speed train traction motor bearing test rig 

Firstly, PRONOSTIA dataset has been used in many remaining useful life prognostic studies 
[7, 9, 11, 15]. There are 17 run-to-failure datasets in order to study the prediction of bearing 
remaining useful life. Vibration and temperature signals have been saved in ASCII files 
respectively. Since vibration data are studied in this paper, only vibration data are described as 
follows. The vibration signal consists of a horizontal vibration signal and a vertical vibration  
signal. The sampling frequency is 25.6 kHz. 2560 samples are recorded every 10 seconds. Each 
record is stored in an ASCII file. For each ASCII file, the data obtained by the vibration sensor 
includes the horizontal direction of vibration data and the vertical direction of vibration data. In 
addition, the corresponding vibration time is also stored in the ASCII file. 

Secondly, the industrial ball bearing test of high-speed train is conducted on NTN bearing test 
rig. The bearing type of high-speed train is 6311 deep groove ball bearing. Acceleration sensor 
was used to collect vibration signals of ball bearings in order to monitor bearing health condition. 
The minimum recording period of the test bed is 10 seconds. The cumulative operation time of 
two experimental bearings is approximately 3000 and 700 hours. All samples are stored in two 
database files. 

3.1.2. Data preprocessing 

PRONOSTIA vertical vibration data is extracted from each sample ASCII file. For vertical 
vibration data of each sample file, Eq. (1) is used to calculate the time series health index. And 
then the health index vector 𝐗 is then obtained. Fig. 5 describes the whole life cycle health index 
of the bearing 1-1. As can be seen from Fig. 5, the health index after AGO is smoother and larger 
than the original data and moving average health index. 

Fig. 6 describes the part health index of the bearing1-1 from 1250 to 1350 time unit. From 
Fig. 5 and 6, it can be seen that the health index processed by MA method is not good at 
eliminating random fluctuations compared with AGO method. Compared with MA method, AGO 
method has a large difference value in health index at the same time interval. Since AGO method 
is more sensitive to data change and has good timeliness, the health index data processed by AGO 
is used to predict the remaining life of ball bearings. 
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a) 

   
b) 

 
c) 

Fig. 5. Health index of the bearing 1-1: a) health index, b) moving average (𝑞 = 10) health index,  
c) accumulated generating operation health index 

  
a) 

   
b) 

 
c) 

Fig. 6. Part health index of the bearing 1-1: a) health index, b) moving average (𝑞 = 10) health index,  
c) accumulated generating operation health index 

3.1.3. Time window processing 

Before using the model to predict the nonlinear time series, it is necessary to reconstitute the 
data format. Suppose the time series is {𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡}. After reconstructing the data with window 
size 𝑚, we get the multi-dimensional feature matrix 𝐗 and the prediction vector 𝐘. 𝐗 and 𝐘 can be 
expressed in Eq. (7) and Eq. (8) respectively: 

𝐗 = ൮𝐗ଵ𝐗ଶ⋮𝐗௜ ൲ = ൮𝑥ଵ 𝑥ଶ ⋯ 𝑥௠𝑥ଶ 𝑥ଷ ⋯ 𝑥௠ାଵ⋮ ⋮  ⋮𝑥௜ 𝑥௜ାଵ ⋯ 𝑥௜ା௠ିଵ൲. (7) 
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For the 𝑗 feature vector 𝐗௝, the expression form is (𝑥௝, 𝑥௝ାଵ, ⋯ , 𝑥௝ା௠ିଵ): 

𝒀 = ൮𝑦ଵ𝑦ଶ⋮𝑦௜ ൲ = ൮𝑥௠ାଵ𝑥௠ାଶ⋮𝑥௠ା௜ ൲. (8) 

The expression form of 𝑦௝ is (𝑥௠ା௝). 
Fig. 7 describes the reconstruction process of the feature vector and the prediction vector when 

the window width is 𝑚 = 4. The training set for model training is {𝐗௜, 𝑦௜}௜ୀଵ௡ିସ. 

 
Fig. 7. Reconstruction of health index time series data 

3.1.4. Performance metrics 

The performance metrics are mean absolute error (MAE), root mean square error (RMSE) and 
Pearson’s correlation coefficient (𝑅). 

MAE is a measure of difference between two variables. It is given by the following equation: 𝑀𝐴𝐸 = 1𝑛 ෍ |𝑦ො௧ − 𝑦௧|,௡௧ୀଵ  (9) 

where 𝑛 refers to the sample size, 𝑦ො௧ is the predictive value indexed with 𝑡, 𝑦௧ is the observed 
value indexed with 𝑡. MAE output is non-negative value. The best value is 0. 

RMSE is a measure of the differences between model predictive values and the actually 
observed values. RMSE is given by: 

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑦ො௧ − 𝑦௧)ଶ௡௧ୀଵ 𝑛 , (10) 

where 𝑛 is the sample size, 𝑦ො(𝑡) is the predictive value indexed with 𝑡, 𝑦(𝑡) is the observed value 
indexed with t. A smaller RMSE value implies a smaller error variation between predicted values 
and observed values. RMSE reflects the degree which the predicted values deviate from the 
observed values. 𝑅 is a measure of the linear correlation between two variables. The equation for 𝑅 is: 

𝑅 = ∑ (𝑥௧ − 𝑥̅)௡௧ୀଵ (y௧ − yത)ට∑ (𝑥௧ − 𝑥̅)௡௧ୀଵ ଶ ඥ∑ (𝑦௧ − 𝑦ത)ଶ௡௧ୀଵ , (11) 

where 𝑛 refers to the sample size, 𝑥௧ and 𝑦௧ are the single sample indexed with 𝑡, 𝑥̅ is the mean of 
data set {𝑥ଵ, 𝑥ଶ ⋯ , 𝑥௡}, 𝑦ത is the mean of data set {𝑦ଵ, ⋯ , 𝑦௡}. The 𝑅 value range is between –1 and 
1, where –1 is total negative linear correlation, 0 is no linear correlation, and 1 is total positive 
linear correlation. 

x1 x2 x3 x4 x5 x6 xn-1 xn

(x1,y1)
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3.1.5. Compared approaches 

Four methods are used in this paper, which are BP neural network, GRNN, Elman and NARX. 
BP and GRNN are static neural network. Elman and NARX neural network are dynamic neural 
networks. Static neural networks are characterized by no feedback, no memory, and the output 
depends only on the current input. The output of dynamic neural networks with feedback depends 
not only on current and previous inputs, but also on previous outputs.  

BP was put forward by the scientific research group headed by Rumelhart and McCelland in 
1986 [20]. BP neural network is a multilayer feed-forward network trained by the error 
back-propagation algorithm. It is one of the most widely used neural network models. The basic 
idea of BP is that the learning process consists of two processes, namely, the signals of 
feedforward and the back-propagation of errors. When forward propagation, the input samples are 
sent from the input layer, and processed by the hidden layers, and then transmitted to the output 
layer. If the actual output of the output layer is not consistent with the expected output, it will go 
back to the error back-propagation stage. In back-propagation, the output is retransmitted to the 
input layer by the hidden layer in some form, and the error is apportioned to all the units of each 
layer, thus the error signal of each layer is obtained. The error signal is the basis of correcting the 
weight of each unit. BP neural network is composed of input layer, hidden layer and output layer. 
Considering the regression prediction problem here, the transfer function used in BP network is 
tansig function. 

GRNN was proposed by Specht in 1991 [21]. GRNN is a one-pass learning algorithm. Its 
network structure is highly parallel. GRNN can be used for nonlinear prediction. GRNN is a 
solution for online dynamical systems. It is a kind of radial basis neural network [22]. The network 
structure of GRNN is composed of four layers, namely, input layer, pattern layer, summation layer 
and output layer. Its network input is 𝑋 = [𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡]், and the output is 𝑌 = [𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௞]். 
GRNN model can be expressed as Eq. (12): 

𝑌(𝑥) = ∑ 𝑦௞𝐾(𝑥, 𝑥௞)ே௞ୀଵ∑ 𝐾(𝑥, 𝑥௞)ே௞ୀଵ , (12) 

where 𝑌(𝑥) is the prediction value of input 𝑥. 𝑦௞ is the activation weight for the pattern layer 
neuron at 𝑘. 𝐾(𝐱, 𝐱௞) is the Gaussian kernel as formulated 𝐾(𝐱, 𝐱௞) = 𝑒ି(𝐱ି𝐱ೖ)೅(𝐱ି𝐱ೖ)/ଶఙమ. 

In 1990, Elman proposed the Elman network, which is a kind of recurrent neural network [23]. 
Elman neural network is used in many fields, such as cognitive science, economics and others. 
Elman network structure consist of four layers: input layer, hidden layer, context layer and output 
layer. The context layer can provide a short memory. Elman networks are used for predicting time 
series. Elman neural network model can be expressed as Eq. (13): 𝐲(𝑘) = 𝑔 ൬𝜔ଷ𝑓 ቀ𝜔ଵ𝐱(𝑘 − 1) + 𝜔ଶ൫𝐮(𝑘 − 1)൯ቁ൰, (13) 

where 𝐲(𝑘) is output vector. 𝑔(⋅) is the transfer function of output neurons. 𝑓(⋅) is the transfer 
function of middle layer neurons. 𝐱(𝑘) = 𝑓(⋅) is hidden layer vector. 𝐱(𝑘 − 1) is a feedback state 
vector. 𝐮 is input vector. 𝜔ଷ is the connection weight of the middle layer to the output layer. 𝜔ଶ 
is the connection weight of the input layer to the middle layer. 𝜔ଵ is the connection weight of the 
context layer to the middle layer. 

NARX is a dynamic neural network. NARX can learn to predict time series given past values 
of the same time series, the feedback input, and the exogenous time series. It can be applied for 
predicting nonlinear sequence data. It can be used as a recurrent dynamic neural network to predict 
the next value of the input data. 
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3.2. Experiment and analysis 

This subsection describes experimental process and analyses experimental results. 

3.2.1. Experimental process 

Our goal is to provide multi-step ahead prediction of ball bearings health index. One step ahead 
is to predict the next data using historical data in a fixed window. For multi-step ahead predicting, 
the first step is predicted by applying one step ahead predicting. Subsequently, the predicted value 
is included as the latest component of input series to predict the next step using the one step ahead 
training method. This procedure is repeated for the continuous predicting. The following content 
briefly describes the basic steps in experimental research. Firstly, raw data set is from the vertical 
vibration streaming data of PRONOSTIA ball bearings and industrial ball bearing test data. 
Secondly, health index feature is extracted by Eq. (1). Thirdly, the data format required by the 
grey neural network framework is reconstructed by using the time window processing technique. 
Fourthly, the learning set 1 includes AGO health indexes from Bearing 1-1, Bearing 1-2, 
Bearing 1-3, Bearing 1-4, Bearing 2-1, Bearing 2-2, Bearing 2-3 and Bearing 2-4. The learning 
set 2 includes AGO health indexes from bearing 6311-1. The test set 1 consists of 8 AGO health 
indexes: Bearing 1-5, Bearing 1-6, Bearing 1-7, Bearing 2-5, Bearing 2-6 and Bearing 2-7. The 
test set 2 is AGO health index of bearing 6311-2. The learning set is divided into training set, 
validation set and test set, and the corresponding allocation ratio is 75 %, 15 %, 15 %. Fifthly, BP, 
GRNN, Elman and NARX learn on the learning set respectively in order to predict the health 
index of ball bearings remaining useful life. Finally, the training model is used to predict the test 
set. MAE, RMSE, 𝑅 and test running time are used to evaluate the performance of the four neural 
networks on the test set. 

3.2.2. Performance comparison 

The experimental results are divided into two parts. The first part is the life prediction result 
of ball bearing life cycle. The second part is the prediction result of the later period life of ball 
bearings. A comparison of the predicted and real values of the four algorithms in the two bearing 
test sets is shown in Fig. 8 and Fig. 9. The experimental performance results of two test sets are 
summarized in Table 1, Table 2, Table 3 and Table 4.  

From Fig. 8, it can be seen that BP and GRNN methods are getting smaller and smaller with 
the increasing number of data obtained. This is not good for predicting the remaining useful life 
of ball bearings with relatively short life. With the increasing number of data acquired by sensors, 
Elman and NARX method prediction error is relatively stable. This is beneficial for predicting the 
residual service life of the ball bearings. From the results in Fig. 9, it can be seen that the prediction 
error of four methods on test set 2 is BP, GRNN, Elman and NARX in descending order. 

Table 1 shows the performance of four different models. Results are expressed as mean ± SD. 
After calculation, the value of MAE, RMSE and 𝑅 indexes of BP are 49.71±15.84, 53.77±12.87 
and 1.00±0.01 respectively. The test running time required for BP on the test set 1 is 0.01±0.00 
seconds. The value of MAE, RMSE and 𝑅 indexes of GRNN is 40.51±10.55,44.89±8.43 and 
0.99±0.01 respectively. The test running time required for GRNN on the test set is 0.27±0.17 
seconds. The value of MAE, RMSE and 𝑅  indexes of Elman is 6.84±1.38, 7.54±1.46 and 
1.00±0.00 respectively. The average time required for Elman on the test set is 0.01±0.00 seconds. 
And the value of MAE, RMSE and R indexes of NARX is 1.60±1.41 2.94±3.04 and 0.99±0.02 
respectively. The test time required for NARX on the test set is 0.03±0.01 seconds. By comparison, 
the performance index of NARX were significantly higher than that of BP, Elman and GRNN. 
GRNN test runs for the longest time in four models. The other three models have a similar test 
run time. As it can be observed, compared with other methods, NARX method is more suitable 
for continuous prediction than the other methods using PRONOSTIA data.  
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Fig. 8. Comparison: a) bearing 1-5, b) bearing1-6,  
c) bearing 1-7, d) bearing 2-5, e) bearing 2-6, f) bearing 2-7 
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Fig. 9. Comparison of 4 algorithms on bearing 6311 life cycles 

Considering the late prediction of the remaining useful life of ball bearings is more important, 
the last one hundred health indexes are selected for comparison. It can be calculated from Table 2 
that the values of MAE, RMSE and 𝑅  of BP are 59.14±36.36,59.29±36.28 and 1.00±0.01 
respectively. The test time required for BP on the test set 1 is 0.01±0.00seconds. The values of 
MAE, RMSE and 𝑅 of GRNN are 22.92±15.58, 23.43±16.27 and 1.00±0.01 respectively. The test 
time required for GRNN on the test set 1 is 0.03±0.02 seconds. The values of MAE, RMSE and 
R of Elman are 9.78±3.27, 9.99±3.18 and 1.00±0.01 respectively. The test time required for Elman 
on the test set 1 is 0.01±0.00 seconds. And the values of MAE, RMSE and 𝑅 of NARX are 
2.04±2.16,2.85±3.53 and 0.98±0.03 respectively. The test time required for NARX on the test set 
1 is 0.01±0.00 seconds. After analysis, BP is still the worst of the four hybrid models. However, 
the average performance of the last part of the GRNN model is lower than that of the total data. 
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The average value of MAE and RMSE index of Elman method is lower than that of GRNN, but 
higher than that of NARX. The average values of MAE, RMSE and 𝑅 of NARX are the lowest 
among the four methods. The average performance of the last part of the NARX method is quite 
similar to the average performance of the whole life cycle data. According to the calculation results 
of Tables 1 and 2, grey NARX predict model has a higher prediction accuracy for predicting the 
remaining useful life of PRONOSTIA ball bearings. 

From Table 3, it can be seen that BP has the largest MAE and RMSE on the test set 2, while 
the MAE and RMSE of NARX are the smallest. The four algorithms are almost completely 
positively correlated. The test run time of GRNN is the most, while the test run time of the other 
models is approximately equal. As can be seen from Table 4, the results of prediction performance 
of bearing 6311 last 100 health indexes and prediction performance of bearing 6311 all health 
indexes were similar. Because of the test rig conditions, time and financial constraints, only two 
bearings were used for the experiment. If the number of bearings increases, the prediction error of 
industrial bearings will be further reduced in real scenarios. As can be seen from table 1-4, grey 
NARX is the most suitable model for continuous prediction the remaining useful life of ball 
bearings than other three models. 

Table 1. Prediction performance of PRONOSTIA all health indexes 
Algorithm Bearing No MAE RMSE 𝑅 Test time (s) 

BP 

Bearing 1_5 38.039 43.801 1.000 0.010 
Bearing 1_6 43.346 51.076 1.000 0.008 
Bearing 1_7 42.629 46.914 1.000 0.007 
Bearing 2_5 34.785 41.203 1.000 0.008 
Bearing 2_6 68.565 68.587 1.000 0.008 
Bearing 2_7 70.918 71.022 0.987 0.007 

– 49.71±15.84 53.77±12.87 1.00±0.01 0.01±0.00 

GRNN 

Bearing 1_5 27.889 35.421 0.990 0.520 
Bearing 1_6 34.777 40.549 0.992 0.396 
Bearing 1_7 33.201 38.861 0.981 0.255 
Bearing 2_5 43.559 46.867 0.981 0.289 
Bearing 2_6 47.087 49.004 0.999 0.139 
Bearing 2_7 56.574 58.654 0.984 0.037 

– 40.51±10.55 44.89±8.43 0.99±0.01 0.27±0.17 

ELMAN 

Bearing 1_5 8.742 9.526 1.000 0.019 
Bearing 1_6 7.281 8.255 1.000 0.012 
Bearing 1_7 5.056 5.972 1.000 0.009 
Bearing 2_5 6.115 6.822 1.000 0.008 
Bearing 2_6 5.935 6.077 1.000 0.009 
Bearing 2_7 7.913 8.602 0.989 0.008 

– 6.84±1.38 7.54±1.46 1.00±0.00 0.01±0.00 

NARX 

Bearing 1_5 1.298 1.783 1.000 0.040 
Bearing 1_6 3.065 6.409 1.000 0.038 
Bearing 1_7 0.494 0.668 1.000 0.028 
Bearing 2_5 0.556 0.756 1.000 0.035 
Bearing 2_6 0.547 0.785 0.999 0.018 
Bearing 2_7 3.659 7.227 0.960 0.012 

– 1.60±1.41 2.94±3.04 0.99±0.02 0.03±0.01 

After calculating the health index of the bearing during the entire service process, the 
relationship between the health index of the bearing vibration data and the running mileage in the 
bearing life cycle can be obtained, as shown in Fig. 10(a). After getting the relationship between 
the mileage and the health index, the remainder life of rolling bearings can be obtained by using 
the design life subtracted from the mileage corresponding to the health index, as shown  
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in Fig. 10(b). 

Table 2. Prediction performance of PRONOSTIA last 100 health indexes 
Algorithm Bearing No MAE RMSE 𝑅 Test time (s) 

BP 

Bearing 1_5 71.569 71.595 1.000 0.009 
Bearing 1_6 110.623 110.732 0.995 0.008 
Bearing 1_7 28.606 29.058 1.000 0.007 
Bearing 2_5 7.274 7.416 1.000 0.007 
Bearing 2_6 66.013 66.013 1.000 0.008 
Bearing 2_7 70.733 70.905 0.979 0.007 

– 59.14±36.36 59.29±36.28 1.00±0.01 0.01±0.00 

GRNN 

Bearing 1_5 18.185 18.196 1.000 0.083 
Bearing 1_6 12.555 12.740 0.996 0.026 
Bearing 1_7 3.359 3.683 0.999 0.025 
Bearing 2_5 26.020 26.154 1.000 0.025 
Bearing 2_6 28.832 28.889 1.000 0.026 
Bearing 2_7 48.546 50.910 0.975 0.024 

– 22.92±15.58 23.43±16.27 1.00±0.01 0.03±0.02 

ELMAN 

Bearing 1_5 12.944 12.945 1.000 0.011 
Bearing 1_6 12.201 12.312 0.995 0.008 
Bearing 1_7 11.006 11.009 1.000 0.007 
Bearing 2_5 10.582 10.583 1.000 0.008 
Bearing 2_6 4.155 4.159 1.000 0.008 
Bearing 2_7 7.821 8.951 0.981 0.008 

– 9.78±3.27 9.99±3.18 1.00±0.01 0.01±0.00 

NARX 

Bearing 1_5 1.080 1.160 0.998 0.011 
Bearing 1_6 3.289 4.138 0.963 0.012 
Bearing 1_7 1.198 1.458 0.999 0.014 
Bearing 2_5 0.735 0.774 0.999 0.010 
Bearing 2_6 0.063 0.076 1.000 0.010 
Bearing 2_7 5.859 9.476 0.937 0.010 

– 2.04±2.16 2.85±3.53 0.98±0.03 0.01±0.00 

Table 3. Prediction performance of bearing 6311-2 all health indexes 
Algorithm MAE RMSE 𝑅 Test run time (s) 

BP 222.431 240.475 1.000 0.050 
GRNN 82.048 122.780 0.955 0.085 

ELMAN 32.367 34.777 1.000 0.017 
NARX 12.911 14.375 1.000 0.016 

Table 4. Prediction performance of bearing 6311-2 last 100 health indexes 
Algorithm MAE RMSE 𝑅 Test run time (s) 

BP 124.579 124.884 0.995 0.022 
GRNN 40.990 49.558 0.984 0.015 

ELMAN 19.163 19.745 0.992 0.013 
NARX 12.276 13.248 0.970 0.009 

 

 
a) 

 
b) 

Fig. 10. Relationship between mileage, health index and remaining useful life (RUL) 
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Qiming Niu put forward the formula of health index. Qingbin Tong discussed the possibility 
of structure. Junci Cao and Yihuang Zhang did experiments. Feng Liu put forward constructive 
suggestions. 

4. Conclusions 

Remaining useful life prediction accuracy highly relies on the performance of health index and 
predict model. In this paper, BP, GRNN, Elman and NARX neural network model were used to 
forecast the remaining useful life from the vibration acceleration data of the ball bearing. The 
results show that the precision of grey NARX neural network model is higher than BP, GRNN 
and Elman. The predict value of grey NARX neural network model is closer to the actual data, 
especially when the noise is relatively large. NARX neural network model has shorter prediction 
time compared with GRNN method. On the other hand, the research on the feature of ball bearing 
vibration acceleration, not only provides a feasible and effective method for establishing bearing 
remaining useful life index, also can establish remaining useful life prediction model of ball 
bearings provide some references. At the same time, the selection of prediction feature is not 
limited to the vibration acceleration. It can also be used for other features such as temperature. 
Grey NARX model and health index can be used to realize the remaining useful life prediction of 
the related components in future. 

Acknowledgements 

This work was partially supported by Comprehensive standardization and new mode 
application project of Intelligent Manufacturing in Ministry of industry and information 
technology of People's Republic of China No. 2017ZNZZ01-06, the Science and Technology 
Research and Development Major/Key Program of China Railway Corporation No. 2016J007-B, 
National Natural Science Foundation of China No.51577007, and Beijing Natural Science 
Foundation (3162023). Finally, the authors are grateful to the anonymous reviewers for their 
helpful comments and constructive suggestions. 

References 

[1] Nair L. R., Shetty S. D., Shetty S. D. Applying spark based machine learning model on streaming 
big data for health status prediction. Computers and Electrical Engineering, Vol. 65, 2017, p. 393-399. 

[2] Han D., Li S., Wei F., et al. Two birds with one stone: classifying positive and unlabeled examples 
on uncertain data streams. Neurocomputing, Vol. 277, 2017, p. 149-160. 

[3] Fernández Rodríguez J.-Y., Álvarez García J.-A., Fisteus J. A., et al. Benchmarking real-time 
vehicle data streaming models for a smart city. Information Systems, Vol. 72, 2017, p. 62-76. 

[4] Morales G. D. F., Bifet A. SAMOA: scalable advanced massive online analysis. Journal of Machine 
Learning Research, Vol. 16, 2015, p. 149-153. 

[5] Parker B. S., Khan L., Bifet A. Incremental ensemble classifier addressing non-stationary fast data 
streams. IEEE International Conference on Data Mining Workshops, 2014, p. 716-723. 

[6] Zeng X. Q., Li G. Z. Incremental partial least squares analysis of big streaming data. Pattern 
Recognition, Vol. 47, Issue 11, 2014, p. 3726-3735. 

[7] Fumeo E., Oneto L., Anguita D. Condition based maintenance in railway transportation systems 
based on big data streaming analysis. Procedia Computer Science, Vol. 53, Issue 1, 2015, p. 437-446. 

[8] Schoen R. R., Habetler T. G., Kamran F., et al. Motor bearing damage detection using stator current 
monitoring. IEEE Transactions on Industry Applications, Vol. 31, Issue 6, 1994, p. 1274-1279. 

[9] Guo L., Li N., Jia F., et al. A recurrent neural network based health indicator for remaining useful 
life prediction of bearings. Neurocomputing, Vol. 240, 2017, p. 98-109. 

[10] Wang Y., Peng Y., Zi Y., et al. A two-stage data-driven-based prognostic approach for bearing 
degradation problem. IEEE Transactions on Industrial Informatics, Vol. 12, Issue 3, 2016, p. 924-932. 

[11] Zhao M., Tang B., Tan Q. Bearing remaining useful life estimation based on time-frequency 
representation and supervised dimensionality reduction. Measurement, Vol. 86, 2016, p. 41-55. 



ON-LINE PREDICTION REMAINING USEFUL LIFE FOR BALL BEARINGS VIA GREY NARX.  
QIMING NIU, QINGBIN TONG, JUNCI CAO, YIHUANG ZHANG, FENG LIU 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 95 

[12] Wu S., Gebraeel N., Lawley M. A., et al. System for condition-based optimal predictive maintenance 
policy. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 37, 2007, p. 226-236. 

[13] Gebraeel N., Lawley M., Liu R., et al. Residual life predictions from vibration-based degradation 
signals: a neural network approach. IEEE Transactions on Industrial Electronics, Vol. 51, Issue 3, 
2004, p. 694-700. 

[14] Wang F., Wang B., Dun B., et al. Remaining life prediction of rolling bearing based on PCA and 
improved logistic regression model. Journal of Vibroengineering, Vol. 18, Issue 8, 2016, 
p. 5192-5203. 

[15] Rai A., Upadhyay S. H. The use of MD-CUMSUM and NARX neural network for anticipating the 
remaining useful life of bearings. Measurement, Vol. 111, 2017, p. 397-410. 

[16] Zeng X. Y., Shu L., Huang G. M., et al. Triangular fuzzy series forecasting based on grey model and 
neural network. Applied Mathematical Modelling, Vol. 40, Issue 3, 2016, p. 1717-1727. 

[17] Lei Y., Guo M., Hu D. D., et al. Short-term prediction of UT1-UTC by combination of the grey model 
and neural networks. Advances in Space Research, Vol. 59, Issue 2, 2017, p. 524-531. 

[18] Liu X., Moreno B., Garcia A. S. A grey neural network and input-output combined forecasting model. 
Primary energy consumption forecasts in Spanish economic sectors. Energy, Vol. 115, 2016, 
p. 1042-1054. 

[19] Abdulshahed A. M., Longstaff A. P., Fletcher S., et al. Thermal error modelling of a gantry-type 5-
axis machine tool using a grey neural network model. Journal of Manufacturing Systems, Vol. 41, 
2016, p. 130-142. 

[20] Rumelhart D. E., Hinton G. E., Williams R. J. Learning representations by back-propagating errors. 
Nature, Vol. 323, Issue 6088, 1986, p. 533-536. 

[21] Specht D. F. A general regression neural network. IEEE Transactions on Neural Networks, Vol. 2, 
Issue 6, 1991, p. 568-576. 

[22] Tse P. W., Atherton D. P. Prediction of machine deterioration using vibration based fault trends and 
recurrent neural networks. Journal of Vibration and Acoustics, Vol. 121, Issue 3, 1999, p. 355-362. 

[23] Elman J. L. Finding structure in time. Cognitive Science, Vol. 14, Issue 2, 1990, p. 179-211. 

 

Qiming Niu received the M.S. degree in applied mathematics from HeBei University, 
China, in 2005. He is currently a Ph.D. student in the School of Computer and Information 
Technology, Beijing Jiaotong University. His research interests include mechanical 
vibration, fault diagnosis, damage assessment and life prediction technology, engineering 
applications of artificial intelligence. 

 

Qingbin Tong received the M.S. degree in electrical engineering from the Kunming 
University of Science and Technology, Kunming, China, in 2005, and the Ph.D. degree in 
instrument science and technology from the Harbin Institute of Technology, China, in 
2008. He was a Post-Doctoral Research Associate with Beijing Jiaotong University and a 
Visiting Scholar with the University of Missouri, Columbia, MO, USA. He is currently an 
Associate Professor with the School of Electrical Engineering, Beijing Jiaotong 
University. His research interests include mechanical vibration, fault diagnosis, damage 
assessment and life prediction technology, engineering applications of artificial 
intelligence, rail transit traction drive, and control technology. 

 

Junci Cao received the B.S. and M.S. degrees from the Harbin University of Science and 
Technology, Harbin, China, in 2001 and 2004, respectively, and the Ph.D. degree from the 
Harbin Institute of Technology, Harbin, in 2008, all in electrical engineering. He is 
currently an Associate Professor with the School of Electrical Engineering, Beijing 
Jiaotong University. His research interests include asynchronous traction drive system 
design, synchronous traction drive system design, simulation and reliability analysis, 
special motor design and integrated physical field research, motor optimization design, and 
system energy-saving projects. 



ON-LINE PREDICTION REMAINING USEFUL LIFE FOR BALL BEARINGS VIA GREY NARX.  
QIMING NIU, QINGBIN TONG, JUNCI CAO, YIHUANG ZHANG, FENG LIU 

96 JOURNAL OF VIBROENGINEERING. FEBRUARY 2019, VOLUME 21, ISSUE 1  

 

Yihuang Zhang received the M.S. degrees from the Harbin Institute of Electrical 
Technology, Harbin, China, in 1981. He is currently a Professor with the College of 
Electrical Engineering, Beijing Jiaotong University, Beijing, China. His research interests 
include research on the development of electric vehicle motor systems, electromagnetic 
properties, and loss of electrical materials. 

 

Feng Liu is currently a Professor and also the Director of Network Management Research 
Center in the School of Computer and Information Technology at Beijing Jiaotong 
University, China. His research interests include network management, control, dynamics 
and fault diagnosis. 

 




