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Abstract. The purpose of this study is to show the influence of bending-torsion coupling on 
natural frequencies and mode shapes of aircraft wings by using two finite element beam 
formulations. The bending-torsion coupling parameters are the geometric parameter (distance 
between the mass axis and elastic axis of the cross-section of the beam) and the material coupling 
due to laminated composites. Cubic and high-order Hermite finite element interpolations are 
presented in this study, in order to show the influence of geometric and material coupling on 
natural frequencies and mode shapes. Starting by the governing partial differential equations of 
motion for the coupled bending-torsion beam with the bending and torsion equations, the 
Galerkin’s method is used with high-order finite element interpolation to obtain the high-order 
Hermitian shape functions. The mass and stiffness matrices are obtained using the kinetic energy 
and potential energy, respectively. The beam finite element has two nodes, the cubic element has 
three degrees of freedom at each end (transvers displacement, slope and torsion), where the high 
order element has five degrees of freedom at each end (transvers displacement, slope, curvature, 
gradient of curvature and torsion). The mass matrix contains geometric coupling terms and the 
stiffness matrix contains terms of material bending-torsion coupling. The obtained results using 
cubic and high-order finite element Euler-Bernoulli beam formulations are compared for a free 
vibration analysis of Goland metallic wing (geometric coupling) and validated with Dynamic 
Stiffness Method for composite wings. 
Keywords: composite beam, Hermite interpolation, high-order finite element beam, natural 
frequencies and mode shapes. 

1. Introduction 

Many analytical and numerical methods (Finite Element Method, Dynamic Stiffness method 
DSM, etc.) are adopted to determine approximate natural frequencies and mode shapes of uniform 
beams [1]. A high-order finite element formulation is developed by Ganesan and Zabehollah [2] 
for vibration analysis of tapered composite beams. Vibrations measurements of a wing are 
investigated experimentally by using the method of time averaged projection moiré analyzed by 
Maskeliūnas et al. [3]. Omarov et al. [4] made a dynamic model to determinate the reduced mass 
and stiffness of flexural vibrating cantilever beams. The measurement of plane vibrations of a two 
elastic structure are analyzed by Maskeliūnas et al. [5]. 

A dynamic stiffness element for free vibration analysis of composite beams and its application 
to aircraft wings is developed by Banerjee et al. [1], where a dynamic stiffness matrix of a 
composite beam is used to investigate it’s free vibration characteristics. A finite element 
parametric modeling technique of aircraft wing structures is given by Tang and Xi. [6]. The 
composite beam models are used to study the dynamic response and aeroelasticity for  
high-aspect-ratio of composite wings [7-10]. 

A variable-order finite-element method with application to the free-vibration of rotating beams 
is described by Hodge et Rutkowski [11], the elasto-dynamic response of a surface stiffened 
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transversely isotropic half-space subjected to an internal time-harmonic normal load is studied in 
axisymmetric time-harmonic response of a surface-stiffened transversely isotropic half-space by 
Eskandari et al. [12]. An axisymmetric response of a bi-material full-space reinforced by an 
interfacial thin film presented by Ahmadi et al. [13] where Effects of thin film stiffness, material 
properties, loading depth, and surface/interface effect are studied.  

A Kirchhoff thin plate perfectly bonded to the half-space is used to model the surface coating 
to study the Green’s functions of a surface-stiffened transversely isotropic half-space, Eskandari 
and Ahmadi [14]. 

A new novel collaborative optimization (MGACACO) algorithm based on the GA, ACO, the 
chaotic optimization method, multi-population strategy, adaptive control parameters and 
collaborative strategy is proposed to solve the complex optimization problems by Deng et al. 
[15, 16]. A PSO algorithm is used to optimize the parameters of least squares support vector 
machines (LS-SVM) [17] and solve multi-objective gate assignment [18]. A novel two-stage 
hybrid swarm intelligence optimization algorithm [19]. Other algorithms are used to solve 
optimization problems with application: a novel parallel hybrid intelligence optimization 
algorithm [20], A new feature extraction method based on EEMD and multi-scale fuzzy entropy 
for motor bearing [21], a novel collaborative optimization algorithm in solving complex 
optimization problems [22], and an improved self-adaptive differential evolution algorithm and 
its application [23]. A novel vibration suppression method based on fractional order 
Proportional-Integral-Derivative (PID) controller is proposed by Zhao et al. [24] in research on 
vibration suppression method of alternating current motor based on fractional order control 
strategy. 

This paper presents the effect of both geometric and material coupling in free vibration analysis 
of coupled bending-torsional beams by using a high-order finite element formulation. The 
bending-torsion coupling coefficient considered here is given without definition of the fiber 
orientation of laminate beams and the results are validated with those given by the Dynamic 
Stiffness Method DSM for Euler-Bernoulli beam model [1].  

2. Finite element modeling 

The cubic and high-order finite element interpolations are adopted to model the wing structure 
and deduce its global mass and global stiffness matrices. The kinetic and potential energies are 
used to obtain the mass matrix and the stiffness matrix of the beam element [1]. The mass matrix 
contains geometric coupling terms due to 𝑥  (distance between the mass and elastic axis) and the 
stiffness matrix contains the terms of rigidity bending-torsion coupling 𝐾 (laminated beam or 
multilayered beams).  

 
Fig. 1. Coupled Euler-Bernoulli beam 

2.1. The bending-torsion coupled beam element  

The governing partial differential equations of motion for the coupled bending-torsion free 
natural vibration of the composite beam are given by [1, 25, 26]:  
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𝐸𝐼 𝜕 𝑤𝜕𝑥 + 𝐾 𝜕 Ψ𝜕𝑥 − 𝑚𝑥 𝜕 Ψ𝜕𝑡 + 𝑚 𝜕 𝑤𝜕𝑡 = 0, 𝐺𝐽 𝜕 Ψ𝜕𝑥 + 𝐾 𝜕 𝑤𝜕𝑥 − 𝐼 𝜕 Ψ𝜕𝑡 + 𝑚𝑥 𝜕 𝑤𝜕𝑡 = 0, (1)

where 𝑤 is the transverse displacement of the beam, 𝐸𝐼 is the bending stiffness, 𝐺𝐽 is the torsion 
stiffness and 𝐾 the rigidity of bending-torsion coupling, m, 𝐼  is the mass per unit in length and 
the moment of inertia about the axis elastic, 𝑥  is the geometric coupling. 

2.2. The Euler-Bernoulli beam model  

The Euler-Bernoulli equation of beam bending (without externally pressure loading) is [27]: 

𝜌 𝜕 𝑤𝜕𝑡 + 𝜕𝜕𝑥 𝐸𝐼 𝜕 𝑤𝜕𝑥 = 0, (2)

where 𝜌 is mass density per volume. 

2.2.1. Cubic finite element Hermitian beam 

The cubic finite element Hermitian beam developed and described by Kown and Bang  
[27, 31], the cubic element has two nodes at the ends and at each end two degrees of freedom, the 
transverse displacement 𝑤 and the slope 𝜃 = 𝜕𝑤 𝜕𝑥⁄  [28, 31]: 𝑤(𝑥) = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 , (3)𝜃(𝑥) = 𝜕𝑤𝜕𝑥 = 𝑎 + 2𝑎 𝑥 + 3𝑎 𝑥 . (4)

The evaluation of the transverse displacement and slope at both nodes gives the followed 
system: 𝑤 = 𝑤(0); 𝜃 = 𝜃(0); 𝑤 = 𝑤(𝑙); 𝜃 = 𝜃(𝑙); 𝑙 is the length of the beam element: 𝑤𝜃𝑤𝜃 = 1 0 0 00 1 0 01 𝑙 𝑙 𝑙0 1 2𝑙 3𝑙

𝑎𝑎𝑎𝑎 . (5)

Solving the system Eq. (5) to obtain the 𝑎  coefficients and the transverse displacement 
assumption gives:  𝑤(𝑥) = 𝐻 (𝑥)𝑤 + 𝐻 (𝑥)𝜃 + 𝐻 (𝑥)𝑤 + 𝐻 (𝑥)𝜃 , (6)𝑤(𝑥) = [𝐻(𝑥)] 𝑑 , (7)

where [𝐻(𝑥)] = [𝐻 𝐻 𝐻 𝐻 ],  𝐻 (𝑥)  the Hermitian shape functions of the beam (see 
Appendix). 

2.2.2. High-order finite element beam 

The weighted residual, Galerkin’s method is presented, to the beam Eq. (2) to develop the 
high-order finite element interpolation of the beam and the corresponding matrix equations. 

The high-order finite element beam element presented in this study, has two nodes at the ends 
and at each end node four degrees of freedom 𝑤, , ,  [2], where 𝑤 is the transverse 

displacement,  is the slope,  is the curvature and  is the gradient of curvature. 
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The assumption of deflection function is given using high order finite element polynomial 
function for 𝑤(𝑥), the degrees of this polynomial function is seven (eight nodal variables for the 
beam element): 𝑤(𝑥) = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 . (8)

From the Eq. (8), we can obtained the nodal variables for each node where: 
– The slope is computed as: 𝜕𝑤𝜕𝑥 = 𝑎 + 2𝑎 𝑥 + 3𝑎 𝑥 + 4𝑎 𝑥 + 5𝑎 𝑥 + 6𝑎 𝑥 + 7𝑎 𝑥 . (9)

– The curvature is:  𝜕 𝑤𝜕𝑥 = 2𝑎 + 6𝑎 𝑥 + 12𝑎 𝑥 + 20𝑎 𝑥 + 30𝑎 𝑥 + 42𝑎 𝑥 . (10)

– The gradient of curvature is: 𝜕 𝑤𝜕𝑥 = 6𝑎 + 24𝑎 𝑥 + 60𝑎 𝑥 + 120𝑎 𝑥 + 210𝑎 𝑥 . (11)

The evaluation of these nodal variables on each node of the beam element gives: 

𝑤(𝑥) = 𝑁 (𝑥)𝑤 + 𝑁 (𝑥) 𝜕𝑤𝜕𝑥 + 𝑁 (𝑥) 𝜕 𝑤𝜕𝑥 + 𝑁 (𝑥) 𝜕 𝑤𝜕𝑥 + 𝑁 (𝑥)𝑤  
      +𝑁 (𝑥) 𝜕𝑤𝜕𝑥 + 𝑁 (𝑥) 𝜕 𝑤𝜕𝑥 + 𝑁 (𝑥) 𝜕 𝑤𝜕𝑥 , (12)

𝑤(𝑥) = [𝑁(𝑥)] 𝑑 , (13)

where [𝑁] = [ 𝑁  𝑁  𝑁 𝑁  𝑁  𝑁  𝑁  𝑁  ]; 𝑁 (𝑥) are the shape functions of the high order beam 
finite element (see Appendix). 

2.2.3. The torsion in the beam  

A linear shape functions are given for the torsion of the beam [31]. The beam element has two 
nodes as described in previous sections each node has one degrees of freedom Ψ  and Ψ . The 
linear function is: Ψ(𝑥) = 𝑎 + 𝑎 𝑥. (14)

The introducing of boundary conditions in the element Ψ(0) = Ψ , Ψ(𝑙) = Ψ  gives: Ψ(𝑥) = 𝑇 (𝑥)Ψ + 𝑇 (𝑥)Ψ = [𝑇 𝑇 ] ΨΨ , (15)

where [𝑇] are the linear shape functions of the beamin torsion (see Appendix). 

2.3. Modal analysis  

The free vibration analysis (modal analysis) plays an important role in aircraft design. The 
energy method is used to determinate the global mass and stiffness matrices of the beam. The 
natural frequencies and mode shapes are obtained by solving the eigenvalue matrix equation of 
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the wing structure. 

2.3.1. Kinetic energy  

The kinetic energy of bending-torsion coupled beam is [1]: 𝑇 = 1 2 𝜌 𝑤 + 𝑥 Ψ 𝑑𝑥𝑑𝑦𝑑𝑧. (16)

The kinetic energy can be written as [28, 29]: 𝑇 = 𝑑 [𝑀 ] 𝑑 , (17)

where [𝑀 ] is the mass matrix of bending-torsion coupled beam [27, 31]: [𝑀 ] = 𝜌[𝑁] [𝑁]𝑑𝑥𝑑𝑦𝑑𝑧. (18)

2.3.2. Potential energy 

The potential energy of bending-torsion coupled composite beam is [1]: 

𝑈 = 12 𝐸𝐼 𝑑 𝑤𝑑𝑥 𝑑𝑥 + 𝐾 𝑑 𝑤𝑑𝑥 𝑑Ψ𝑑𝑥 𝑑𝑥 + 12 𝐺𝐽 𝑑Ψ𝑑𝑥 𝑑𝑥. (19)

The potential energy can be written as [28, 29]: 𝑈 = 𝑑 [𝐾 ] 𝑑 , (20)

where [𝐾 ] is the stiffness matrix of bending-torsion coupled beam [1]: [𝐾 ] = [𝐾 ] + 𝐾 + [𝐾 ], (21)

where [𝐾 ] the stiffness matrix of bending, 𝐾  is the coupled stiffness matrix and [𝐾 ] is 
the stiffness matrix of torsion. 

2.3.3. Natural frequencies and mode shapes  

The matrix system obtained by the discrete equations of motion for wing structure is [1, 3, 11]: [𝑀] 𝑑 + [𝐾] 𝑑 = 0, (22)

where [𝑀] and [𝐾] are the global mass and stiffness matrices, respectively. 

3. Results and discussions  

The free vibration analysis of composite wing is investigated using a cubic and high-order 
finite element Euler-Bernoulli beam formulations in order to show the effect of geometric 
coupling shown in Fig. 1 on vibration frequencies and mode shapes for metallic wings and 
generalized to composite wings where the anisotropy of materials has significant effects on natural 
frequencies and mode shapes. 



156. MEASUREMENT OF VIBRATIONS OF COMPOSITE WINGS USING HIGH-ORDER FINITE ELEMENT BEAM.  
ISMAIL BENNAMIA, A. BADEREDDINE, T. ZEBBICHE 

148 JOURNAL OF MEASUREMENTS IN ENGINEERING. SEPTEMBER 2018, VOLUME 6, ISSUE 3  

3.1. Isotropic beam model (Goland wing) 

The Goland’s wing properties are given in Table 1 [1, 7, 30], in order to validate the results 
obtained by the present work with the Dynamic Stiffness Method results, for a free vibration 
analysis of metallic wings. 

The three first frequencies (rad/s) obtained by the cubic and high-order finite element beam 
model are compared with the DSM results Banerjee et al. [1] where the geometric coupling 
represented by rang of values of 𝑥  are given in Table 2. 

Table 1. Goland wing properties 𝐸𝐼 (Nm2) GJ K (Nm2) 𝑚 (kg/m) 𝐼𝛼 (kg·m) 𝐿 (m) 
9.75 106 9.88 105 35.75 8.65 6 

Table 2. The three first frequencies of Goland wing 𝑥  
(m) 

𝜔  [rad/s] 𝜔  [rad/s] 𝜔  [rad/s] 
DSM 
results 

[1] 

Cubic 
FEM 

High-
order 
FEM 

DSM 
results 

[1] 

Cubic 
FEM 

High-order 
FEM 

DSM 
results 

[1] 

Cubic 
FEM 

High-order 
FEM 

0 51.005 51.005 50.900 88.478 88.479 88.486 265.44 265.46 265.636 
0.1 50.539 50.539 50.438 91.02 91.02 91.018 258.43 258.44 258.436 
0.2 49.331 49.331 49.238 99.202 99.203 99.189 246.60 246.612 246.526 
0.3 47.741 47.741 47.658 115.74 115.738 115.706 238.10 238.114 237.994 

The mode shapes obtained for the uncoupled case 𝑥 = 0 and 𝐾 = 0 is shown in Fig. 2 (the 
geometric and material coupling are equal to zero, and this case is similar to Euler-Bernoulli 
classical beam theory). The obtained results in Fig. 2 show the effect of the geometric coupling 
on mode shapes and natural frequencies of Goland wing. 

It appears clearly that the natural frequencies in Table 2 and the mode shapes in Fig. 2 for the 
cubic formulation and high-order formulation are very similar to those obtained by Banerjee et al. 
[1] for metallic wing using DSM approximation method varying the geometric coupling which 
affect the naturel frequencies. 

  
Fig. 2. Mode shapes for various geometric coupling 𝑥  of the wing 

3.2. Composite wing results  

Various values of material coupling 𝐾 are considered to illustrate the effect of bending-torsion 
coupling due to material anisotropy in mode shapes and natural frequencies.  

The material coupling rigidities 𝐾 given in this section are proposed by Banerjee et al. [1]. 
These rigidities can be obtained by laminated composites. 
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The mode shapes for range of values of geometric coupling 𝑥  and various material coupling 𝐾 are shown in Figs. 3, 4 and 5. Observe that the obtained mode curves are different, in which the 
bending and torsion coupled modes is remarkable in each material coupling value. 

  

  
Fig. 3. Mode shapes for rigidity coupling 𝐾 = 1.5×106 and  

various geometric coupling 𝑥  of cantilever wing 

The three first natural frequencies obtained from modal analysis of composite beam using 
cubic and high-order finite element beam are presented in Tables 3, 4 and 5 varying both geometric 
and material coupling for the beam, these obtained results are compared to those obtained by 
Banerjee et al. [1] using Dynamic Stiffness Method.  

Table 3. First frequency results of composite wing  𝑥  
(m) 

𝐾  
(Nm2)×106 

𝜔  [rad/s] 
DSM results [1] Hermite FEM beam model High-order FEM Beam model 

0.1 
1.5 40.25 40.25 40.15 
2 33.96 33.96 33.84 

2.5 25.44 25.44 25.29 

0.2 
1.5 38.07 38.07 37.97 
2 31.98 31.98 31.87 

2.5 23.88 23.88 23.75 

0.3 
1.5 36.14 36.14 36.06 
2 30.28 30.28 30.18 

2.5 22.57 22.57 22.44 
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Table 4. Second frequency results of composite wing 𝑥   
(m) 

𝐾  
(Nm2)×106 

𝜔  [rad/s] 
DSM results [1] Hermite FEM beam model High-order FEM Beam model 

0.1 
1.5 99.072 99.072 99.05 
2 100.47 100.46 100.42 

2.5 94.82 94.81 94.60 

0.2 
1.5 112.22 112.22 112.19 
2 114.71 114.70 114.65 

2.5 104.36 104.36 104.00 

0.3 
1.5 134.86 134.86 134.62 
2 139.97 139.96 139.89 

2.5 109.62 109.63 109.10 
 

  

  
Fig. 4. Mode shapes for rigidity coupling 𝐾 = 2×106 and various geometric coupling 𝑥  of cantilever wing 

It appears clearly from Tables 3, 4 and 5 that the three first naturel frequencies 𝜔 , 𝜔  and 𝜔  
are almost similar for the Dynamic Stiffness Method [1] with the cubic and high-order finite 
element formulations varying both geometric coupling 𝑥  and material coupling 𝐾. 

Figs. 3, 4 and 5 show the bending and torsion mode shapes of the three first natural frequencies 
of cubic and high-order formulations for the coupled bending-torsional composite wing. The 
coupled case 𝑥 = 0.2 m and 𝐾 = 2.0×106 N.m2 curves are almost similar to those given by 
Banerjee et al. [1]. 
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Table 5. Third frequency results of composite wing 𝑥  
(m) 

𝐾  
(Nm2)×106 

𝜔  [rad/s] 
DSM results [1] Hermite FEM beam model High-order FEM Beam model 

0.1 
1.5 197.57 197.58 197.32 
2 168.55 168.56 168.21 

2.5 137.34 137.34 136.98 

0.2 
1.5 185.57 185.58 185.32 
2 157.81 157.81 157.48 

2.5 133.87 133.87 133.67 

0.3 
1.5 177.15 177.16 176.89 
2 148.83 148.83 148.51 

2.5 147.03 147.03 146.99 
 

  

  
Fig. 5. Mode shapes for rigidity coupling 𝐾 = 2.5×106 and various geometric coupling 𝑥  of the wing 

4. Conclusions 

The free vibration analysis by measurement of natural frequencies and mode shapes of 
composite wings using cubic and high-order finite element coupled bending-torsion beam is 
presented and validated in this study. A high-order finite element Euler-Bernoulli beam model has 
been developed for isotropic materials, in first time, and generalized to laminated composite 
beams. 

The results obtained by modal analysis (natural frequencies and mode shapes) are validated 
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with dynamic stiffness approximation method (DSM). The geometric coupling 𝑥𝛼 and material 
coupling 𝐾 have a very important role in dynamic and aeroelasticity (fluid/structure interaction) 
problems. The varying of these parameters for Goland metallic wing can be generalized for all 
metallic and composite wings, in which the choice of aerodynamic or structural design of wing 
(or tailplane) depends on them (both geometric and material coupling). The results obtained from 
this study can be used for aeroelasticity studies, dynamic and frequency, response for random 
excitations obtained from gusting forces and it’s can be generalized to all Aircraft structure. 
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Appendix 

1. The Hermitian cubic shape functions are: 

𝐻 = 1 − 3𝑥𝑙 + 2𝑥𝑙 ,     𝐻 = 𝑥 − 2𝑥𝑙 + 𝑥𝑙 ,    𝐻 = 3𝑥𝑙 + 2𝑥𝑙 ,     𝐻 = −𝑥𝑙 + 𝑥𝑙 . 
2. The High-Order shape functions are: 

𝑁 = 1 − 35 𝑥𝑙 + 84 𝑥𝑙 − 70 𝑥𝑙 + 20 𝑥𝑙 ,      𝑁 = 𝑙 1 − 20 𝑥𝑙 + 45 𝑥𝑙 − 36 𝑥𝑙 + 10 𝑥𝑙 , 𝑁 = 𝑙 𝑥2𝑙 − 5 𝑥𝑙 + 10 𝑥𝑙 − 15𝑥2𝑙 + 2 𝑥𝑙 ,      𝑁 = 𝑙 𝑥6𝑙 − 2𝑥3𝑙 + 𝑥𝑙 − 2𝑥3𝑙 − 20 𝑥𝑙 , 𝑁 = 35 𝑥𝑙 − 84 + 70 𝑥𝑙 − 20 𝑥𝑙 ,      𝑁 = 𝑙 −15 𝑥𝑙 + 39 𝑥𝑙 − 34 𝑥𝑙 + 10 𝑥𝑙 , 
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𝑁 = 𝑙 5𝑥2𝑙 − 7 𝑥𝑙 + 13𝑥2𝑙 − 2 𝑥𝑙 ,      𝑁 = 𝑙 −𝑥6𝑙 + 𝑥2𝑙 − 𝑥2𝑙 + 𝑥6𝑙 . 
3. The linear shape functions of torsion are: 𝑇 = 1 − 𝑥𝑙 ,     𝑇 = 𝑥𝑙 . 

 

  
Fig. 6. High-order Shape functions 




