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Abstract. In the numerical investigation of vibration problems with dry friction it is accepted to 
use some type of approximation to this phenomenon. Often linear variation of the force of friction 
in a region around zero velocity is assumed. In this paper trigonometric variation is proposed and 
comparison of numerical results is performed. From the presented results higher precision of this 
approximation is observed. 
Keywords: dry friction, piecewise linear approximation, vibrations, numerical results, graphical 
relationships. 

1. Introduction 

In the numerical investigation of vibration problems with dry friction it is accepted to use some 
type of approximation to this phenomenon. Often linear variation of the force of friction in a region 
around zero velocity is assumed. In this paper trigonometric variation is proposed and comparison 
of numerical results is performed. From the presented results higher precision of this 
approximation is observed. 

Analysis of linear variation of the force of friction in a region around zero velocity is presented 
in [1]. The role of dry friction is highlighted in [2-4]. Engineering assumptions in modelling 
systems with dry friction are presented in [5]. Models comprising dry friction are discussed in 
[6, 7]. Mechanical systems with dry friction are investigated in [8]. Mechanisms for surface 
cleaning based on dry friction are discussed in [9-12]. Problems of dry friction in the micro scale 
are investigated in [13-16]. Applications of dry friction in vibration engineering are discussed in 
[17, 18]. 

2. Investigation of numerical approximations to dry friction phenomenon 

The investigated vibrating system is described by the following equation: + + + = sin , (1)

where  is the mass of the structure,  is the coefficient of viscous friction,  is the stiffness of 
the structure,  is the displacement,  is the amplitude of the exciting force,  is the frequency of 
excitation,  is the approximation of the force of dry friction and the upper dot denotes 
differentiation with respect to time . 

In the numerical calculations it is assumed that: = + − , (2)

where  is a function defined further and the subscript  denotes the previous value of the 
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corresponding variable. 
Thus, the following equation is solved: + + + = sin − + . (3)

2.1. Conventional linear approximation of dry friction 

It is assumed that: 

= ℎ∆,    | | < ∆,0,    | | ≥ ∆,  (4)

where ℎ is the coefficient of dry friction and ∆ determines the width of the transition region. 
The following parameters of the investigated structure are assumed: = 1, ℎ = 1.6, ∆ = 0.8, = 0.1, = 4, = 1, = 1. Calculations from zero initial conditions are performed and two 

periods of steady state motions are represented in Fig. 1. 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 
d)  as function of time 

 
e)  as function of time 

 
f)  as function of velocity 

 
g)  as function of velocity 

 
h) Phase trajectory: velocity as 

function of displacement 

 
i) Phase trajectory: acceleration as 

function of velocity 
Fig. 1. Steady state motion for linear approximation of dry friction 
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2.2. Trigonometric approximation of dry friction 

It is assumed that: 

= ℎsin 2 ∆ = ℎ 2 1∆ cos 2 ∆,    | | < ∆,0,    | | ≥ ∆.  (5)

Calculations from zero initial conditions are performed and two periods of steady state motions 
are represented in Fig. 2. 

From the obtained results higher precision of trigonometric approximation is seen. This is 
especially evident from the indicated minimum and maximum values of . 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 
d)  as function of time 

 
e)  as function of time f)  as function of velocity 

 
g)  as function of velocity h) Phase trajectory: velocity as 

function of displacement 
i) Phase trajectory: acceleration as 

function of velocity 
Fig. 2. Steady state motion for trigonometric approximation of dry friction 

3. Investigation of more complicated numerical approximation to dry friction phenomenon 

The increase of the coefficient of dry friction near to the value of zero velocity is often assumed. 
It is considered that: ℎ∆ = ℎ∆ , (6)
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where ℎ  is the increase of the coefficient of dry friction near to the value of zero velocity and ∆  
determines the width of the transition region between the values of the coefficient of dry friction ℎ and ℎ + ℎ . 

From this equation the relationship between ℎ  and ∆  is determined: 

ℎ = ℎ ∆∆ . (7)

3.1. Conventional linear approximation of dry friction 

It is assumed that: 

= ℎ∆,     | | < ∆ + ∆ ,− ℎ∆ ,      ∆ + ∆ ≤ | | < ∆ + 2∆ ,0,     | | ≥ ∆ + 2∆ .  (8)

The following parameters of the investigated structure are assumed: = 1, ℎ = 1.6, ∆ = 0.8, ∆ = 0.8, = 0.1, = 4, = 1, = 1. Calculations from zero initial conditions are performed 
and two periods of steady state motions are represented in Fig. 3. 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 
d)  as function of time 

 
e)  as function of time 

 
f)  as function of velocity 

 
g)  as function of velocity h) Phase trajectory: velocity as 

function of displacement 
i) Phase trajectory: acceleration as 

function of velocity 
Fig. 3. Steady state motion for linear approximation of dry friction 
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3.2. Trigonometric approximation of dry friction 

It is assumed that: 

=
ℎ + ℎ ∆∆ sin 2 ∆ + ∆ = ℎ + ℎ ∆∆ 2 1∆ + ∆ cos 2 ∆ + ∆ , | | < ∆ + ∆ ,

const − 12 ℎ ∆∆ sin 2 − ∆ + 1.5∆0.5∆ = − 12 ℎ ∆∆ 2 10.5∆ cos 2 − ∆ + 1.5∆0.5∆ ,      ∆ + ∆ ≤ | | < ∆ + 2∆ ,     > 0,const − 12 ℎ ∆∆ sin 2 + ∆ + 1.5∆0.5∆ = − 12 ℎ ∆∆ 2 10.5∆ cos 2 + ∆ + 1.5∆0.5∆ ,      ∆ + ∆ ≤ | | < ∆ + 2∆ ,     < 0,0,    | | ≥ ∆ + 2∆ .
 (9)

Calculations from zero initial conditions are performed and two periods of steady state motions 
are represented in Fig. 4. 

The obtained results demonstrate a higher precision of trigonometric approximation of the dry 
friction. This is especially evident from the indicated minimum and maximum values of . 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 
d) H as function of time 

 
e) C as function of time 

 
f) H as function of velocity 

 
g) C as function of velocity 

 
h) Phase trajectory: velocity as 

function of displacement 

 
i) Phase trajectory: acceleration as 

function of velocity 
Fig. 4. Steady state motion for trigonometric approximation of dry friction 
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4. Conclusions 

In the numerical investigation of vibration problems with dry friction it is accepted to use some 
type of approximation to this phenomenon. Often linear variation of the force of friction in a region 
around zero velocity is assumed. In this paper, a trigonometric variation of the force of friction in 
a region around zero velocity is proposed, and the comparison of numerical results is presented. 
The obtained results do show a higher precision of the proposed approximation. 

Investigation of the problem with more complicated dry friction phenomenon is also performed. 
The increase of the coefficient of dry friction near to the value of zero velocity is assumed. This 
model confirms the conclusions obtained previously for the simplest model of dry friction. 

The advantage of the investigated models of dry friction when compared to some other known 
approximate models is in the fact that they have a local transition region near to the value of zero 
velocity. 
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