
 

88 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. DEC 2017, VOL. 15. ISSN 2345-0533  

Investigation of a family of cubic dynamic systems 

Alexey Andreev1, Irina Andreeva2 
1St. Petersburg State University, St. Petersburg, Russia 
2Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia 
2Corresponding author 
E-mail: 1irandr@inbox.ru, 2irandr.andreeva@yandex.ru 
Received 1 November 2017; accepted 12 November 2017 
DOI https://doi.org/10.21595/vp.2017.19389 

Abstract. A family of dynamic systems acting on a real plane ,  has been considered, which 
polynomial right parts are reciprocal forms of  and , one is a cubic, and another is a square 
form. A problem to reveal all topologically different phase portraits possible for these systems in 
a Poincare circle with coefficient criteria of every portrait’s realization has been solved. A 
Poincare method of serial mappings – central and orthogonal – has been applied. Qualitative and 
quantitative results for phase portraits have been given. All stages of a solution process are 
described. 
Keywords: dynamic system, limit cycles, phase portraits, singular points, separatrices, 
trajectories. 

1. Introduction 

A modern theory of dynamic systems appears to be a synthetic field of investigations including 
methods of different areas of mathematics such as topology and algebra, differential equations 
and algebraic geometry. The results are used in the fields of a dynamic chaos theory, synergetics, 
nonequilibrium thermodynamics etc. 

According to Jules H. Poincare, a normal autonomous second-order differential system with 
polynomial right parts in principle allows its full qualitative investigation on an extended 
arithmetical plane ,  [1]. Since that time investigations in this field have been conducted for a 
series of such systems’ types, e.g. for quadratic systems [2], for homogeneous cubic systems, for 
systems containing nonzero linear terms and for systems with homogeneous nonlinear terms of 
the third [3], the fifth and seventh degrees [4] in their right parts, for which a singular point  
O(0, 0) appears to be a center or a focus, and for some other types of dynamic systems.  

Let us consider a broad family of dynamical systems acting on an arithmetical plane , : 	 	= ( , ),			 = ( , ).	 (1)

Such as ( , ), ( , ) are reciprocal forms of  and ,  be a cubic, and  be a square form, 
such as (0,1) > 0, (0,1) > 0. A problem is formulated to reveal all topologically different 
types of phase portraits possible for Eq. (1) systems in a Poincare circle and outline close to 
coefficient criteria of each portrait’s appearance. In order to solve this problem we use a method 
of serial mappings of Jules Henri Poincare: 1) a central (i.e. from a center (0, 0, 1) of a sphere  ∑: + + = 1) mapping of a plane ,  , augmented with a line at infinity (i.e. ,  plane) 
on a sphere ∑ with identified diametrically opposite points, 2) an orthogonal mapping of a lower 
enclosed semi sphere of a sphere ∑  to a circle Ω: +  1 with identified diametrically 
opposite points of its boundary Г. The sphere ∑ and the circle Ω are called in this process the 
Poincare sphere and the Poincare circle correspondingly [1]. 

2. Part 1  

In the Part 1 of this work we present a solution of an assigned problem for those Eq. (1)  
systems, which decompositions of forms ( , ), ( , ) into a real forms of lower degrees 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2017.19389&domain=pdf&date_stamp=2017-12-01


INVESTIGATION OF A FAMILY OF CUBIC DYNAMIC SYSTEMS.  
ALEXEY ANDREEV, IRINA ANDREEVA 

 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. DEC 2017, VOL. 15. ISSN 2345-0533 89 

contain 3 and 2 multipliers correspondingly: ( , ) = ( − 	 )( − )( − ),			 ( , ) = ( − 	 )( − ),	 (2) 

where > 0, > 0, <	 < 	 , <	 , 	 ≠  for each  and .  
The solution process contains the follows steps. 
Basic Concepts and Notations. 
The following notations are introduced for an arbitrary system under consideration in the  

Part 1. ( ), ( ) – it’s polynomials , : ( ) ∶= (1, ) ≡ ( − )( − 	 )( − 	 ),	( ) ∶= (1, ) ≡ ( − 		)( − ).	  ( )  – an ascending sequence of all real roots of this system’s polynomial ( )  ( ) ,  – an ascending sequence of all real roots of both this system’s polynomials ( ), ( ). 
The DC-transformation is a double change of variables in this system: ( , )→(− ,− ). It 

transforms it into another such system, signs and numberings of roots of polynomials ( ), ( ) 
and direction of trajectories’ motion corresponding to increasing  are reversed. Two different 
Eq. (2) systems are called mutually inversed (relatively to a DC-transformation), if a 
DC-transformation converts one of them into another, and independent (of a DC-transformation) 
in an opposite case.  

Evidently, for an arbitrary Eq. (2) system are possible 10 different types of , because  = 5! 3! 2!⁄ = 10.  
The DC-transformation of Eq. (2) systems shows, that six of them are independent in pairs, 

while each system among the rest has the mutually inversed one among the first six systems. To 
each one of different ’  of the Eq. (2) system we assign the definite number ∈ {1, …, 10} 
such as  with numbers = 1,6  appear to be independent in pairs, and sequences with 
numbers = 7,10 mutually inversed to those with numbers = 1,4	 correspondingly.  

The notion of a family number  of Eq. (2) systems is introduced:  
A family number  of Eq. (2) systems ∶= a totality of all systems of Eq. (2) family, for every 

of them  has the number  . 
Further according to a common scheme we alternately study families of Eq. (1) systems with 

numbers = 1,6. The results relating to families, = 7,10, we obtain from the results previously 
found for families, = 1,4, using the DC-transformation of them. 

The process of a study of a fixed Eq. (2) family contains the following steps. 
I) Here we enlist singular points of systems belong to the chosen family in a Poincare circle Ω: 

they are a point (0,0) ∈ Ω and points ±( , 0) ∈ Г, = 0,3, = 0. For each singular point we 
introduce notions of bundles N (node) and S (saddle) of semi trajectories of systems of the family, 
adjacent to this singular point; of the topodynamical type of the singular point (TD – type), and a 
separatrix of the singular point. 

II) A family is further broken into subfamilies having the numbers = 1,7. For each subfamily 
we find TD – types of all singular points of the systems and their separatrices. 

III) ∀ ∈  {1,…, 7} we study the behavior of separatrices of singular points of systems 
belonging to the subfamily and answer the questions about a uniqueness of continuation of each 
separatrix from a small neighborhood of a singular point to all its lengths and about a mutual 
arrangement of all separatrices in a Poincare circle Ω. 

IV) We construct phase portraits of systems belonging to a chosen family in the both forms 
such as a graphical form and a table form. The criteria of a realization of each phase portrait are 
indicated. 
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The result of the Part 1 of this work is the follows: for the systems belonging to the family 
number = 1 there are 25 different phase portraits possible, for the systems of families number 2 
and number 3-9 phase portraits per each family, for families with numbers 4 and 5-7 per each 
family, for systems of the 6th family – 36, and this means that for all types of Eq. (2) systems 
appear to exist 93 different types of phase portraits. It’s a considerable amount. But we must 
remember that each family contains an uncountable number of special dynamic systems. 

3. Part 2 

In the following parts 2 and 3 the problem has been solved for a Eq. (3) family. The Eq. (3) 
family of Eq. (1) systems is introduced, i.e. a totality of all Eq. (1) systems, for each of them 
decompositions of forms ( , ), ( , ) into a real multipliers of lowest degrees contain two 
multipliers each:  ( , ) = ( − 	 ) ( − ) ,			 ( , ) = ( − 	 )( − ),	 (3)

where , , ,  , 	 ∈ , 		 > 0, > 0, <	 , <	 , 	 ≠  for each , ∈ {1, 2}, 
, ∈ , + = 3. 
It’s naturally to distinguish two classes of Eq. (3) systems. The A class contains systems with  = 1, = 2, and the B class contains systems with = 2, = 1. 
In the Part 2 of this work we give a full solution of the assigned task for the systems belonging 

to the A class of the Eq. (3) family, i.e.: 	 = ( − 	 )( − ) ,			 = ( − 	 )( − ).		 (4)

The process of the solution contains steps similar to the ones described in a previous Part 1 of 
this article.  

For an arbitrary Eq. (4) system we introduce the following concepts. ( ), ( ) – it’s polynomials , : ( ) ∶= (1, ) ≡ ( − )( −	 ) ,			 ( ) ∶= (1, ) ≡ ( − )( − ).	( ) – is an ascending sequence of all real roots of the system’s polynomial ( ) ( ) ,  – is an ascending sequence of all real roots of both system’s polynomials ( ) 
and ( ). There exist 6 different possible variants of  due to = 4! 2! 2!⁄ = 6. These 
variants are numbered in some order from 1 to 6.  

Further we introduce a notion of a family number  of Eq. (4) systems:  
A family number  of Eq. (4) systems is a totality of all Eq. (4) systems which have the same 

 number  from the above mentioned list of possible variants. 
Alternate study of families of Eq. (4) systems.  
A process of study of each fixed family includes the follows steps. 
I) For each and every singular point of an arbitrary system of this family we introduce the 

notions of the bundles N (node) and S (saddle) of semi trajectories of the system, adjacent to this 
singular point; of its separatrix; of its topodynamical type (TD-type). 

II) A family	is broken into subfamilies with numbers = 1,5. ∀ ∈ {1,…, 5} we find TD-
types of singular points of systems belonging to subfamilies, and their separatrices.  

III) ∀ ∈{1,…, 5} we study the behavior of separatrices of singular points of systems 
belonging to a chosen subfamily and answer the questions about a uniqueness of global 
continuation of each separatrix from a small neighborhood of a singular point to all its lengths in 
the circle Ω, and also about a mutual arrangement of all separatrices in a Poincare circle Ω. If for 
a fixed  the global continuation of each separatrix of singular points of the subfamily of systems 
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is unique, their mutual arrangement in a Poincare circle Ω is invariable, and consequently all 
systems of a chosen subfamily have in a Poincare circle one common topological type of a phase 
portrait. Oppositely, if for some number  of a subfamily appears to be that systems belonging to 
this subfamily have several, for instance  separatrices which global continuations are not unique, 
then this subfamily is broken into  additional subfamilies of the next order, for every of which, 
as we revealed in their further study, the global continuation of each separatrix is unique, their 
mutual arrangement in the circle Ω is invariable, and as a result the topological type of a phase 
portrait of all this family of systems in the Ω circle is common for the family under consideration. 

IV) We construct phase portraits in the circle Ω for the systems of Eq. (4) families, = 1,6,	in 
the graphical and the table forms and indicate criteria of their realization for each portrait. 

The result of the Part 2 is the follows: Eq. (4) systems of the family number 1have in the Ω 
circle 13 different phase portraits, Eq. (4) systems of the family number 2 –7, number 3 – 10, 
number 4, 5 and 6 – 5 per each type, and totally all Eq. (3) systems of the A class show 45 different 
phase portraits. 

4. Part 3  

In the Part 3 the full solution of our task for the Eq. (3) systems of the B class is given: 	 = ( − ) ( − 	 ),			 = ( − 	 )( − ).	 (5) 

For an arbitrary Eq. (5) system ( ), ( ) – it’s polynomials , : ( ) ∶= (1, ) ≡ ( − 	 ) ( − ),			 ( ) ∶= (1, ) ≡ ( − 		)( − ).	  

 shows us 6 different variants, because = 4! 2! 2!⁄ = 6.  
The result of the investigation in the Part 3 is the follows: all the Eq. (5) family of dynamic 

systems is broken into 52 different subfamilies, and all systems of every subfamily have in a 
Poincare circle Ω one common, belonged to this special subfamily, topological type of a phase 
portrait. As a result, we have constructed 52 different phase portraits in this case. 

5. Part 4 

In the Part 4 we solve the problem for a Eq. (6) family, i.e. for a family of Eq. (1) systems: 	 = ( − 	 )( − )( − ),			 = ( − 	 ) ,	 (6) 

		 > 0,				 > 0,				 < 	 < 	 ,			 (∈ ) ≠ ,			 = 1,3.	  

The solution process includes the follows steps. Let’s brake the Eq. (6) family into subfamilies 
numbered with = 1,4. 

Each of those is a totality of systems with an  number , where  is its number in the list 
of possible : 

1. , , , , 
2. , , , , 
3. , , , , 
4. , , , . 
Applying to the Eq. (6) system a double change of variables (DC): ( , ) → (− ,− ), we 

reveal, that it transforms families of these systems having the numbers = 1, 2, 3, 4, into their 
families with numbers = 4, 3, 2, 1 correspondingly, and backwards. We note: this fact means, 
that families of Eq. (6) systems having numbers 1 and 2 are not connected with the DC-
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transformation; the same time families number 3 and 4 are mutually inversed relatively the DC-
transformation to the families number 2 and 1 correspondingly. 

I) We study alternately families of systems, = 1, 2, following the common program of Eq. (1) 
systems study [5], i.e.:  

1. We fix ∈ 1,2 , then we brake the chosen family into subfamilies numbered with  [5, 6], = 1,9, and find the topodynamical types (TD-types) of singular points of these systems. 
2. ∀ ∈	{1,…, 9} we construct an “Off-Road Map” (ORM) for the systems of a chosen 

subfamily [5-7], and find using it ( ) – limit set of each ( ) – separatrix of these systems, and 
reveal the mutual arrangement of all separatrices in a Poincare circle. 

3. We construct all different phase portraits for systems under consideration.  
II) We study alternately families of systems, = 3, 4, using the DC-transformation of the 

results obtained for families, = 2, 1. Then we construct all different phase portraits for the 
families of systems number 3 and 4.  

III) Summarize the results of our studies. For the Eq. (6) systems of families with numbers 1, 
2, 3 and 4 there are 15 + 11 + 11 + 15 = 52 different phase portraits in a Poincare circle Ω possible. 

6. Part 5  

In the Part 5 we give the full solution of the problem for the Eq. (7) systems, i.e. for the Eq. (1) 
systems of the kind: 	 = 	 	 	 + +	 	 	 + 	 	 ≡ 	( − ) ( − 	 ),	 (7)= 	 + + 	 ≡ ( − ) ,	
where 	> 0, > 0, <	 , 	(∈ ) ≠ 	 , . 

The process of study of these systems is quite similar to previously described for other families 
of Eq. (1) systems. For an arbitrary Eq. (7) system ( ), ( ) – it’s polynomials , : ( ) ∶= (1, ) ≡ 	( − 	 ) ( − ),				 ( ) ∶= (1, ) ≡ ( − ) ,	
and its  shows 3 different variants.  

The result of our study for this kind of systems is the follows. We proved, that for each family 
of Eq. (7) systems 7 topologically different phase portraits are possible, so for all three families of 
them, = 1,3, the number of topologically different phase portraits equals to 21. 

7. Conclusions 

We have constructed all above mentioned phase portraits both ways in a graphical and in a 
table (descriptive) forms. Each portrait has been described in a table, containing from 5 to 6 lines. 
Every single line describes in detail one invariant cell of the phase portrait: its boundary, a source 
and a sink of its phase flow. Such a table is called a descriptive phase portrait [8]. 

References 

[1] Andronov A. A., Leontovich E. A., Gordon I. I., Mayer A. G. Qualitative Theory of Second-Order 
Dynamic Systems. John Wiley and Sons, New York, 1973. 

[2] Andreev A. F., Andreeva I. A. On limit and separatrix cycles of a certain quasiquadratic system. 
Differential Equations, Vol. 33, 1997, p. 702-703. 

[3] Andreev A. F., Andreeva I. A. Local study of a family of planar cubic systems. Vestnik St. Petersburg 
University: Mathematics, Seriya 1. Matematika, Mekhanika, Astronomiya, Vol. 2, 2007, p. 11-16. 

[4] Andreev A. F., Andreeva I. A., Detchenya L. V., Makovetskaya T. V., Sadovskii A. P. Nilpotent 
centers of cubic systems. Differential Equations, Vol. 53, 2017, p. 1003-1008. 



INVESTIGATION OF A FAMILY OF CUBIC DYNAMIC SYSTEMS.  
ALEXEY ANDREEV, IRINA ANDREEVA 

 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. DEC 2017, VOL. 15. ISSN 2345-0533 93 

[5] Andreev A. F., Andreeva I. A. Phase flows of one family of cubic systems in a Poincare circle I. 
Differential Equations and Control, Vol. 4, 2007, p. 17-26.  

[6] Andreev A. F., Andreeva I. A. Phase flows of one family of cubic systems in a Poincare circle II. 
Differential Equations and Control, Vol. 1, 2008, p. 1-13.  

[7] Andreev A. F., Andreeva I. A. Phase flows of one family of cubic systems in a Poincare circle III. 
Differential Equations and Control, Vol. 3, 2008, p. 39-54. 

[8] Andreev A. F., Andreeva I. A. Phase flows of one family of cubic systems in a Poincare circle IV. 
Differential Equations and Control, Vol. 4, 2009, p. 181-213.  




