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Abstract. In order to reveal the bifurcation mechanism and optimize the system design for 
high-static-low-dynamic-stiffness (HSLDS) vibration isolation system (VIS) with elastic base, the 
local bifurcation analyses both in unfolding parameter space and physical parameter space were 
carried out theoretically and numerically. Firstly, the restoring force of the HSLDS-VIS was 
approximated to linear and cubic stiffness by applying the Maclaurin series expansion and the 
motion equations of HSLDS-VIS with elastic base were established. Subsequently, the motion 
equations of HSLDS-VIS with elastic base were formulated to transform the system into a 
standard form and the averaging method was applied to obtain the single-variable bifurcation 
equation for the HSLDS-VIS with elastic base in case of primary resonance and 1:2 internal 
resonance. Furthermore, the transition sets and bifurcation diagrams in the unfolding parameter 
space were studied by means of singularity theory. Finally, for the engineering application, the 
transition sets were transferred back to the physical parameter space, thus to obtain the bifurcation 
diagrams of the amplitude with respect to the external force. The numerical simulation results 
show that the local bifurcations of HSLDS-VIS with elastic base in case of 1:2 internal resonance 
are considerable complex and need to be analyzed in six two-parameters spaces, meanwhile, the 
necessary condition of multiple solutions lies in some physical parameters, which can provide a 
theoretical basis and reference for design and application of the HSLDS-VIS with elastic base. 
Keywords: high-static-low-dynamic-stiffness (HSLDS), vibration isolation system (VIS), elastic 
base, averaging method, singularity theory, transition set, bifurcation diagram. 

1. Introduction 

Undesirable vibration can affect human comfort and even the structural safety, which has 
become an urgent problem to be solved in engineering. It is evident that the bandwidth of vibration 
isolation is often limited by the mount stiffness element required to support a static load. To 
overcome this limitation, the high-static-low-dynamic-stiffness (HSLDS) mechanism is put 
forward, what results in low natural frequency with a small static displacement. Whilst it maintains 
locally low stiffness near equilibrium and static load bearing, which reduces the natural frequency 
and extends the frequency isolation region [1]. The isolation system with HSLDS characteristic 
has been well established both theoretically and experimentally in recent literatures and has 
recently been the subject of growing interest of both engineers and researchers. Carrella et al. and 
Wu et al. investigated vibration isolators with HSLDS property via the combination of a 
mechanical spring and magnets [2, 3], Li et al. presented a device using a magnetic spring 
combined with rubber membranes to suppress vibration [4], Zhou et al. develop a tunable isolator 
with HSLDS property by using a pair of electromagnets and a permanent magnet and can act 
passively or semi-actively[5], Meng et al. concerned the quasi-zero-stiffness by combining a 
negative disk spring with a linear positive spring [6]. 

Recently, many methods for bifurcation analysis of high-dimensional dynamical system have 
been proposed. Among these methods, singularity theory is of much importance and has been 
widely applied as a quanlative analysis method, which can solve the bifurcation problems 
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uniformly and definitely. Yu et al. studied the local bifurcation of nonlinear vibration isolation 
system with 1:2 internal resonance [7, 8], Qin et al. investigated two-degree-of-freedom 
(two-DOF) bifurcation equation for elastic cable with 1:1 internal resonance [9], Wang et al. 
analyzed the bifurcation models of a class of power system by using C-L method [10], Zhou et al. 
considered the local bifurcation of a nonlinear system based on MR damper [11], Volkov et al. 
studied the bifurcation in the system of two identical diffusively coupled Brusselators [12]. 

In this paper, the local bifurcation and singularity analysis of a HSLDS-VIS with elastic base 
have been presented, which is organized as follows. In Section 2, the restoring force and the 
motion equations of HSLDS-VIS were established. In Section 3, the motion equations of 
HSLDS-VIS with elastic base were established. In Section 4, the averaging method was applied 
to obtain the bifurcation equation for the system with primary resonance and 1:2 internal  
resonance. In Section 5, the singularity theory was used to analyze the system local bifurcations 
to obtain the 4-codimensional universal unfolding, the transition sets and bifurcation diagrams. In 
Section 6, the transition sets were transferred back to the physical parameter space to obtain the 
bifurcation behaviors of the amplitude with respect of the external force. Finally, some 
conclusions were summarized in Section 7. 

2. Modeling of the HSLDS-VIS 

Consider a simple model of the isolator shown in Fig. 1. Two nonlinear oblique springs are 
assumed to have nonlinearity with linear stiffness 𝑘ଵ and cubic nonlinear stiffness 𝑘ଷ. In addition, 
they are pre-stressed, i.e. compressed by length 𝛿  and connected at point C with a vertical 
unstressed linear spring of stiffness 𝑘ଶ. The oblique springs are hinged at 𝐴 and 𝐵. The geometry 
of configuration is decided by horizontal distance 𝑎 from point 𝐴 to 𝐶 and initial height ℎ, while 𝑥 denotes the vertical displacement from the initial unloaded position caused by the force 𝐹. 

 
a) 

 
b) 

Fig. 1. Schematic representation of an isolator based on HSLDS 

The general equation between the force 𝑓 and the displacement 𝑥 can be derived as: 

𝐹 = 𝑘ଶ𝑥 + 2𝑘ଵ(𝑥 − ℎ) ቈ √𝑎ଶ + ℎଶ + 𝛿ඥ𝑎ଶ + (𝑥 − ℎ)ଶ − 1቉       + 2𝑘ଷ(𝑥 − ℎ)ඥ𝑎ଶ + (𝑥 − ℎ)ଶ ⋅ ቂඥ𝑎ଶ + (𝑥 − ℎ)ଶ − ඥ𝑎ଶ + ℎଶ − 𝛿ቃଷ. (1)

Introducing 𝑦 = 𝑥 − ℎ, 𝑓 = 𝐹 − 𝑘ଶℎ, Eq. (1) can been recast in dimensionless form as: 

𝑓 = 𝑘ଶ𝑦 + 2𝑘ଵ𝑦 ቈ√𝑎ଶ + ℎଶ + 𝛿ඥ𝑎ଶ + 𝑦ଶ − 1቉ + 2𝑘ଷ𝑦ඥ𝑎ଶ + 𝑦ଶ ቂඥ𝑎ଶ + 𝑦ଶ − ඥ𝑎ଶ + ℎଶ − 𝛿ቃଷ, (2)

where: 
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𝛼 = 𝑘ଵ𝑘ଶ ,     𝑦ො = 𝑦√𝑎ଶ + ℎଶ ,     𝑓መ = 𝑓൫𝑘ଶ√𝑎ଶ + ℎଶ൯ ,     𝛾 = 𝑎√𝑎ଶ + ℎଶ, 
𝛿መ = 𝛿√𝑎ଶ + ℎଶ ,     𝛽 = 𝑘ଷ(𝑎ଶ + ℎଶ)𝑘ଶ ,     Δ = (𝛿መ + 1)𝜓 ,     𝜓 = ඥ𝛾ଶ + 𝑦ොଶ. 

The dimensionless dynamic stiffness can be obtained by differentiating Eq. (2) to 𝑦ො: 𝑘෠ = 1 + 2𝛼ሾ1 − 𝛾ଶΔ 𝜓ଶ⁄ ሿ − 2𝛽(Δ − 1)ଶሾ(1 − Δ)(3𝑦ොଶ + 𝛾ଶ) + 3𝑦ොଶΔሿ. (3)

Using the Maclaurin series expansion, an approximate expression for the stiffness is found to 
be: 

𝑘෠ ≈ ቈ−2𝛽 + 3𝛽 1 + 𝛿መ𝛾 + 𝛼 1 + 𝛿መ𝛾ଷ − 𝛽 (1 + 𝛿መ)ଷ𝛾ଷ ቉ 𝑦ොଶ       + ቈ𝛽 − 𝛼(𝛿መ + 1 − 𝛾)ଶ − 𝛾2(𝛿መ + 1 − 𝛾)ଷ቉. (4)

It is clear that the oblique springs can reduce the positive stiffness so that the linear natural 
frequency is smaller in the isolation range; and they introduce the cubic stiffness so that the peak 
response bends to higher frequencies, which potentially reduces the frequency region. 

For a SDOF system depicted in Fig. 2. It includes a rigid mass 𝑚 suspended on a three springs 
mount in parallel with a viscous damper 𝑐 . 𝑥  denotes the vertical displacement from the 
equilibrium position caused by a harmonic excitation 𝑓௘ = 𝐹cosΩ𝑇 . The mass moves in the 
vertical direction through the guide rod and bushing. By applying the Newton’s second law, the 
motion equation of SDOF system can be expressed as 𝑚𝑢ሷ + 𝑐𝑢ሶ + 𝑏ଵ𝑢 + 𝑏ଷ𝑢ଷ = 𝐹cosΩ𝑇, (5)

where: 𝑏ଵ𝑘ଶ = 𝛽 − 𝛼(𝛿መ + 1 − 𝛾)ଶ − 𝛾2(𝛿መ + 1 − 𝛾)ଷ ,      𝑏ଶ𝑘ଶ = 3𝛽 1 + 𝛿መ𝛾 + 𝛼 1 + 𝛿መ𝛾ଷ − 𝛽 (1 + 𝛿መ)ଷ𝛾ଷ − 2𝛽, 𝑢ሶ = 𝑑𝑢𝑑𝑡 . 
 

 
a) 

 
b) 

Fig. 2. Structural model of the SDOF system with HSLDS characteristic: 1 – loading platform, 2 – oblique 
spring, 3 – guide device, 4 – pillar, 5 – vertical spring, 6 – base plate, 7 – linear bearing, 8 – sliding rod 

3. Modeling of the HSLDS-VIS with elastic base 

On the condition that taking the first order mode of the elastic base, it can be reduced to a rigid 
mass supported by a spring and damper. Therefore, the HSLDS-VIS with elastic base can be 
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simplified to two-DOF mass-spring system, which is shown in Fig. 3. 𝑀ଵ  and 𝑀ଶ  denote the 
isolation equipment and the intermediate mass, respectively. 𝑀ଵ is supported by a linear damper 
and a nonlinear spring which possesses both linear and cubic stiffness. 𝑀ଶ is connected with a 
fixed plane using a linear spring and a linear damper. When the origins of coordinates are set at 
the position where the springs are not compressed, as shown in Fig. 3(a), the equation of the 
HSLDS-VIS with elastic base can be given by: 𝑀ଵ𝑍ሷଵ + 𝐶ଵ(𝑍ሶଵ − 𝑍ሶଶ) + 𝐾ଵ(𝑍ଵ − 𝑍ଶ) + 𝐾ଷ(𝑍ଵ − 𝑍ଶ)ଷ = 𝐹cosΩ𝑇 + 𝑀ଵ𝑔, 𝑀ଶ𝑍ሷଶ + 𝐶ଶ𝑍ሶଶ + 𝐾ଶ𝑍ଶ = 𝐶ଵ(𝑍ሶଵ − 𝑍ሶଶ) + 𝐾ଵ(𝑍ଵ − 𝑍ଶ) + 𝐾ଷ(𝑍ଵ − 𝑍ଶ)ଷ + 𝑀ଶ𝑔, (6)

where 𝐶ଵ is the damping coefficient of HSLDS vibration isolator; 𝐾ଵ and 𝐾ଷ are the linear and 
cubic stiffness coefficients of HSLDS vibration isolator, respectively. 𝐶ଶ  is the damping 
coefficient of damper between the 𝑀ଶ and fixed plane; 𝐾ଶ is the stiffness coefficient of the linear 
stiffness between the 𝑀ଶ  and fixed plane. 𝐹  and Ω  are the amplitude and frequency of the 
harmonic excitation, respectively. 

 
Fig. 3. HSLDS-VIS with elastic base. a) Coordinates not at the equilibrium state,  

b) Coordinates at the equilibrium state 

Note that the origins are not the equilibrium points of the system in Fig. 3(a), which is 
inconvenient for further analysis, and hence the coordinate transformation should be carried out. 
As is shown in Fig. 3(b), the origins of the new coordinates are set at the equilibrium state and the 
relations between the old and new coordinates are: 𝑍ଵ = 𝑋ଵ + ℎଵ , 𝑍ଶ = 𝑋ଶ + ℎଶ . In the 
equilibrium state, the gravitation terms in Eq. (6) can be eliminated by the following relations: 𝑀ଵ𝑔 + 𝑀ଶ𝑔 = 𝐾ଶℎଶ and 𝑀ଵ𝑔 = 𝐾ଵ𝐻 + 𝐾ଷ𝐻ଷ, where 𝐻 = ℎଵ − ℎଶ. The governing equations of 
Eq. (6) are given by: 𝑀ଵ𝑋ሷଵ = −𝐶ଵ(𝑋ሶଵ − 𝑋ሶଶ) − (𝐾ଵ + 3𝐾ଷ𝐻ଶ)(𝑋ଵ − 𝑋ଶ) − 3𝐾ଷ𝐻(𝑋ଵ − 𝑋ଶ)ଶ       −𝐾ଷ(𝑋ଵ − 𝑋ଶ)ଷ + 𝐹cosΩ𝑇, 𝑀ଶ𝑋ሷଶ = −𝐶ଶ𝑋ሶଶ − 𝐾ଶ𝑋ଶ + 𝐶ଵ(𝑋ሶଵ − 𝑋ሶଶ) + (𝐾ଵ + 3𝐾ଷ𝐻ଶ)(𝑋ଵ − 𝑋ଶ)        +3𝐾ଷ𝐻(𝑋ଵ − 𝑋ଶ)ଶ + 𝐾ଷ(𝑋ଵ − 𝑋ଶ)ଷ. (7)

Setting 𝐾଴ = 𝐾ଵ + 3𝐾ଷ𝐻ଶ,  𝐵 = ඥ𝐾ଷ 𝐾଴⁄  and introducing dimensionless parameters:  𝑥ଵ = 𝑋ଵ 𝐵⁄ , 𝑥ଶ = 𝑋ଶ 𝐵⁄ , Ω଴ = ඥ𝐾଴ 𝑀ଵ⁄ , 𝑡 = Ω଴𝑇 , 𝜔 = Ω Ω଴⁄ , 𝑤 = 𝑀ଵ 𝑀ଶ⁄ , 𝜉ଵ = 𝐶ଵ (𝐾଴𝑀ଵ)⁄ , 𝜉ଶ = 𝐶ଶ (𝐾଴𝑀ଶ)⁄ ,  𝛾 = − 3𝐾ଷ𝐻 (𝐾଴𝐵)⁄ ,  𝑓 = 𝐹𝐵 𝐾଴⁄ ,  𝑘ଶ = 𝐾ଶ 𝐾଴⁄ ,  the first-order of the 
dimensionless motion equations are given by: 𝑥ሷଵ = −𝜉ଵ(𝑥ሶଵ − 𝑥ሶଶ) − (𝑥ଵ − 𝑥ଶ) + 𝛾(𝑥ଵ − 𝑥ଶ)ଶ − (𝑥ଵ − 𝑥ଶ)ଷ + 𝑓cos𝜔𝑡, 𝑥ሷଶ = −𝑤𝜉ଶ𝑥ሶଶ − 𝑤𝑘ଶ𝑥ଶ + 𝑤𝜉ଵ(𝑥ሶଵ − 𝑥ሶଶ) + 𝑤(𝑥ଵ − 𝑥ଶ) − 𝑤𝛾(𝑥ଵ − 𝑥ଶ)ଶ + 𝑤(𝑥ଵ − 𝑥ଶ)ଷ. (8)

a)  b)  
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Therefore, the HSLDS-VIS with elastic base is a coupled nonautonomous dynamic system 
with quadratic and cubic nonlinearities. 

4. Standard form of the motion equations 

Standard form of the motion equations refers to the vector fields are proportional to the small 
perturbation parameter 𝜀. Here, assume the nonlinear stiffness coefficients, damping coefficients 
and the amplitude of excitation force are small quantities and introduce an additional parameter 𝜀 
into the equations. Setting 𝑥ଵ = 𝑧ଵ, 𝑥ሶଵ = 𝑧ଶ, 𝑥ଶ = 𝑧ଷ, 𝑥ሶଶ = 𝑧ସ, Eq. (8) can be rewritten in the 
general form: 𝑑𝐳𝑑𝑡 = 𝐀𝐳 + 𝜀𝐅(𝐳, 𝜔𝑡), (9)

where: 𝐳 = ሾ𝑧ଵ 𝑧ଶ 𝑧ଷ 𝑧ସሿ், 
𝐀 = ൦ 0 1 0 0−1 0 1 00 0 0 1𝑤 0 −𝑤 − 𝑤𝑘ଶ 0൪, 
𝐅(𝛾𝑡) = ൞𝐹ଵ𝐹ଶ𝐹ଷ𝐹ସൢ = ൦ 0−𝜉ଵ(𝑧ଶ − 𝑧ସ) + 𝛾(𝑧ଵ − 𝑧ଷ)ଶ − (𝑧ଵ − 𝑧ଷ)ଷ + 𝑓cos𝜔𝑡0−𝑤𝜉ଶ𝑧ସ + 𝑤𝜉ଵ(𝑧ଶ − 𝑧ସ) − 𝑤𝛾(𝑧ଵ − 𝑧ଷ)ଶ + 𝑤(𝑧ଵ − 𝑧ଷ)ଷ൪. 

The derivative equation of Eq. (9) is: 𝑑𝐳𝑑𝑡 = 𝐀𝐳. (10)

No damping and nonlinear force in the matrix 𝐀, suppose it has only simple purely imaginary 
eigenvalues ±𝜔ଵ𝑖, ⋯ , ±𝜔௤𝑖 . The special solution of the homogeneous part with ±𝜔௜  are as 
follows: ൜Re௦௜(𝜔௜𝑡) = 𝜑௦௜(𝜔௜𝑡) = 𝑃௦௜sin(𝜔௜𝑡) − 𝑄௦௜cos(𝜔௜𝑡),Im௦௜(𝜔௜𝑡) = 𝜑௦௜∗ (𝜔௜𝑡) = 𝑃௦௜sin(𝜔௜𝑡) + 𝑄௦௜cos(𝜔௜𝑡),     (𝑖 = 1,2,    𝑠 = 1,2,3,4),     (11)

where 𝑃௦௜ and 𝑄௦௜ are real constants. 
Setting 𝑧ଵ(𝑡) = 𝐴ଵ𝑒ூఠ௧ , 𝑧ଶ(𝑡) = 𝐴ଶ𝑒ூఠ௧ , 𝑧ଷ(𝑡) = 𝐴ଷ𝑒ூఠ௧ , 𝑧ସ(𝑡) = 𝐴ସ𝑒ூఠ௧ , where 𝐼 = √−1, 

substitute them into Eq. (11): 𝐼𝐴ଵ𝜔 = 𝐴ଶ,     𝐼𝐴ଶ𝜔 = −𝐴ଵ + 𝐴ଷ,     𝐼𝐴ଷ𝜔 = 𝐴ସ,     𝐼𝐴ସ𝜔 = 𝜇(𝐴ଵ − 𝐴ଷ𝑘ଶ − 𝐴ଷ). (12)

Substituting 𝐴ଵ = 1 into Eq. (12), one may obtain: 𝑧ଵ(𝑡) = cos(𝜔𝑡) + 𝐼sin(𝜔𝑡),      𝑧ଶ(𝑡) = 𝐼𝜔൫cos(𝜔𝑡) + 𝐼sin(𝜔𝑡)൯, 𝑧ଷ(𝑡) = (1 − 𝜔ଶ)൫cos(𝜔𝑡) + 𝐼sin(𝜔𝑡)൯,     𝑧ସ(𝑡) = 𝐼(1 − 𝜔ଶ)𝜔(cos(𝜔𝑡) + 𝐼sin(𝜔𝑡), (13)

where 𝜔ଵ,ଶଶ = ቀ1 + 𝑤 + 𝑤𝑘ଶ ± ඥ𝑤ଶ𝑘ଶଶ + 2𝑤ଶ𝑘ଶ + 𝑤ଶ − 2𝑤𝑘ଶ + 2𝑤 + 1ቁ 2⁄  are the natural 
frequencies of the derived system. Substituting 𝜔ଵ,ଶ into Eq. (13) and separating the result into 
real and imaginary parts, yield the special solution of Eq. (10): 
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𝜑ଵ௜ = cos(𝜔௜𝑡),       𝜑ଶ௜ = −𝜔௜sin(𝜔௜𝑡),      𝜑ଷ௜ = (1 − 𝜔௜ଶ)cos(𝜔௜𝑡),     𝜑ସ௜ = (𝜔௜ଶ − 1)𝜔௜sin(𝜔௜𝑡), 𝜑ଵ௜∗ = sin(𝜔௜𝑡),       𝜑ଶ௜∗ = 𝜔௜cos(𝜔௜𝑡), 𝜑ଷ௜∗ = (1 − 𝜔௜ଶ)sin(𝜔௜𝑡),     𝜑ସ௜∗ = (1 − 𝜔௜ଶ)𝜔௜cos(𝜔௜𝑡). (14)

The same procedure may be easily adapted to obtain the special solution of the conjugate 
equation of Eq. (10), that is 𝑑𝐳 𝑑𝑡⁄ = −𝐀்𝐳: 

𝜓ଵ௜ = cos(𝜔௜𝑡),        𝜓ଶ௜ = − sin(𝜔௜𝑡)𝜔௜ , 𝜓ଷ௜ = (1 − 𝜔௜ଶ)cos(𝜔௜𝑡)𝑤 ,        𝜓ସ௜ = (𝜔௜ଶ − 1)sin(𝜔௜𝑡)𝑤𝜔௜ , 𝜓ଵ௜∗ = sin(𝜔௜𝑡), 𝜓ଶ௜∗ = cos(𝜔௜𝑡)𝜔௜ , 𝜓ଷ௜∗ = (1 − 𝜔௜ଶ)sin(𝜔௜𝑡)𝑤 , 𝜓ସ௜∗ = (1 − 𝜔௜ଶ)cos(𝜔௜𝑡)𝑤𝜔௜ . 
(15)

Introducing the coordinate transformation: 

𝑧௦(𝑡) = ෍ 𝑎௜𝜑௦௜(𝜃௜)ଶ
௜ୀଵ + 𝑧௦∗(𝑡),    (𝑖 = 1,2), (16)

where 𝜃௜ = 𝜔௜𝑡 , 𝑧௦(𝑡)  and 𝑧௦∗(𝑡)  are the general solution and special solution of Eq. (9), 
respectively. If 𝑎௜ = const and 𝑑𝜃௜ 𝑑𝑡⁄ = 𝜔௜, yield: 

𝑑𝜑௦௜(𝜃௜) 𝑑𝜃௜⁄ = −𝜑௦௜∗ (𝜃௜) ,      − ෍ 𝑎௜ଶ
௜ୀଵ 𝜑௦௜∗ (𝜃௜) = ෍ 𝑎௦ఈସ

ఈୀଵ ෍ 𝑎௜𝜑ఈ௜(𝜃௜)ଶ
௜ୀଵ . 

Substitute Eq. (16) into Eq. (9) and one may obtain: 

෍ 𝑎௜(𝑡)𝑑𝑡 𝜑௦௜(𝜃௜)ଶ
௜ୀଵ − ෍ 𝑎௜(𝑡)𝜑௦௜∗ (𝜃௜)ଶ

௜ୀଵ ൬𝑑𝜃௜𝑑𝑡 − 𝜔௜൰ = 𝜀𝐅(𝑣𝑡, 𝑎, 𝜃, 𝜀). (17)

Based on the orthogonality [13] between Eq. (14) and Eq. (15): 

෍ 𝜑௦௜(𝜃௜)ସ
௦ୀଵ 𝜓௦௝(𝜃௝) = ෍ 𝜑௦௜∗ (𝜃௜)ସ

௦ୀଵ 𝜓௦௝∗ (𝜃௝) = 0, 
෍ 𝜑௦௜(𝜃௜)ସ
௦ୀଵ 𝜓௦௝∗ ൫𝜃௝൯ = 𝛿௜௝ ,    ෍ 𝜑௦௜∗ (𝜃௜)ସ

௦ୀଵ 𝜓௦௝൫𝜃௝൯ = −𝛿௜௝. (18)

If 𝑖 = 𝑗, 𝛿௜௝ = 1, else if 𝑖 ≠ 𝑗, 𝛿௜௝ = 0. Multiplying Eq. (17) by 𝜓௦௜ and 𝜓௦௜∗ , respectively, and 
then summing 𝑠 from 1 to 4, the standard form of Eq. (9) was obtained as follows: 𝑑𝑎௜𝑑𝑡 = 𝜀 1Δ௜ ෍ 𝐹௦ସ௦ୀଵ (𝛾𝑡, 𝑎, 𝜃, 𝜀)𝜓௦௜(𝜃௜) = − 𝜀sin𝜃௜(𝑤𝐹ଶ + 𝐹ସ − 𝜔௜ଶ𝐹ସ)𝑤𝜔௜Δ௜ , 𝑑𝜃௜𝑑𝑡 = 𝜔௜ + 𝜀Δ௜𝑎௜ ෍ 𝐹௦(𝛾𝑡, 𝑎, 𝜃, 𝜀)ସ௦ୀଵ 𝜓௦௜∗ (𝜃௜) = 𝜔௜ + 𝜀cos𝜃௜(𝑤𝐹ଶ + 𝐹ସ − 𝜔௜ଶ𝐹ସ)𝑤𝑎௜𝜔௜Δ௜ , (19)
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where Δଵ,ଶ = (𝜔ଵ,ଶସ − 2𝜔ଵ,ଶଶ + 𝑤 + 1) 𝑤⁄ , 𝑅௜ and 𝑆௜ are periodic functions of 𝑡 and 𝜃 with period 2𝜋 𝜔⁄ . 

5. Single-variable bifurcation equation based on the averaging method 

Applying the singularity theory, we can reveal all possible bifurcation behaviors when the 
original system is subjected to a small perturbation. While the singularity theory is only suitable 
for autonomous system, it is essential to obtain the single-variable bifurcation equation by using 
the averaging method. For the system with multiple DOFs, perhaps there exists internal resonance. 
Introducing the first-order KB transformation: 𝑎௜ = 𝑦௜ + 𝜀𝑈௜(𝑡, 𝑦, 𝜐),    𝜃௜ = 𝜔௜଴𝑡 + 𝜙௜ + 𝜀𝑉௜(𝑡, 𝑦, 𝜐), (20)

where 𝜔௜ = 𝜔௜଴ + 𝜀𝜎௜ , 𝑝ଵ𝜔ଵ଴ + 𝑝ଶ𝜔ଶ଴ = 𝑞𝜔, 𝜎௜  is detuning parameters, 𝑝௜ (𝑖 = 1, 2) and 𝑞 are 
nonzero integers. 𝑈௜ and 𝑉௜ are periodic function of 𝜐 and 𝑡. This paper focuses the second order 
primary resonance and 1:2 internal resonance, which means 𝜔 , 𝜔ଵ  and 𝜔ଶ  should meet  𝜔 = 𝜔ଶ + 𝜀𝜎ଶ and 𝜔ଶ = 2𝜔ଵ + 𝜀𝜎ଵ. The derivatives of the new parameters should satisfy the 
conditions below: 𝑑𝑦௜𝑑𝑡 = 𝜀𝑌௜(𝑦) + 𝜀ଶ𝑌௜∗(𝑡, 𝑦, 𝜙),     𝑑𝜙௜𝑑𝑡 = 𝜀𝜎௜ + 𝜀𝑍௜(𝑦) + 𝜀ଶ𝑍௜∗(𝑡, 𝑦, 𝜙), (21)

where 𝑌௜  and 𝑍௜  do not contain 𝑡 , 𝑌௜∗  and 𝑍௜∗  are periodic function of 𝜐  and 𝑡 . Applying the 
averaging method, substitute Eq. (20) and Eq. (21) into Eq. (19) and collect terms of the first order 
in 𝜀: 

𝑌௜ + ∂𝑈௜∂𝑡 + ෍ ∂𝑈௜∂𝜐௜
ଶ
௜ (𝜔௜ − 𝜔௜଴) = 𝑅௜଴(𝑦) + ෍ൣ𝑅௜఍(𝑦)cos𝛼఍଴ + 𝑅௜఍ᇱ (𝑦)sin𝛼఍଴൧఍ , 

𝑍௜ + ∂𝑉௜∂𝑡 + ෍ ∂𝑉௜∂𝜐௜
ଶ
௜ (𝜔௜ − 𝜔௜଴) = 𝑆௜଴(𝑦) + ෍ൣ𝑆௜఍(𝑦)cos𝛼఍଴ + 𝑆௜఍ᇱ (𝑦)sin𝛼఍଴൧఍ , (22)

where 𝑅௜଴(𝑦), 𝑅௜఍(𝑦), 𝑅௜఍ᇱ (𝑦), 𝑆௜଴(𝑦), 𝑆௜఍(𝑦), 𝑆௜఍ᇱ (𝑦) are generalized Fourier series coefficients of 𝑅௜  and 𝑆௜ , 𝛼఍଴ = ൫𝑝ଵ఍𝜔ଵ଴ + 𝑝ଶ఍𝜔ଶ଴ + 𝑝ଷ఍𝜔൯𝑡 + 𝑝ଵ఍𝜐ଵ + 𝑝ଶ఍𝜐ଶ . 𝑌௜  and 𝑍௜  are the slowly changing 
functions, while ப௎೔ப௧ + ∑ ப௎೔பజ೔ଶ௜ (𝜔௜ − 𝜔௜଴)  and ப௏೔ப௧ + ∑ ப௏೔பజ೔ଶ௜ (𝜔௜ − 𝜔௜଴)  are the fast changing 
functions. The following average equations are obtained: 𝑑𝑑𝑡 𝑦ଵ(𝑡) = 𝜀 ቈ− 12 𝜔ଵଷ𝜔ଶଶ𝛾𝑦ଵ𝑦ଶ sin(2𝜐ଵ − 𝜐ଶ)Δଵ + 12 𝐵ଵ𝑦ଵ቉, 𝑑𝑑𝑡 𝑦ଶ(𝑡) = 𝜀 ቈ− 12 𝑓sin(𝜐ଶ)Δଶ𝜔ଶ + 14 𝜔ଶ𝜔ଵସ𝛾𝑦ଵଶ sin(2𝜐ଵ − 𝜐ଶ)Δଶ + 12 𝐵ଶ𝑦ଶ቉, 𝑑𝑑𝑡 𝜐ଵ(𝑡) = 𝜀 ቊ𝜎ଵ + 𝜔ଵଷሾ−3𝜔ଵସ𝑦ଵଶ − 6𝜔ଶସ𝑦ଶଶ + 4𝜔ଶଶ𝛾𝑦ଶ cos(2𝜐ଵ − 𝜐ଶ)ሿ8Δଵ ቋ, 𝑑𝑑𝑡 𝜐ଶ(𝑡) = 𝜀 ቈ𝜎ଶ + 2𝜔ଶଶ𝜔ଵସ𝑦ଵଶ cos(2𝜐ଵ − 𝜐ଶ) + 4𝑓cos(𝜐ଶ) − 6𝜔ଵସ𝑦ଵଶ𝑦ଶ − 3𝜔ଶ଼𝑦ଶଷ8Δଶ𝜔ଶ𝑦ଶ ቉, 

(23)

where 𝐵ଵ,ଶ = (2𝜉ଶ𝜔ଵ,ଶଶ − 𝜉ଵ𝜔ଵ,ଶସ − 𝜉ଶ𝜔ଵ,ଶସ − 𝜉ଶ) Δଵ,ଶ⁄ .  Letting 𝑑𝑦ଵ(𝑡) 𝑑𝑡⁄ ,  𝑑𝑦ଶ(𝑡) 𝑑𝑡⁄ , 𝑑𝜐ଵ(𝑡) 𝑑𝑡⁄ , 𝑑𝜐ଶ(𝑡) 𝑑𝑡⁄  be zero, one may obtain: 
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cos(2𝜐ଵ − 𝜐ଶ) = 3𝜔ଵ଻𝑦ଵଶ + 6𝜔ଵଷ𝜔ଶସ𝑦ଶଶ − 8Δଵ𝜎ଵ4𝜔ଵଷ𝜔ଶଶ𝛾𝑦ଶ ,    sin(2𝜐ଵ − 𝜐ଶ) = 𝐵ଵΔଵ𝜔ଵଷ𝜔ଶଶ𝛾𝑦ଶ. (24)

Supposing 𝑦ଵ = ඥ𝑌ଵ and 𝑦ଶ = ඥ𝑌ଶ, the Eq. (24) is further recast as follows: (3𝜔ଵ଻𝑌ଵ + 6𝜔ଵଷ𝜔ଶସ𝑌ଶ − 8Δଵ𝜎ଵ)ଶ16𝜔ଵ଺𝜔ଶସ𝛾ଶ𝑌ଶ + 𝐵ଵଶΔଵଶ𝜔ଵ଺𝜔ଶସ𝛾ଶ𝑌ଶ = 1. (25)

The governing equations of Eq. (25) are given by: 

𝑌ଵ = −6𝜔ଵଷ𝜔ଶସ𝑌ଶ + 8Δଵ𝜎ଵ + 4ඥ𝜔ଵ଺𝜔ଶସ𝛾ଶ𝑌ଶ − 𝐵ଵଶΔଵଶ3𝜔ଵ଻ . (26)

Substituting 𝑚ଶ = 𝜔ଵ଺𝜔ଶସ𝛾ଶ𝑌ଶ − 𝐵ଵଶΔଵଶ into Eq. (26) results in: 

𝑌ଵ = − 2(𝐵ଵଶΔଵଶ + 𝑚ଶ)𝜔ଵଵ଴𝛾ଶ + 8Δଵ𝜎ଵ + 4𝑚3𝜔ଵ଻ ,    𝑌ଶ = 𝐵ଵଶΔଵଶ + 𝑚ଶ𝜔ଵ଺𝜔ଶସ𝛾ଶ . (27)

The same procedure may be easily adapted to obtain the following equations: 

cos(𝜐ଶ) = 6𝜔ଶ଼𝑌ଶଶ + 6𝜔ଵସ𝜔ଶସ𝑌ଵ𝑌ଶ + 8𝜔ଵΔଵ𝑌ଵ𝜎ଵ − 3𝑌ଵଶ𝜔ଵ଼ − 16Δଶ𝑌ଶ𝜔ଶ𝜎ଶ8𝑓ඥ𝑌ଶ , sin(𝜐ଶ) = 𝐵ଵΔଵ𝑌ଵ𝜔ଵ + 2𝐵ଶΔଶ𝑌ଶ𝜔ଶ2𝑓ඥ𝑌ଶ . (28)

Substituting Eq. (27) into Eq. (28), the steady-state solution of Eq. (23) is obtained: 

෍ 𝑏௜𝑚଻ି௜଻
௜ୀଵ = 0, (29)

where the detailed 𝑏௜ are shown in Appendix A1. Setting 𝑚 = 𝑥 + 4𝛾𝜔ଵଷ, Eq. (29) can be written 
as follows: 𝐺(𝑥, 𝜇, 𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝛼ସ) = 𝑥଺ − 𝜇 + 𝛼ଵ𝑥ସ + 𝛼ଶ𝑥ଷ + 𝛼ଷ𝑥ଶ + 𝛼ସ𝑥 = 0, (30)

where 𝛼ଵ~𝛼ସ is the universal unfolding parameters related to the stiffness coefficients, damping 
coefficients, tune parameters and so on, 𝜇 is the bifurcation parameter related to the amplitude of 
excitation force. The detailed 𝛼ଵ~𝛼ସ and 𝜇 are shown in Appendix A2. 

6. Bifurcation analysis in the unfolding parameter space 

In the singularity theory [14], the bifurcation Eq. (30) is the universal unfolding of the normal 
form 𝑔 = 𝑥଺ − 𝜇 , and the codimension is 4. The functions 𝐺௫ , 𝐺௫௫  and 𝐺ఓ  can be given by 
differentiating: 𝐺௫ = 6𝑥ହ + 4𝛼ଵ𝑥ଷ + 3𝛼ଶ𝑥ଶ + 2𝛼ଷ𝑥 + 𝛼ସ, 𝐺௫௫ = 30𝑥ସ + 12𝛼ଵ𝑥ଶ + 6𝛼ଶ𝑥 + 2𝛼ଷ, 𝐺ఓ = −1. (31)

According to the definition of the transition set [15], it consists of bifurcation point set (BS), 
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hysteresis point set (HS), and double limit point set (DLS). 𝐵𝑆 = ൛𝛼 ∈ 𝑅௞ห∃(𝑥, 𝜇), 𝐺 = 𝐺௫௫ = 𝐺ఓ = 0  at the point of (𝑥, 𝜇, 𝛼)ሽ. It is evident that 𝐵𝑆 = Φ. 𝐻𝑆 = ሼ𝛼 ∈ 𝑅௞|∃(𝑥, 𝜇), 𝐺 = 𝐺௫௫ = 𝐺௫ = 0  at the point of (𝑥, 𝜇, 𝛼)ሽ . Setting 𝜇 = 0  and  𝛼ଷ = 𝛼ସ = 0, 𝐻𝑆଴ = ሼ𝛼ଵ ∈ 𝑅, 𝛼ଷ = 0, 𝛼ସ = 0, 𝛼ଶ ≠ 0ሽ was obtained. Setting 𝑥 ≠ 0 and 𝜇 ≠ 0, 𝐻𝑆ଵ = ቄ𝛼ଶ = ିଵ଴௫లିଷఈభ௫రାఓ௫య , 𝛼ଷ = ଷ(ହ௫లାఈభ௫రିఓ)௫మ , 𝛼ସ = ି଺௫లିఈభ௫రିଷఓ௫ ቅ was obtained. 𝐷𝐿𝑆 = ሼ𝛼 ∈ 𝑅௞|∃(𝑥௜, 𝜇)(𝑖 = 1,2), 𝑥ଵ ≠ 𝑥ଶ, 𝐺 = 𝐺௫ = 0 at the point of (𝑥, 𝜇, 𝛼)ሽ . Because (𝑥, 𝜇) = (0,0) is a limit point, 𝐷𝐿𝑆଴ = ሼ𝛼ଶ = −4𝑥ଷ − 2𝛼ଵ𝑥, 𝛼ଷ = 3𝑥ସ + 𝛼ଵ𝑥ଶ, 𝛼ସ = 0, 𝑥 ≠ 0ሽ 
can be obtained. As for 𝜇 ≠ 0, 𝐷𝐿𝑆ଵ will be discussed in the two-dimensions transition set. 

However, from the fact that the bifurcation of Eq. (31) is the universal unfolding with 
4-codimension, it is very different to analyze the bifurcation behavior in full detail. Therefore, it 
is necessary to discuss all forms of two parameter unfolding contained in Eq. (31), that is 𝛼ଵ − 𝛼ଶ, 𝛼ଵ − 𝛼ଷ , 𝛼ଵ − 𝛼ସ , 𝛼ଶ − 𝛼ଷ , 𝛼ଶ − 𝛼ସ  and 𝛼ଷ − 𝛼ସ . In this paper, only the transition sets and 
bifurcation diagrams in the 𝛼ଵ − 𝛼ଶ plane and 𝛼ଷ − 𝛼ସ plane is presented. 

Ⅰ

Ⅱ
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Ⅳ

Ⅴ
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a) Transition set and its bifurcation diagrams in the 𝛼ଵ − 𝛼ଶ plane 

Ⅰ Ⅱ Ⅲ

 

Ⅵ Ⅴ Ⅳ

 
b) Bifurcation diagrams on different persistent regions in the 𝛼ଵ − 𝛼ଶ plane 

Fig. 4. Bifurcation diagrams of transition sets and persistent regions in the 𝛼ଵ − 𝛼ଶ plane 



2920. BIFURCATION AND SINGULARITY ANALYSIS OF HSLDS VIBRATION ISOLATION SYSTEM WITH ELASTIC BASE.  
XIANG YU, KAI CHAI, YONGBAO LIU, SHUYONG LIU 

2206 JOURNAL OF VIBROENGINEERING. AUGUST 2018, VOLUME 20, ISSUE 5  

Setting 𝛼ଷ = 𝛼ସ = 0,  one may obtain 𝐻𝑆଴ = ሼ𝛼ଵ ∈ 𝑅, 𝛼ଶ ≠ 0ሽ,  𝐷𝐿𝑆଴ = ሼ(𝛼ଶ 2⁄ )ଶ =(− 𝛼ଵ 2⁄ )ଷሽ, 𝐻𝑆ଵ = ሼ𝛼ଶଶ = −128𝛼ଵଷ 729⁄ ሽ, 𝐷𝐿𝑆ଵ = ሼ𝛼ଵ ≤ 0, 𝛼ଶ = 0ሽ. The transition set in the 𝛼ଵ − 𝛼ଶ plane is Σఈభିఈమ = 𝐻𝑆଴ ∪ 𝐷𝐿𝑆଴ ∪ 𝐻𝑆ଵ ∪ 𝐷𝐿𝑆ଵ, as shown in Fig. 4. The whole parametric 
plane was divided into six different persistent regions by the transition sets, corresponding to 
different type of the solutions. When 𝛼ଵ and 𝛼ଶ change anticlockwise, the bifurcation diagrams 
are completely symmetric about 𝜇 axis between I-𝐻𝑆ଵା-II-𝐷𝐿𝑆ଵା-III and VI-𝐻𝑆ଵି -V-𝐷𝐿𝑆ଵି -IV. 

Setting 𝛼ଵ = 𝛼ଶ = 0, one may obtain 𝐻𝑆଴ = 𝐷𝐿𝑆଴ = Φ,𝐻𝑆ଵ = ൛(−𝛼ଷ 15)⁄ ହ = (𝛼ସ 24)⁄ ସൟ 
and 𝐷𝐿𝑆ଵ = ሼ𝛼ସ = 0, 𝛼ଷ ≤ 0ሽ. The transition set in the 𝛼ଷ − 𝛼ସ plane is Σఈయିఈర = 𝐻𝑆ଵ ∪ 𝐷𝐿𝑆ଵ, 
as shown in Fig. 5. The whole parametric plane was divided into four different persistent regions 
by the transition sets, corresponding to different type of the solutions. When 𝛼ଷ and 𝛼ସ change 
anticlockwise, the bifurcation diagrams are completely symmetric about 𝜇 axis between I-𝐻𝑆ଵା-II 
and IV-𝐻𝑆ଵି -III. 

ⅠⅡ

Ⅲ Ⅳ

 
a) Transition set and its bifurcation diagrams in the 𝛼ଷ − 𝛼ସ plane 

Ⅰ Ⅱ Ⅳ Ⅲ

 
b) Bifurcation diagrams on different persistent regions in the 𝛼ଷ − 𝛼ସ plane 

Fig. 5. Bifurcation diagrams of transition sets and persistent regions in the 𝛼ଷ − 𝛼ସ plane 

Figs. 4-5 show that the bifurcation of HSLDS-VIS with elastic base with 1:2 internal resonance 
are considerable complex. There are qualitative difference of bifurcation diagrams between the 
different transition sets and persistent regions. If the unfolding parameters lying in the transition 
sets, a small perturbation is likely to cause a qualitative change in the bifurcation diagrams, which 
means that are degraded. While the unfolding parameters lying in the persistent regions, any 
perturbation is unable to cause a qualitative change in the bifurcation diagrams, which means that 
are universal. 

7. Bifurcation analysis in the physical parameter space 

Considering the HSLDS-VIS with elastic base under actual engineering background, the 
unfolding parameters and bifurcation parameters may be constrained by some conditions, which 
are called boundary induced transition sets. For example, the force amplitude, damping ratio and 
stiffness coefficient should be non-negative. Therefore, in order to obtain some results for the 
engineering application, it is essential that the bifurcation analysis is transferred from the 
unfolding parameter space to the physical parameter space. In this paper, only the transition sets 
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and bifurcation diagrams in the 𝛼ଷ − 𝛼ସ plane are presented, whose physical parameter space 
consists of 𝜎ଵ, 𝜎ଶ, 𝜉ଵ and 𝜉ଶ. Setting 𝛼ଵ = 𝛼ଶ = 0, one may obtain: 

𝜎ଵ = 243𝐵ଵଶΔଵଶ − 32𝛾ସ𝜔ଵ଺216𝜔ଵଷ𝛾ଶΔଵ ,    𝜎ଶ = 𝜔ଶଷ(16𝜔ଵ଺𝛾ସ + 243𝐵ଵଶΔଵଶ)432𝜔ଵ଺𝛾ଶΔଶ . (32)

Substitute Eq. (32) into 𝛼ଷ and 𝛼ସ in Appendix A2: 

𝛼ଷ = 64𝜔ଵ଺𝜔ଶ଺𝛾ସ𝐵ଵଶΔଵଶ − 128𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵ𝐵ଶΔଵΔଶ + 64𝜔ଵଵଶ𝛾ସ𝐵ଵଶΔଶଶ − 243𝜔ଶ଺𝐵ଵସΔଵସ324𝜔ଶ଺ , 𝛼ସ = 64𝜔ଵଵଶ𝛾଺𝐵ଶΔଶ(2𝜔ଵଷ𝐵ଶΔଶ − 𝜔ଶଷ𝐵ଵΔଵ)729𝜔ଶ଺ . (33)

Substituting Eq. (33) into Σఈయିఈర, 𝐷𝐿𝑆ଵ = Φ and 𝐻𝑆ଵ are obtained in the physical parameter 
space as follows: 

𝐻ଵ =
⎩⎪⎪⎨
⎪⎪⎧ 𝜎ଵ = 243𝐵ଵଶΔଵଶ − 32𝛾ସ𝜔ଵ଺216𝜔ଵଷ𝛾ଶΔଵ ,   𝜎ଶ = 𝜔ଶଷ(16𝜔ଵ଺𝛾ସ + 243𝐵ଵଶΔଵଶ)432𝜔ଵ଺𝛾ଶΔଶ ,

𝐵ଵ = 2𝜉ଶ𝜔ଵଶ − 𝜉ଵ𝜔ଵସ − 𝜉ଶ𝜔ଵସ − 𝜉ଶΔଵ ,    𝐵ଶ = 2𝜉ଶ𝜔ଶଶ − 𝜉ଵ𝜔ଶସ − 𝜉ଶ𝜔ଶସ − 𝜉ଶΔଶ ,27(64𝜔ଵ଺𝜔ଶ଺𝛾ସ𝐵ଵଶΔଵଶ − 128𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵ𝐵ଶΔଵΔଶ + 64𝜔ଵଵଶ𝛾ଶ𝐵ଵଶΔଶଶ − 243𝜔ଶ଺𝐵ଵସΔଵସ)ହ= −13107200000(𝜔ଵସ଼𝜔ଶ଺𝛾ଶସ𝐵ଶସΔଶସ(𝐵ଵΔଵ𝜔ଶଷ − 2𝐵ଶΔଶ𝜔ଵଷ)ସ) ⎭⎪⎪⎬
⎪⎪⎫. (34)

Setting 𝑤 = 0.3 and 𝛾 = 0.1, yield 𝑘ଶ = 10.3529, 𝜔ଵ = 0.9387, 𝜔ଶ = 1.8774, Δଵ = 1.0471, Δଶ = 22.2469, 𝐵ଵ = −0.7417𝜉ଵ − 0.0449𝜉ଶ , 𝐵ଶ = −0.5584𝜉ଵ − 0.2865𝜉ଶ . Substituting them 
into Eq. (34), the transition sets in the damping space are obtained, as shown in Fig. 6. 

4
1HS

1
1HS2

1HS

3
1HS

 
Fig. 6. Transition set in the damping space 

The analysis should be carried out with considering 𝜉ଵ ≥ 0  and 𝜉ଶ ≥ 0  in the actual 
engineering. Therefore, only the 𝐻𝑆ଵଵ, II, and III are presented. Then, the bifurcation diagrams 
will also be transferred from the unfolding parameter space to the physical parameter space, whose 
procedure consists of two steps: first, the bifurcation analysis is transferred from the 𝑥 − 𝜇 plane 
to the 𝑥 − 𝑓 plane, and then, the bifurcation analysis is transferred from the 𝑥 − 𝑓 plane to the 𝑦ଶ − 𝑓 plane. A point lying in 𝐻𝑆ଵଵ is used as an example to illustrate the above process. Setting 𝜉ଵ = 0.05  and substituting it into Eq. (31), yield 𝜉ଶ = 0.49,  𝐵ଵ = −0.0437,  𝐵ଶ = −0.1696 ,  𝜎ଵ = 0.2713 , 𝜎ଶ = 0.0514  and 𝜇 =  –9.234×10-9+5.093×10-9 𝑓ଶ,  and then, the bifurcation 
diagrams in the 𝑥 − 𝑓 plane are obtained. Considering 𝑦ଶ ≥ |𝐵ଵΔଵ (𝛾𝜔ଵଷ𝜔ଶଶ)⁄ | and according to 
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(𝑥 + 4𝛾ଶ𝜔ଵଷ 9⁄ )ଶ = 𝜔ଵ଺𝜔ଶସ𝛾ଶ𝑦ଶଶ − 𝐵ଵଶΔଵଶ , the bifurcation diagrams in the 𝑦ଶ − 𝑓  plane are 
obtained. The bifurcation diagrams in the physical parameter space are shown in Fig. 7. When (𝜉ଵ, 𝜉ଶ) lying in 𝐻ଵଵ, all of the bifurcation diagrams have a hysteresis point. When (𝜉ଵ, 𝜉ଶ) lying in 𝐻ଵଵ and region III, the multiple solutions cannot coexist on the system; while (𝜉ଵ, 𝜉ଶ) lying in 
region II, the same 𝑓 corresponds to two or three amplitudes in some areas. The system has three 
different bifurcation behaviors in the physical parameter space, therefore, the beneficial movement 
mode can be selected by adjusting the parameters, which offers a theoretical guidance for design 
and application of the HSLD-VIS with elastic base. 

x - f z - f y - f

 
a) (𝜉ଵ, 𝜉ଶ) lying in 𝐻ଵଵ 

x - f z - f y - f

 
b) (𝜉ଵ, 𝜉ଶ) lying in region III 

x - f z - f y - f

 
c) (𝜉ଵ, 𝜉ଶ) lying in region II 

Fig. 7. Bifurcation diagrams in the physical parameter space 

8. Conclusions 

In this work, the restoring force of the HSLDS-VIS was approximated to linear and cubic 
stiffness and the motion equations of HSLDS-VIS with elastic base were established. The 
averaging method was applied to obtain the single-variable bifurcation equation for the 
HSLDS-VIS with elastic base in case of primary resonance and 1:2 internal resonance. According 
to singularity theory, the transition sets and bifurcation diagrams in the unfolding parameter space 
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were studied. For the engineering application, the transition sets were transferred back to the 
physical parameter space, thus to obtain the bifurcation behaviors of the amplitude with respect to 
the external force. Analytical results show that local bifurcations of HSLDS-VIS with elastic base 
in case of 1:2 internal resonance are considerable complex and should be analyzed in engineering 
with considering the constrained conditions of the physical parameters. Additionally, the 
excitation force may change the values of unfolding parameters and the types of the bifurcations, 
which can provide a theoretical guidance for design and application of the HSLDS-VIS with 
elastic base. 
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Appendix 

A1. Detailed 𝒃𝒊 in Eq. (29) 𝑏ଵ = 729𝜔ଶ଺, 𝑏ଶ = −1944𝜔ଵଷ𝜔ଶ଺𝛾ଶ, 𝑏ଷ = 1728𝜔ଵ଺𝜔ଶ଺𝛾ସ − 2592𝜔ଵଷ𝜔ଶ଺𝛾ଶΔଵ𝜎ଵ + 1296𝜔ଵ଺𝜔ଶଷ𝛾ଶΔଶ𝜎ଶ + 2187𝜔ଶ଺𝐵ଵଶΔଵଶ, 𝑏ସ = −576𝜔ଵଽ𝜔ଶ଺𝛾଺ + 4320𝜔ଵ଺𝜔ଶ଺𝛾ସΔଵ𝜎ଵ − 1728𝜔ଵଽ𝜔ଶଷ𝛾ସΔଶ𝜎ଶ − 3888𝜔ଵଷ𝜔ଶ଺𝛾ଶ𝐵ଵଶΔଵଶ, 𝑏ହ = 64𝜔ଵଵଶ𝜔ଶ଺𝛾଼ − 1920𝜔ଵଽ𝜔ଶ଺𝛾଺Δଵ𝜎ଵ + 384𝜔ଵଵଶ𝜔ଶଷ𝛾଺Δଶ𝜎ଶ +  1872𝜔ଵ଺𝜔ଶ଺𝛾ସ𝐵ଵଶΔଵଶ        +2187𝜔ଶ଺𝐵ଵସΔଵସ − 288𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵ𝐵ଶΔଵΔଶ − 2304𝜔ଵଽ𝜔ଶଷ𝛾ସΔଵΔଶ𝜎ଵ𝜎ଶ        +576𝜔ଵଵଶ𝛾ସΔଶଶ𝜎ଶଶ + 144𝜔ଵଵଶ𝛾ସ𝐵ଶଶΔଶଶ  − 5184𝜔ଵଷ𝜔ଶ଺𝛾ଶ𝐵ଵଶΔଵଷ𝜎ଵ        +2592𝜔ଵ଺𝜔ଶଷ𝛾ଶ𝐵ଵଶΔଵଶΔଶ𝜎ଶ + 2304𝜔ଵ଺𝜔ଶ଺𝛾ସΔଵଶ𝜎ଵଶ, 𝑏଺ = 4320𝜔ଵ଺𝜔ଶ଺𝛾ସ𝐵ଵଶΔଵଷ𝜎ଵ − 1728𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵଶΔଵଶΔଶ𝜎ଶ + 192𝜔ଵଵଶ𝜔ଶଷ𝛾଺𝐵ଵ𝐵ଶΔଵΔଶ        −1536𝜔ଵଽ𝜔ଶ଺𝛾଺Δଵଶ𝜎ଵଶ + 768𝜔ଵଵଶ𝜔ଶଷ𝛾଺ΔଵΔଶ𝜎ଵ𝜎ଶ + 256𝜔ଵଵଶ𝜔ଶ଺𝛾଼Δଵ𝜎ଵ        −1944𝜔ଵଷ𝜔ଶ଺𝛾ଶ𝐵ଵସΔଵସ − 192𝜔ଵଽ𝜔ଶ଺𝛾଺𝐵ଵଶΔଵଶ, 𝑏଻ = −144𝜔ଵଵ଼𝜔ଶଶ𝑓ଶ𝛾଺ + 256𝜔ଵଵଶ𝜔ଶ଺𝛾଼Δଵଶ𝜎ଵଶ − 384𝜔ଵଽ𝜔ଶ଺𝛾଺𝐵ଵଶΔଵଷ𝜎ଵ        −288𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵଷ𝐵ଶΔଵଷΔଶ + 729𝜔ଶ଺𝐵ଵ଺Δଵ଺ + 2304𝜔ଵ଺𝜔ଶ଺𝛾ସ𝐵ଵଶΔଵସ𝜎ଵଶ        −2304𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵଶΔଵଷΔଶ𝜎ଵ𝜎ଶ + 384𝜔ଵଵଶ𝜔ଶଷ𝛾଺𝐵ଵ𝐵ଶΔଵଶΔଶ𝜎ଵ + 144𝜔ଵ଺𝜔ଶ଺𝛾ସ𝐵ଵସΔଵସ        +576𝜔ଵଵଶ𝛾ସ𝐵ଵଶΔଵଶΔଶଶ𝜎ଶଶ  − 2592𝜔ଵ଺𝜔ଶଷ𝛾ଶ𝐵ଵସΔଵହ𝜎ଵ        +1296𝜔ଵ଺𝜔ଶଷ𝛾ଶ𝐵ଵସΔଵସΔଶ𝜎ଶ + 144𝜔ଵଵଶ𝛾ସ𝐵ଵଶ𝐵ଶଶΔଵଶΔଶଶ. 
A2. Detailed 𝜶𝟏~𝜶𝟒 and 𝝁 in Eq. (30) 

𝛼ଵ = − 127 16𝜔ଵ଺𝜔ଶଷ𝛾ସ + 96𝜔ଵଷ𝜔ଶଷ𝛾ଶΔଵ𝜎ଵ − 48𝜔ଵ଺𝛾ଶΔଶ𝜎ଶ − 81𝐵ଵଶΔଵଶ𝜔ଶଷ𝜔ଶଷ , 𝛼ଶ = − 32729 𝛾ସ𝜔ଵ଺(2𝜔ଵଷ𝜔ଶଷ𝛾ଶ + 9𝜔ଶଷΔଵ𝜎ଵ − 18𝜔ଵଷΔଶ𝜎ଶ)𝜔ଶଷ , 𝛼ଷ = 1729𝜔ଶ଺ (64𝜔ଵଵଶ𝜔ଶ଺𝛾଼ + 768𝜔ଵଽ𝜔ଶ଺𝛾଺Δଵ𝜎ଵ   − 288𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵ𝐵ଶΔଵΔଶ        −5184𝜔ଵଷ𝜔ଶ଺𝛾ଶ𝐵ଵଶΔଵଷ𝜎ଵ − 384𝜔ଵଵଶ𝜔ଶଷ𝛾଺Δଶ𝜎ଶ + 2304𝜔ଵ଺𝜔ଶ଺𝛾ସΔଵଶ𝜎ଵଶ        −2304𝜔ଵଽ𝜔ଶଷ𝛾ସΔଵΔଶ𝜎ଵ𝜎ଶ + 576𝜔ଵଵଶ𝛾ସΔଶଶ𝜎ଶଶ − 720𝜔ଵ଺𝜔ଶ଺𝛾ସ𝐵ଵଶΔଵଶ        +2592𝜔ଵ଺𝜔ଶଷ𝛾ଶ𝐵ଵଶΔଵଶΔଶ𝜎ଶ + 2187𝜔ଶ଺𝐵ଵସΔଵସ + 144𝜔ଵଵଶ𝛾ସ𝐵ଶଶΔଶଶ), 𝛼ସ = 3219683 𝜔ଵ଺𝜂ସ𝜔ଶ଺ (16𝜔ଵଽ𝜔ଶ଺𝛾଺ + 168𝜔ଵ଺𝜔ଶ଺𝛾ସΔଵ𝜎ଵ − 192𝜔ଵଽ𝜔ଶଷ𝛾ସΔଶ𝜎ଶ        +432𝜔ଵଷ𝜔ଶ଺𝛾ଶΔଵଶ𝜎ଵଶ + 432𝜔ଵଽ𝛾ଶΔଶଶ𝜎ଶଶ − 1080𝜔ଵ଺𝜔ଶଷ𝛾ଶΔଵΔଶ𝜎ଵ𝜎ଶ        −54𝜔ଵଷ𝜔ଶ଺𝛾ଶ𝐵ଵଶΔଵଶ − 54𝜔ଵ଺𝜔ଶଷ𝛾ଶ𝐵ଵ𝐵ଶΔଵΔଶ + 108𝜔ଵଽ𝛾ଶ𝐵ଶଶΔଶଶ        −243𝜔ଶ଺𝐵ଵଶΔଵଷ𝜎ଵ + 486𝜔ଵଷ𝜔ଶଷ𝐵ଵଶΔଵଶΔଶ𝜎ଶ), 𝜇 = 1531441𝜔ଶ଺ (1679616𝜔ଵଽ𝜔ଶଷ𝛾ସ𝐵ଵଶΔଵଷΔଶ𝜎ଵ𝜎ଶ + 104976𝜔ଵଵ଼𝜔ଶଶ𝛾଺𝑓ଶ        −1679616𝜔ଵ଺𝜔ଶ଺𝐵ଵଶΔଵସ𝜎ଵଶ𝛾ସ − 373248𝜔ଵଽ𝜔ଶ଺𝛾଺𝐵ଵଶΔଵଷ𝜎ଵ + 1889568𝜔ଵଷ𝜔ଶ଺𝛾ଶ𝐵ଵସΔଵହ𝜎ଵ        −9216𝜔ଵଵହ𝜔ଶ଺𝛾ଵ଴Δଵ𝜎ଵ − 1024𝜔ଵଵ଼𝜔ଶ଺𝛾ଵଶ + 18432𝜔ଵଵ଼𝜔ଶଷ𝛾ଵ଴Δଶ𝜎ଶ        +186624𝜔ଵଵଶ𝜔ଶଷ𝛾଺𝐵ଵଶΔଶΔଵଶ𝜎ଶ − 531441𝜔ଶ଺𝐵ଵ଺Δଵ଺ − 82944𝜔ଵଵ଼𝛾଼Δଶଶ𝜎ଶଶ 
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