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Abstract. In this paper, the dynamics of a Bertrand duopoly game with technology innovation 
have been studied, which contains boundedly rational and naive players. They have been analyzed 
that the stability of the equilibrium point, the bifurcation and chaotic behavior of the dynamic 
system. It has been proved that technology innovation has played a very important role in the 
stability of Nash equilibrium point. Technology innovation can enlarge the stability region of the 
speed and control the chaos of the dynamic system effectively. 
Keywords: Bertrand duopoly games, technology innovation, nash equilibrium point, chaos. 

1. Introduction 

Cournot game [1] and Bertrand game [2] are the classic models of oligopoly competition. In 
Cournot game, oligopoly enterprises put the product output as the decision variable and choose 
the optimal output for high profits. In Bertrand competition, duopoly enterprises play a game 
based on product differentiation and determine a proper price to obtain the huge profits. In reality, 
oligopoly enterprises make the output and price decision dynamically and often adjust the decision 
based on market demand, the decision of competitors, their own production capacity and so on. 

In the past, a large number of literatures did the research on dynamic behavior of Cournot and 
Bertrand game, such as A.A. Elsadany [3], Xiaolong Zhu [4], H. N. Agiza [5], A. K. Naimzada 
[6], Jixiang Zhang [7], Luciano Fanti [8], Baogui Xin [9] and so on, which involved several 
adjustment rules: naïve [8, 10, 11], adaptive [5, 12], bounded rational [3, 4, 7, 13, 14] and local 
monopolistic approximation [3, 14]. Basically, research results of all these papers show that 
bifurcation and chaos exist in the dynamic system of Cournot and Bertrand game [3-14]. The 
parameter, adjustment speed of bounded rational player is an important factor which influences 
the stability of Nash equilibrium point and incurs bifurcation and chaos. What’s more, keeping 
low adjustment speed can control the chaos. 

Previous research conclusions seem unified but not rich. It still lacks studies about the 
influence of other parameters on the stability of dynamic system. It is well-known that technology 
innovation plays an important role in economic development. It can enhance the competitive 
advantage and increase profit of enterprises. Then, can it improve the stability of dynamic  
systems? 

Following the method of Zhang [7] and Agiza [5], this article explores the dynamics of 
Bertrand duopoly game between boundedly rational and naive players and study the effects of 
technology innovation on the dynamics of Bertrand model. The paper is structured as follows: In 
Section 2, a dynamic Bertrand duopoly game model was built which is composed of players that 
produce heterogeneous products and have different price adjustment rules. In Section 3, the 
dynamic behaviors and the equilibrium points were studied. The conditions for the existence and 
local stability of the equilibrium points will be also analyzed. In Section 4, the dynamic system 
was simulated via many bifurcation figures. The Section 5 drew the conclusion. 
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2. The model  

We consider a Bertrand-type duopoly market where two oligopolies choose different prices 
for their heterogeneous products. Players can decide the prices according to the adjustment rules.  

Let ݌௜(ݐ) , ݅ = 1, 2 represents the price of firm ݅  at discrete-time periods ݐ =  0, 1, 2, ..., ܳ௜ represents the output. Following Zhang [7], suppose the market demand function of the players 
is: ܳ௜ = ܽ − ௜݌2ܾ +  ௝,   (1)݌݀

where ܽ > 0, ܾ > 0, ݅, ݆ = 1, 2, ݅ ≠ ݆ . The parameter ݀ measures the degree of substitution of the 
two products. Large ݀ represents big degree of substitution. 

Positive parameter ܣ௜ is the initial marginal cost of firm ݅. The production cost will be reduced 
by technological innovation. Let ݔ௜ represents the reduction degree of the marginal cost of the 
firm ݅  ௜ is positive correlation with technology innovation investment and can be used toݔ .
measure the degree of technology innovation. Furthermore, the firm ݅ can benefit from another 
firm’s innovation because technique innovation has externality and spillover effect. Let  ߚ ∈ [0,1] is the degree of technology spillover. The marginal cost function of the players can be 
assumed as follows: ܿ௜ = ௜ܣ − ൫ݔ௜ +  ௝൯, (2)ݔߚ

where, ܿ௜ ≥ 0 namely ݔ௜ + ௝ݔߚ ≤  .௜ holdܣ
With these assumptions, the profit of the firm ݅ in the single period can be given by: ߨ௜ = ௜݌) − ܿ௜ )ܳ௜ = ௜݌ൣ − ௜ܣ + ൫ݔ௜ + ௝൯൧൫ܽݔߚ − ௜݌2ܾ +  ௝൯. (3)݌݀

From the profit maximization by player ݅, the marginal profits in period ݐ are obtained as: ߲ߨ௜߲݌௜ = ܽ − ௜݌2ܾ + ௝݌݀ + ௜ܣൣܾ − ൫ݔ௜ +  ௝൯൧. (4)ݔߚ

Then, the optimal price response function of firm ݅ can be given by: 

௜݌ = ܽ + ௝݌݀ + ௜ܣ]ܾ − ௜ݔ) + ௝)]2ܾݔߚ . (5) 

Information in the market usually is incomplete. Supposing players use different expectations 
to adjust the prices. Following Zhang [7]and Agiza [5], suppose player 1 is boundedly rational [7] 
and player 2 is naïve [5]. 

Boundedly rational player 1 makes its price decision based on an estimate of the marginal 
profit ߲ߨଵ ⁄ଵ݌߲  [7]. Namely it decides to increase its price ݌ଵ if it has a positive marginal profit, 
or decreases its price when the marginal profit is negative. Then the dynamical equation of 
player 1 can be given by: 

ݐ)ଵ݌ + 1) = (ݐ)ଵ݌ + (ݐ)ଵ݌݇  (6) ,(ݐ)ଵ݌ଵ߲ߨ߲

where ݇ is a positive parameter which reflects the speed of price adjustment. 
Naive player 2 makes its price decision according to the naive expectations rule [8]. The player 

2 decides its prices with his reaction function (ܽ + ଵ݌݀ + ଶܣ]ܾ − ଶݔ) + ([(ଵݔߚ 2ܾ⁄ . Hence the 
dynamic equation of the naive expectation player 2 can be given by: 
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ݐ)ଶ݌ + 1) = ܽ + (ݐ)ଵ݌݀ + ଶܣ]ܾ − ଶݔ) + ଵ)]2ܾݔߚ . (7)

With above assumptions, the duopoly game with heterogeneous players is formed from 
combining Eqs. (6) and (7). Then the dynamical system of the heterogenous players is  
described as: 

ቐ݌ଵ(ݐ + 1) = (ݐ)ଵ݌ + ܽ](ݐ)ଵ݌݇ − (ݐ)ଵ݌2ܾ + (ݐ)ଶ݌݀ + ଵܣ)ܾ − ଵݔ − ݐ)ଶ݌,[(ଶݔߚ + 1) = ܽ + (ݐ)ଵ݌݀ + ଶܣ)ܾ − ଶݔ − ଵ)2ܾݔߚ .  (8)

3. Nash equilibrium and local stability 

In this part the equilibria points of dynamic system will be first studied Eq. (8), and then the 
stability will be discussed.  

The dynamic duopoly game will achieve a Nash Equilibrium at last. The possible equilibrium 
point of the map Eq. (8) can be obtained as nonnegative solution of the nonlinear algebraic system: 

ቐ݌ଵ[ܽ − ଵ݌2ܾ + ଶ݌݀ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ = ଶ݌,0 = ܽ + ଵ݌݀ + ଶܣ)ܾ − ଶݔ − ଵ)]2ܾݔߚ .  (9)

Find that the system (9) is not associated with the parameter ݇. After the calculation of the 
system it was found that the map has two equilibrium points: ܧଵ = (0, ଶܧ   ,(ଶ଴݌ = ,∗ଵ݌) ଶ∗), (10)݌

where: 

ଶ଴݌ = ܽ + ଶܣ]ܾ − ଶݔ − ଵ]2ܾݔߚ ∗ଵ݌ , = 2ܾ[ܽ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ + ݀[ܽ + ଶܣ)ܾ − ଶݔ − ଵ)]4ܾଶݔߚ − ݀ଶ ∗ଶ݌ , = 2ܾ[ܽ + ଶܣ)ܾ − ଶݔ − [(ଵݔߚ + ݀[ܽ + ଵܣ)ܾ − ଵݔ − ଶ)]4ܾଶݔߚ − ݀ଶ . (11)

In the traditional economic view, non-negative equilibrium is meaningful. Obviously, ܧଵ is a 
boundary equilibria ( ଶ଴݌ > 0 ).  ଶ  is the unique Nash equilibrium point and has economicܧ 
meaning provided that: 

ቐ2ܾ[ܽ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ + ݀[ܽ + ଶܣ)ܾ − ଶݔ − [(ଵݔߚ > 0,2ܾ[ܽ + ଶܣ)ܾ − ଶݔ − [(ଵݔߚ + ݀[ܽ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ > 0,2ܾ > ݀,  (12)

where, the above two inequalities are obvious, then Eq. (12) is equivalent to 2ܾ > ݀. 
In order to study the local stability of equilibrium, the Jacobian matrix of map Eq. (8) should 

be considered. The matrix form is as follows:  

(ܧ)ܬ = ൥1 + ݇[ܽ − ଵ݌4ܾ + ଶ݌݀ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ ଵ2ܾ݀݌݇݀ 0 ൩. (13)
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The equilibrium point is stable only when all eigenvalues ߣ௜ (݅ = 1, 2) of the Jacobian matrix 
satisfy |ߣ௜| < 0. According to this theory, the following result about ܧଵ can be received. 

Proposition 1. The equilibrium point ܧଵ of system Eq. (8) is a saddle point. 
Proof. The Jacobian matrix of ܧଵ has the form: 

(ଵܧ)ܬ = ቎1 + ݇[ܽ + ଶ଴݌݀ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ 02ܾ݀ 0቏. (14) 

Its’ eigenvalues are: ߣଵ = 1 + ݇[ܽ + ଶ଴݌݀ + ଵܣ)ܾ − ଵݔ − ଶߣ   ,[(ଶݔߚ = 0.  

For the condition that ܽ, ܾ, ݀, ݇, ܿ௜ are all positive parameters, |ߣଵ| > 1 is workable. Then the 
equilibrium point ܧଵ is a saddle node. The proof of the proposition is completed. 

Next the local stability of the Nash equilibrium point ܧଶ will be studied. The Jacobian matrix 
of ܧଶ is: 

(ଶܧ)ܬ = ൥1 + ݇[ܽ − ∗ଵ݌4ܾ + ∗ଶ݌݀ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ ∗ଵ݌݇݀
2ܾ݀ 0 ൩, (15) 

where, the trace of ܬ(ܧଶ) is: ܶ = ൯(ଶܧ)ܬ൫ݎܶ = 1 + ݇[ܽ − ∗ଵ݌4ܾ + ∗ଶ݌݀ + ଵܣ)ܾ − ଵݔ −  ଶ)]. (16)ݔߚ

The determinant of ܬ(ܧଶ) is: 

ܦ = ൯(ଶܧ)ܬ൫ݐ݁ܦ = − ݀ଶ݇݌ଵ∗2ܾ . (17) 

The characteristic equation of ܬ(ܧଶ) is: ܲ(ߣ) = ଶߣ − ߣܶ + ܦ = 0. (18) 

The discriminant is: ∆= ܶଶ −  (19) .ܦ4

Since ∆= ܶଶ + 2݀ଶ݇݌ଵ∗ ܾ⁄ > 0, the eigenvalues of Nash equilibrium ܧଶ are real. 
Necessary and sufficient conditions for local stability of the Nash equilibrium ܧଶ are the Jury’s 

condition, which is given by: 

ቐ(I): 1 + ܶ + ܦ > 0,(II): 1 − ܶ + ܦ > 0,(III): 1 − ܦ > 0.  (20) 

Since: 

1 − ܶ + ܦ = −݇[ܽ − ∗ଵ݌4ܾ + ∗ଶ݌݀ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ − ݀ଶ݇݌ଵ∗2ܾ . (21) 
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Then replace ݌ଵ∗, ݌ଶ∗ Eqs. (21) can be simplified as: 2ܾ݇[ܽ + ଵܣ)ܾ − ଵݔ − [(ଶݔߚ + ݇݀[ܽ + ଶܣ)ܾ − ଶݔ − ଵ)]2ܾݔߚ > 0, 
(II) is always satisfied. 

Since: 

1 − ܦ = 1 + ݀ଶ݇݌ଵ∗2ܾ > 0, (22)

(III) is always satisfied. 
Then focus on the inequality (I). 
Since: 

1 + ܶ + ܦ = 2 + ݇[ܽ + ଵܣ)ܾ − ଵݔ − [ଶݔߚ − ݇(8ܾଶ + ݀ଶ)݌ଵ∗2ܾ + ଶ∗. (23)݌݀݇

Then replace ݌ଵ∗, ݌ଶ∗. Since, 2ܾ > ݀ (I) is equivalent to: 4ܾ(4ܾଶ − ݀ଶ) − ݇(4ܾଶ + ݀ଶ)[2ܾ(ܽ + ܾܿଵ) + ݀(ܽ + ܾܿଶ)] > 0. (24)

From what has been mentioned above, the following conclusion can come out: 
Proposition 2. The Nash equilibrium at ܧଶ is stable if and only if the inequality Eq. (24) holds. 
Proposition 2 characterizes the stability region in which the Nash equilibrium ܧଶ is local stable. 

The violation of the inequality Eq. (24) will lead to a flip bifurcation [3]. 
Noticing that the stability region is associated with ݔ௜ and ߚ. The propositions can be given 

about the degree of technology innovation ݔ௜ and the degree of technology spillover ߚ. 
Proposition 3. When ݔଵ >  ଶܧ ଵ଴, the evolution of price system Eq. (8) is in a stable state andݔ

is the Nash equilibrium point. Otherwise, the price evolution is in bifurcation or chaos. Where: 

ଵ଴ݔ = 2ܾ[ܽ + ଵܣ)ܾ − [(ଶݔߚ + ݀[ܽ + ଶܣ)ܾ − [(ଶݔ − 4ܾ(4ܾଶ − ݀ଶ)݇(4ܾଶ + ݀ଶ)2ܾଶ + ߚܾ݀ . (25)

Proof. According to the stability theory of Jury’s condition, the flip bifurcation occurs when 1 + ܶ + ܦ = 0. Namely: 4ܾ(4ܾଶ − ݀ଶ) − ݇(4ܾଶ + ݀ଶ)[2ܾ(ܽ + ܾܿଵ) + ݀(ܽ + ܾܿଶ)] = 0. (26)

Then ݔଵ =  .ଵ଴ݔ
So, the system is in stable when ݔଵ >  .ଵ଴, otherwise in bifurcation or chaosݔ
Proposition 4. When ݔଶ >  ଶܧ ଶ଴, the evolution of price system Eq. (8) is in a stable state andݔ

is the Nash equilibrium point. Otherwise, the price evolution is in bifurcation or chaos. Where: 

ଶ଴ݔ > 2ܾ[ܽ + ଵܣ)ܾ − [(ଵݔ + ݀[ܽ + ଶܣ)ܾ − [(ଵݔߚ − 4ܾ(4ܾଶ − ݀ଶ)݇(4ܾଶ + ݀ଶ)2ܾଶߚ + ܾ݀ . (27)

Proof. According to the stability theory of Jury’s condition, the flip bifurcation occurs when 1 + ܶ + ܦ = 0. Namely: 4ܾ(4ܾଶ − ݀ଶ) − ݇(4ܾଶ + ݀ଶ)[2ܾ(ܽ + ܾܿଵ) + ݀(ܽ + ܾܿଶ)] = 0. (28)
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Then ݔଶ =  .ଶ଴ݔ
So, the system is in stable when ݔଶ >  .ଶ଴, otherwise in bifurcation or chaosݔ
From the above description and Proposition, it can be concluded that high technology 

innovation is beneficial to obtain a steady state and the Nash equilibrium profit. It can expand the 
stable region and enhance the stability of the product price of market to increase technical 
innovation. 

4. Numerical simulations 

The purpose of this part is to illustrate the qualitative behavior of the solutions of the duopoly 
dynamic system Eq. (8) and provide some numerical evidences to prove above results.  

In Fig. 1 ( ܽ =  5, ܾ =  1, ݀ = ଵܣ ,0.3  = ଶܣ ,2  = ଶݔ ,3  = ߚ ,2  =  0.5, ݇ =  0.32) Nash 
equilibrium is locally stable approaches to the stable point (݌ଵ∗, (∗ଶ݌ = (3.031, 3.229) for large 
values of ݔଵ, to be specific, when ݔଵ > 0.905. With the reduction of ݔଵ, the Nash equilibrium point 
becoming instable, period-halving bifurcation and chaos will occur. 

In Fig. 2 (ܽ =  5, ܾ =  1, ݀ = ଵܣ ,0.3  = ଶܣ ,2  = ଵݔ ,3  = ߚ ,1  =  0.5, ݇ =  0.32) the Nash 
equilibrium is locally stable only when ݔଶ >  1.769 (ܽ =  5, ܾ =  1, ݀ = ଵܣ ,0.3  = ଶܣ ,2  = ଵݔ  ,3  ߚ ,1 = = 0.5, ݇ = 0.32). The dynamic system is in bifurcation or chaos if the technology 
innovation degree ݔଶ is small. 

 
Fig. 1. Bifurcation diagram with respect to ݔଵ 

 
Fig. 2. Bifurcation diagram with respect to ݔଶ 

5. Conclusions 

This paper established the price dynamic game model and then analyzed the influence of 
technology innovation on the equilibrium stability. The results show that technology innovation 
plays an important role in improving the stability of equilibrium. Specifically, it can enlarge the 
stability region and make the original bifurcation and chaos change into stability to increase the 
degree of technology innovation. 
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