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Abstract. The blasting for bedrock excavation on land for open channel project has a great 
influence on lock gate in Taishan Nuclear Power Station, therefore, based on blasting vibration 
monitoring data, the attenuation law of blasting vibration signal has been studied through 
regression analysis of practical test data by Sadaovsk empirical formula and corresponding 
time-frequency characteristics was analyzed by Empirical Mode Decomposition based on 
Hilbert-Huang transform. As for those monitoring data, the results of blast vibration velocity for 
vertical direction are generally larger than horizontal radial and horizontal tangential direction in 
the near field of blasting source and the peak particle velocity of vertical direction is usually lower 
than horizontal radial and horizontal tangential direction in the far field of blasting source; at the 
same time, their main vibration frequency mostly vary from 10 Hz to 80 Hz which is much higher 
than natural frequency of lock gate and is beneficial to structural safety and stability of 
surrounding rock mass for reducing the probability of resonance. To ensure the safety of lock gate, 
it is of great significance to control maximum explosive weight per delay in advance for different 
distance from monitoring point to the explosion source according to Safety Regulations for 
Blasting (GB6722-2014), which shows the excellent effect on blasting damage control of the lock 
gate and surrounding rock mass. The results from the analysis can be for reference to similar 
blasting design and blasting construction.  
Keywords: blasting vibration effect, open channel, vibration monitoring, attenuation law, blasting 
control, Hilbert-Huang transform. 

Nomenclature 𝜎 Stress of structure body 𝐸 Elastic modulus 𝜀 Strain  𝑣 Particle vibration velocity 𝑐 Propagation speed of vibration wave 𝑄 Maximum explosive weight per delay 𝑅 Distance between the monitoring point and blasting source 𝐾 Blasting design and field geology coefficient 𝛼 Attenuation coefficient 𝜌 Proportional charge weight 𝑋(𝑡) Raw signal 𝑐 (𝑡) Intrinsic mode function 𝑟 (𝑡) Residual error 𝐻 𝑐(𝑡)  Hilbert-Huang transform for intrinsic mode function 
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𝑧(𝑡) Analytic signal 𝑎(𝑡) Amplitude value function Φ(𝑡) Phase function 𝜔(𝑡) Transient frequency 𝐻(𝜔, 𝑡) Hilbert spectrum amplitude 𝐸𝑆(𝑤) Hilbert energy spectrum 

1. Introduction 

With the rapid development of national economy and the sustainable progress of science 
technology, the blasting technology is increasingly applied to engineering field such as highway 
excavation, channel blasting compaction, mining, building demolition, seismic exploration and 
explosive fabrication [1, 2]. Blasting stress wave is unavoidable in engineering blasting, which 
brought a series of serious problems such as ground vibration, blasting slungshot, building crack, 
landslide, tunnel collapse and many other hazards; therefore, the research on safety control on 
blasting vibration effect has the vital significance [3, 4]. 

At present, the research on effect of blasting vibration mainly concentrate on architectural 
structure, highway on ground, coal mining and shallow tunnel, Wei [5] theoretically analyzed the 
time-distance effect of blasting seismic waves from a point explosion source based on several 
examples of blasting near to buildings in Guangzhou and the vibration responses of structure and 
non-structure of buildings were calculated by the time-distance effect analysis method. Wang [6] 
monitored the surface building vibration to control and evaluate the impact of the underground 
blasting vibration on the surface building during the excavation of a big span tunnel in 
underground of the downtown areas with intensive buildings at Huangnipang shallow light rail 
station in Chongqing city. Jiang [7] analysed vibration data and adopted several vibration damping 
technologies to actualize large blasting excavation in a city with background of a garden building 
foundation and an underground garage excavation blasting. Lin [8] studied the stability control 
technology of tunnel and the field monitoring technique which is used to obtain the blasting 
vibration velocity and regression analysis result according to the modern information construction 
theory in the Damaoshan tunnel when blasting construction on new-built tunnel. Zeng [9] studied 
effect of blasting vibration on stability of surface buildings in order to mine the shallow remnant 
antimony ore in Wulongdao mining area and to ensure the security of the surface architecture 
during underground mining blasting. Wang [10] researched blasting vibration effect of coalmine 
soft rock roadway excavation and its impact on roadway loose circle radius based on testing and 
analysis of blasting vibration and excavation damage zone. Zong [11] studied the frequency 
spectrum characteristics and energy distribution of blasting seismic wave signal in coalmine 
roadway excavation by using the HHT method and EMD decomposition. Huo [12] studied failure 
mechanism of the dams and tunnel structures in different blasting method and put forward a 
blasting safety rule for the hydraulic structures. Xu [13] and Jiang et al. [14] discusses blasting 
vibration monitoring and blasting control technologies in construction of cross tunnels with super 
small interval in the space and parallel tunnels with small interval on the plane based upon field 
monitoring data. 

However, it has seldom referred to vibration effect of the blasting for rock excavation in 
nuclear power station. Along with the fast social and economic development, energy problem is 
becoming much more urgent. Nuclear power has a giant using value as a clean and economic 
energy. In the process of nuclear power station construction, blasting method still has an important 
role as an available and relatively economic method, it inevitably involve blasting vibration 
monitoring and initiative control of blasting damage [15, 16]. The study on how to determine 
vibration characteristics of blasting vibration signal has importantly and imminently practical 
significance. The blasting for bedrock excavation on land for open channel project is conducted 
in Taishan Nuclear Power Station, which has a great influence on lock gate and surrounding rock 
mass, therefore, based on blasting vibration monitoring data, the attenuation law of blasting 
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vibration signal has been studied through regression analysis of practical test data by Sadaovsk 
empirical formula and corresponding time-frequency characteristics was analyzed by Empirical 
Mode Decomposition based on Hilbert-Huang transform. At the same time, according to Safety 
Regulations for Blasting (GB6722-2014), the technical measures such as controlling the 
maximum explosive weight per delay and millisecond delay blasting is put forward for reducing 
the blasting effect, which shows the excellent effect on blasting damage control of the lock gate 
and surrounding rock mass. 

2. Theory 

2.1. Characteristics of wave propagation 

Assuming structural body vibrate for the effect of disturbance, according to elasticity theory 
and wave theory, we can find that: 𝜎 = 𝐸𝜀, (1)𝜀 = 𝑣𝑐, (2)

where 𝜎 is the stress of structure body for blasting, 𝐸 is elastic modulus, 𝜀 is strain and 𝑣, 𝑐 is 
particle vibration velocity, propagation speed of vibration wave, respectively. 

Substitution of Eq. (2) into Eq. (1) gives: 𝜎 = 𝐸 𝑣𝑐. (3)

It can be seen from Eq. (3) that the stress of the structure for blasting is proportional to 
vibration velocity of the particle and that the particle vibration velocity is an important physical 
quantity of structural damage where the speed of vibration can reflect the blast-induced damage 
and the test is convenient and reliable. 

In general, ground vibration velocity is approximately related to the distance between the 
monitoring point and blasting source, 𝑅 , and the maximum explosive weight per delay, 𝑄 . 
According to Safety Regulations for Blasting [17], the Sadaovsk empirical formula points out: 

𝜈 = 𝐾(𝜌) = 𝐾 𝑄𝑅 , (4)

where 𝑄 is the maximum explosive weight per delay, 𝑅 is the distance between the monitoring 
point and blasting source, 𝜌 = 𝑄 𝑅⁄  is proportional charge weight, 𝐾 is the blasting design and 
field geology coefficient, and a is the attenuation coefficient. 

2.2. Hilbert-Huang transform 

Hilbert-Huang transform is composed of Empirical Mode Decomposition (EMD) and Hilbert 
Spectrum Analysis (HSA). N. E. Huang believes that arbitrarily complicated signal can be 
composed of a series of Intrinsic Mode Function (IMF) which is simple, inharmonic and separate 
from each other. Hilbert-Huang transform was put forward based on above views and Empirical 
Mode Decomposition is the most important procedure of Hilbert-Huang transform [18]. 

Using Empirical Mode Decomposition, a raw signal 𝑋(𝑡) can be expressed as follows [19]: 



2892. ANALYSIS ON MONITORING AND CONTROLLING TECHNIQUES ABOUT BLASTING VIBRATION EFFECT OF OPEN CHANNEL IN TAISHAN 
NUCLEAR POWER STATION. YONGQING ZENG, HAIBO LI, XIANG XIA, YAQUN LIU, HONG ZUO, JINLIN JIANG 

1800 JOURNAL OF VIBROENGINEERING. JUNE 2018, VOLUME 20, ISSUE 4  

𝑋(𝑡) = 𝑐 (𝑡) + 𝑟 (𝑡), (5)

where 𝑋(𝑡) is a raw signal; 𝑐 (𝑡) is intrinsic mode function and 𝑟 (𝑡) is residual error. 
Using Hilbert-Huang transform for every intrinsic mode function 𝑐(𝑡): 

𝐻 𝑐(𝑡) = 1𝜋 𝑃𝑉 𝑐(𝑡′)𝑡 − 𝑡′ 𝑑𝑡′, (6)

where 𝑃𝑉 is Cauchy principal value, we can obtain analytic signal 𝑧(𝑡): 𝑧(𝑡) = 𝑐(𝑡) + 𝑗𝐻 𝑐(𝑡) = 𝑎(𝑡)𝑒 ( ), (7)

where 𝑎(𝑡) is amplitude value function: 𝑎(𝑡) = 𝑐 (𝑡) + 𝐻 𝑐(𝑡) , (8)

and Φ(𝑡) is phase function: 

Φ(𝑡) = arctan 𝐻 𝑐(𝑡)𝑐(𝑡) . (9)

Transient frequency is determined by derivation for phase function Φ(𝑡): 

𝜔(𝑡) = 𝑑Φ(𝑡)𝑑𝑡 . (10)

The amplitude and frequency derived from Hilbert-Huang transform is a function about time, 
by expressing the change of amplitude as frequency and time change, we can obtain Hilbert 
spectrum: 

𝐻(𝜔, 𝑡) = 𝑅𝑒 𝑎 (𝑡)𝑒 ( ) . (11)

Hilbert energy spectrum 𝐸𝑆(𝑤) is obtained from the time integration of the square of Hilbert 
spectrum amplitude 𝐻(𝜔, 𝑡): 

𝐸𝑆(𝑤) = 𝐻 (𝑤, 𝑡)𝑑𝑡. (12)

Hilbert energy spectrum 𝐸𝑆(𝑤) provides an expression of energy calculation for every 
frequency and is defined as total energy accumulation in long-term span for every frequency. 

In contrast with traditional Fourier transform using a series of harmonic wave to simulate 
vibration signal and Wavelet transform with the problem on selection of wavelet basis function, 
Hilbert-Huang transform has no constant and preset basis function and has better identifying 
ability in local region of blasting vibration signal. 

2.3. Safety criterion of blasting vibration effect 

Due to the complexity of blasting seismic wave propagation and the diversity of influencing 
factors, there are great differences in engineering standards for safety criterion of blasting seismic 
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effect adopted at home and abroad [20, 21]. For rock and concrete materials, the dynamic tensile 
strength plays a major role in the safety and stability of the material itself and its structure under 
the blasting load. The dynamic tensile stress is proportional to the particle vibration velocity, thus 
the early safety criterion of blasting vibration effect is based on single peak vibration velocity to 
judge whether the structure and the building is safe or not, such as Longerfors [22], Edwards [23], 
Fogelson [24], Northwood [25] and Bollinger [26], etc. all taking single particle vibration velocity 
(or acceleration) as safety criterion. 

With the development of the theory and technology for blasting engineering, the researchers 
found that the frequency and velocity both has great influence on the engineering facilities, using 
a single strength parameter as the basis of safety standards evaluation for blasting vibration has 
great limitation. In this way, for many countries, such as Germany, the United States, Switzerland 
and China, the vibration velocity and frequency are taken into account when the safety standards 
for blasting vibration are formulated. 

According to the United States Bureau of Mines (USBM) and Office of Surface Mining 
Reclamation and Enforcement (OSMRE) in American [20], the safety criterion of USBM and 
OSMRE is shown in Fig. 1. 

 
Fig. 1. Safety criteria of USBM and OSMRE 

Table 1. Safe allowable standards for blasting vibration 
Sequence 
number Object of protection Allowable limit of particle vibration velocity (cm/s) 𝑓 ≤ 10 Hz 10 Hz < 𝑓 ≤ 50 Hz 𝑓 > 50 Hz 

1 Cave dwelling, adobe building  
and rubble building 0.15-0.45 0.45-0.9 0.9-1.5 

2 Common civil building 1.5-2.0 2.0-2.5 2.5-3.0 

3 Industrial building 
and commercial building 2.5-3.5 3.5-4.5 4.2-5.0 

4 General ancient architecture  
and historic site 0.1-0.2 0.2-0.3 0.3-0.5 

5 
Central control room equipment at 

hydropower station  
and power plant in service 

0.5-0.6 0.6-0.7 0.7-0.9 

6 Hydraulic tunnel 7-8  8-10 10-15 
7 Traffic tunnel 10-12 12-15 15-20 
8 Mine tunnel 15-18  18-25 20-30 
9 Permanently high rock slope 5-9 8-12 10-15 

10 

The new pouring mass concrete (C20): 
Curing time: initial solidification - 3d 

Curing time: 3d-7d 
Curing time: 7d-28d 

 
1.5-2.0 
3.0-4.0 
7.0-8.0 

 
2.0-2.5 
4.0-5.0 

 8.0-10.0 

 
2.5-3.0 
5.0-7.0 
10.0-12 

The “Safety regulations for blasting” (GB6722-2014) in China specified safety criterion of 
blasting vibration for the ground building, central control room equipment at hydropower station 
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and power plant in service, hydraulic tunnel, traffic tunnel, mine tunnel, high rock slope and the 
new pouring mass concrete, etc. based on peak particle velocity and the main vibration frequency. 
Safe allowable standards for blasting vibration are listed in Table 1, for different protection object, 
the allowable limit of particle vibration velocity is different at diverse range of main vibration 
frequency. When the main vibration frequency is 𝑓 ≤ 10 Hz, 10 Hz < 𝑓 ≤ 50 Hz and 𝑓 > 50 Hz, 
respectively, for the common civil building, the allowable limit of particle vibration velocity is 
1.5-2.0 cm/s, 2.0-2.5 cm/s and 2.5-3.0 cm/s, respectively; for the hydraulic tunnel, the safety 
criteria of particle vibration velocity is 7-8 cm/s, 8-10 cm/s and 10-15 cm/s, respectively. Besides, 
different control standards are adopted for new pouring mass concrete (C20) of varying ages, when 
the main vibration frequency is 𝑓 ≤ 10 Hz, 10 Hz < 𝑓 ≤ 50 Hz and 𝑓 > 50 Hz, respectively, for 
curing time between initial solidification and 3d, the allowable limit of particle vibration velocity 
is 1.5-2.0 cm/s, 2.0-2.5 cm/s and 2.5-3.0 cm/s, respectively; for curing time between 3d and 7d, 
the allowable limit of particle vibration velocity is 3.0-4.0 cm/s, 4.0-5.0 cm/s and 5.0-7.0 cm/s, 
respectively; for curing time between 7d and 28d, the allowable limit of particle vibration velocity 
is 7.0-8.0 cm/s, 8.0-10.0 cm/s and 10.0-12 cm/s, respectively. 

3. Case study 

3.1. Introduction to Taishan nuclear power station 

The project, Taishan Nuclear Power Station, is located in Taishan city, the south of Guangdong 
Province, China. Its geographical location is at longitude 112° 59' E and latitude 21° 54' N, which 
is located to the east of the Huangmao Sea and is about 5 km from the southeast of Dajin Island. 
The project construction scale is preliminarily to 6×1750MW European pressurized water reactor 
(EPR) which will be divided into three phases and two EPR nuclear power units are planned in 
the first phase. According to the design requirements, the construction of the 0+000 to 0+200 m 
mileage section of the open channel for phase I of Taishan nuclear power station project requires 
the ground blasting and underwater reef blasting for rock excavation. The excavation of the rock 
is about 257361.35 m3, of which about 53954.25 m3 is excavated in land and about 203407.1 m3 
is excavated in the submerged reef. The blasting site for rock excavation of open channel on land 
in Taishan is shown in Fig. 2. 

 
Fig. 2. The blasting site for rock excavation of open channel on land in Taishan 

Because blasting stress wave in bedrock blasting excavation may give rise to damage for 
No. 1-No. 2 lock gate of water tunnel, it is necessary to carry out blast-induced damage control. 
The main purpose of monitoring is to validate the feasibility and the rationality of the blasting 
design parameters for blasting scheme and to correctly guide the construction using the attenuation 
law and time-frequency characteristics of monitoring results.  

3.2. Monitoring and attenuation law for blasting vibration signal 

Due to the TC-4850 blasting vibration monitoring system has the advantages of small size, 
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light weight, high sensitivity and high automation, it is extraordinary suitable for the need of large 
quantities and long duration for rock blasting vibration monitoring. The field blasting vibration 
monitoring points are arranged in the near side of the open channel above the explosion zone, in 
which the attenuation law of blasting vibration signal for the lock gate is monitored by three vector 
sensors which can monitor horizontal radial, horizontal tangent and vertical direction at each 
measuring point during the blasting excavation. The blasting vibration monitoring system for 
bedrock excavation blasting and the layout of blasting vibration monitoring point of three vector 
sensor are shown in Fig. 3. 

 
a) The blasting vibration monitoring system 

 
b) The layout of blasting vibration monitoring points 

Fig. 3. The blasting vibration monitoring system and layout of blasting vibration monitoring points 

Table 2. Parts of monitoring results of peak particle velocity under explosion 

Maximum 
explosive weight 

per delay (kg) 

Total 
explosive 

weight (kg) 

Distance 
(m) 

Horizontal 
radial direction 

Horizontal 
tangential 
direction 

Vertical 
direction 𝑣  

(cm/s) 
𝑓 

 (Hz) 
𝑣 

 (cm/s) 
𝑓 

(Hz) 
𝑣 

(cm/s) 
𝑓  

(Hz) 
96 240 225 1.11 15.6 0.17 25.0 0.82 17.5 

108 336 122 0.78 21.5 0.73 29.8 1.01 22.9 
108 408 106 0.91 25.6 0.92 41.7 0.67 19.6 
110 984 54 3.00 10.7 2.01 40.0 4.70 19.0 
144 768 184 0.73 17.2 0.38 18.9 0.70 15.9 
150 960 210 0.80 13.9 0.28 14.7 0.79 58.8 
150 1168 143 1.46 16.1 0.47 11.7 1.55 22.5 
160 1392 47 3.98 16.3 3.11 33.2 9.43 47.4 
180 768 191 0.52 12.5 0.51 10.8 0.18 12.5 
190 816 145 1.43 16.1 0.54 45.9 2.11 46.4 

188.5 1248 58 5.55 20.5 1.95 10.7 5.79 32.2 
200 1176 51 4.16 7.30 3.09 11.2 9.64 69.8 
200 1680 60 5.55 20.5 1.95 10.7 5.79 32.2 
240 1576 64 2.72 21.6 2.73 24.6 2.84 29.7 
240 1152 347 0.22 9.30 0.30 14.6 0.62 20.1 
300 1968 96 1.81 10.7 1.65 25.9 3.54 34.2 
300 2904 362 0.51 15.6 0.18 15.6 0.74 46.9 
340 1080 91 2.03 11.2 1.89 10.7 4.19 17.1 
350 1248 147 1.25 17.1 0.87 11.7 2.06 16.6 
450 1080 114 4.14 32.3 1.09 40.0 3.84 21.7 
800 1608 114 3.84 26.3 1.56 27.0 2.83 23.8 

Altogether 168 blasting vibration data along the horizontal radial, horizontal tangential and 
vertical direction were recorded from 56 blasts. Parts of monitoring results of peak particle 
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velocity under explosion are shown in Table 2. 
Total 123 blasting vibration data from 41 blasts from controlled blasting and bench blasting 

are selected to fit in the form of power function based on Eq. (4) for bedrock excavation blasting. 
The regression analysis results of peak particle velocity along the horizontal radial, horizontal 
tangential and vertical direction are shown in Fig. 4. 

 
a) Horizontal radial direction 

 
b) Horizontal tangential direction 

 
c) Vertical direction 

Fig. 4. The regression analysis of blast vibration velocity, 𝜈, and the proportional charge weight, 𝜌 

The Sadaovsk empirical formula on regressive analysis along the horizontal radial, horizontal 
tangential and vertical direction is expressed as Eqs. (13-15), respectively: 

𝑣 = 77.3 𝑄 ⁄𝑅 . , (13)

𝑣 = 63.2 𝑄 ⁄𝑅 . , (14)

𝑣 = 241.8 𝑄 ⁄𝑅 . . (15)

The blast-induced wave propagation law is obtained in the form of Eqs. (13-15), based on the 
above equation, we can effectively present the blasting design about the maximum explosive 
weight per delay, 𝑄, according to the allowable peak particle velocity, 𝑣 , at different distance 
from the explosion source, 𝑅 , in terms of requisition of “Safety regulations for blasting” 
(GB6722-2014) in China, which shows the excellent control effect on blasting damage of the lock 
gate and surrounding rock mass. 

It is observed in Eqs. (13-15) that the range of variation for 𝐾 is from 63.2 to 241.8 and 𝛼 is 
from 1.31 to 1.56 that belongs to the range of medium and hard rock, which is consistent with the 
previous exploration of formation lithology, where it has been observed that 𝐾, 𝛼  of vertical 
direction is largest, this is, 241.8 and 1.56, respectively but 𝐾, 𝛼 of horizontal radial direction is 
77.3 and 1.31, respectively and 𝐾, 𝛼 of horizontal tangential is 63.2 and 1.40, respectively. 
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In term of Sadaovsk empirical formula in Eq. (4), parameter 𝐾 is directly proportional to 
particle vibration velocity and parameter 𝛼  represent attenuation speed of particle vibration 
velocity where the bigger of 𝛼, the faster of velocity attenuation along propagation distance. By 
comparing the difference of 𝐾  and 𝛼  for horizontal radial, horizontal tangential and vertical 
direction, we easily find that the 𝐾  of vertical direction is more than horizontal radial and 
horizontal tangential direction while 𝛼 of vertical direction is also more than horizontal radial and 
horizontal tangential direction which show that vertical direction has faster speed of velocity 
attenuation, it imply that even though peak particle velocity of vertical direction is generally larger 
than horizontal radial and horizontal tangential direction in the near field of blasting source, 
however, the peak particle velocity of vertical direction will be lower than horizontal radial and 
horizontal tangential direction in the far field of blasting source which is consistent with the results 
shown in Table 2. So, it is noteworthy that we should take three different direction components of 
particle vibration velocity rather than single direction into account as safety criteria for blasting 
vibration. 

3.3. Time-frequency characteristics for blasting vibration signal 

As seen in Fig. 5, there is a typical multiple section raw signal of blasting seismic wave. The 
sampling points are 2000 and sampling interval time is 0.0005 s. The original vibration signal 
(Fig. 5) is decomposed and reconstructed by Empirical Mode Decomposition, the decomposed 
vibration signal is shown in Fig. 6 and the reconstructed vibration signal and relative error are 
shown in Fig. 7. 

 
Fig. 5. The blasting site for rock excavation of open channel on land in Taishan 

Fig. 6 shows that the original vibration signal is decomposed into 9 intrinsic mode functions 
from c1 to c8 and 𝑅  for residual error. Because Empirical Mode Decomposition always 
decompose raw vibration signal based on time scales from big to small, the waveform of intrinsic 
mode functions are becoming more and more longer while the frequency is becoming more and 
more lower with the proceed of decomposition. The intrinsic mode functions commonly have 
distinctly physical implication: The c1 component has the highest frequency and the energy is 
very small, which indicates that it is usually considered to be a high frequency noise that needs to 
be denoised in the process of analysis on frequency spectrum characteristics for blasting vibration 
signal. The c2, c3, c4, c5 and c6 component have larger amplitude than other intrinsic mode 
functions and contain a majority of energy of original vibration signal which become main 
component to influence of building vibration; the c7 and c8 component have less frequency, 
amplitude and energy of original vibration signal coming from resident signal or other factors. 
Residual error R reflects the zero-drift phenomenon or weak change tendency of signal with the 
lowest amplitude and energy. 

As is shown in Fig. 7, the reconstructed vibration signal based on Empirical Mode 
Decomposition is very consistently similar to original vibration signal with relative error is within 
in 10-15, which shows that Hilbert-Huang transform, and Empirical Mode Decomposition can 
accurately reflect the characteristics of the non-stationary signal and have an excellent suitability 
for analysis on blasting vibration signal. 
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Fig. 8 shows power spectrum density of original vibration signal (Fig. 5) and Fig. 9 shows 
power spectrum density of intrinsic mode functions from c1 to c8 and 𝑅 (Fig. 6). 

  

  

  

  

 
Fig. 6. The decomposed vibration signal by empirical mode decomposition 

 
a) Reconstruction signal based on empirical mode 

decomposition 

 
b) Relative error based on empirical mode 

decomposition 
Fig. 7. The reconstruction of signal and relative error based on empirical mode decomposition 

Fig. 8 indicates the blast energy of original vibration signal mainly concentrate on the region 
where frequency is below 80 Hz and has three sub-band which varies from 10 Hz to 18 Hz, from 
22 Hz to 45 Hz and from 50 Hz to 80 Hz, respectively, in which the main energy concentrates in 
the range of 10 Hz to 45 Hz, and the energy in the range of 50 Hz to 80 Hz is relatively weak and 
uniformly distributed. The natural frequencies of common lock gate are between 2 Hz and 5 Hz, 
from the perspective of security, low energy distribution in the low frequency region is beneficial 
to structural safety and stability of surrounding rock mass for reducing the probability of resonance 
[11, 27]. 
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Fig. 8. The power spectral density of original blasting vibration signal 

  

  

  

  

 
Fig. 9. The power spectral density of IMF component from c1 to c8 and R as surplus 

As seen in Fig. 9, the c1 component is usually considered to be high frequency noise signal, it 
has very small power spectral density value while the range of frequency distribution is wide 
which mainly vary from 70 Hz to 270 Hz; In the process of analysis on the original signal, the c1 
component should be removed in order to eliminate the effect of high frequency noise. In terms 
of the main components of the original vibration signal c2, c3, c4, c5 and c6 component, the 
dominant frequency distribution range mainly vary from 30 Hz to 80 Hz, from 10 Hz to 50 Hz, 
from 10 Hz to 40 Hz, from 5 Hz to 20 Hz and from 5 Hz to 12 Hz, respectively; In addition, the 
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power spectral density value of c7, c8 and 𝑅  is very small which corresponding dominant 
frequency distribution range is below 7 Hz. Thus, it can be seen that the spectrum of intrinsic 
mode functions signal is abundant which can be divided into multiple sub-seismic frequency bands 
and most of them are below 80 Hz; This is consistent with the power spectrum density of original 
vibration signal shown in Fig. 8 where the dominant frequency of the original vibration signal is 
mainly in the range of 10 Hz-80 Hz. 

The three-dimensional energy density spectrum of original vibration signal on Hilbert-Huang 
transform is shown in Fig. 10. 

 
Fig. 10. The three-dimensional energy density spectrum based on Hilbert-Huang transform 

Fig. 10 presented the distribution characteristics about energy of blasting vibration signal as 
the variation of frequency and time; It can be more intuitive to show the distribution of energy on 
blasting vibration signal with time and frequency, where the color is redder, the energy is greater; 
We can clearly see that most of the energy distribution in the frequency range is below 100 Hz, in 
which the energy distribution frequency band higher than 100 Hz is very small, the energy mainly 
concentrates on the range of 10 Hz-80 Hz and 360-1250 time sampling point. Dividing time 
sampling point 360-1250 by sampling frequency 2000 Hz is 0.180 s-0.625 s, we can obtain the 
energy mainly concentrates on the scope of 10 Hz-80 Hz and 0.180 s-0.625 s. The distribution 
characteristics about energy density spectrum of original vibration signal based on Hilbert-Huang 
transform is in accordance with the velocity curve of original vibration signal in Fig. 5 where the 
time region for velocity vibration amplitude mainly vary from 0.180 s to 0.625 s and the power 
spectral density of original vibration signal in Fig. 8 where the frequency region for power spectral 
density mainly concentrate on 10 Hz-80 Hz. 

3.4. Initiative control for blasting vibration effect 

Blasting vibration effect is affected by the topography, geology and blasting design  
parameters. To reduce the blasting vibration effect, the corresponding measure should be taken 
into account with different perspectives, which mainly can be divided into millisecond delay 
blasting technology, controlling maximum explosive weight per delay and total explosive weight, 
choosing right powder factor and rational spacing pattern parameter, improving terrain condition 
by ditch excavation and presplitting blasting technology. 

In this paper, the initiative control for blasting vibration effect is mainly by controlling 
maximum explosive weight per delay and total explosive weight. As seen in the Table 2, in terms 
of the peak particle velocity of 21 groups monitoring data, the vertical direction is generally greater 
than horizontal radial and horizontal tangential direction in the near field of blasting source and 
the peak particle velocity of vertical direction is usually lower than horizontal radial and horizontal 
tangential direction in the far field of blasting source. Therefore, it is noteworthy that we should 
take three different direction components of particle vibration velocity rather than single direction 
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into account as safety criteria for blasting vibration. “Safety regulations for blasting” 
(GB6722-2014) points out the allowable particle vibration velocity is subject to the maximum 
value of three mutually perpendicular components in cartesian coordinate of blasting vibration 
signal and the vibration frequency is the main vibration frequency of allowable particle vibration 
velocity. Because the lock gate belongs to new pouring mass concrete with concrete strength grade 
of C50 and curing time has been over 28 days at the start of blasting for bedrock excavation on 
land for open channel project; meanwhile, as for the measured vibration data, the main vibration 
frequency of the blasting vibration signal is mainly in 10 Hz-80 Hz, the initiative control standard 
of particle vibration velocity is determined to [V] = 5.0 cm/s according to Table 1 of “Safety 
regulations for blasting” [17] and expert opinion [28]. 

Table 3. The maximum explosive weight per delay calculated by Eq. (13) to Eq. (15) 
Blast radial 

distance 
(m) 

Horizontal 
radial direction 

Horizontal 
tangential direction 

Vertical 
direction Maximum explosive  

weight per delay (kg) 𝑄  (kg) 𝑄  (kg) 𝑄  (kg) 
10 1.9 4.4 0.6 0.6 
20 15.1 34.9 4.6 4.6 
30 51.0 117.6 15.6 15.6 
40 121.0 278.8 36.9 36.9 
50 236.3 544.5 72.0 72.0 
60 408.4 940.9 124.5 124.5 
70 648.5 1494.2 197.7 197.7 
80 968.0 2230.4 295.0 295.0 
90 1378.3 3175.7 420.1 420.1 

100 1890.7 4356.3 576.2 576.2 
110 2516.5 5798.2 766.9 766.9 
120 3267.1 7527.6 995.7 995.7 

Due to the phenomenon about field monitoring particle vibration velocity more than initiative 
control standard of particle vibration velocity is existed, therefore, we should control maximum 
explosive weight per delay at different distance from the explosion source on the basis of the 
blast-induced wave propagation law based on Eq. (13), Eq. (14) and Eq. (15). As shown in Table 3 
above, the allowable maximum explosive weight per delay is controlled by maximum explosive 
weight per delay of vertical direction. Supposing the distance between lock gate monitoring point 
and the explosion source is 50 m, the maximum explosive weight per delay can be evaluated to 
72 kg; that is, it can satisfy the lock gate concrete structure safety when the maximum explosive 
weight per delay dose not greater than 72 kg. In order to guarantee safety of damage control for 
lock gate and surrounding rock mass under blasting load in Taishan Nuclear Power Station, it is 
essential that we should strictly control maximum explosive weight per delay and total explosive 
weight based on above calculation results of Table 3. In the subsequent process of rock blasting, 
we have achieved excellent effect on blasting control. Summary of experimental blasts details at 
open channel in Taishan nuclear power station is given in Table 4. 

Table 4. Summary of blasts details at open channel in Taishan nuclear power station 

No. of 
blasts 

Diameter 
of hole 
(mm) 

Burden 
(m) 

Spacing 
(m) 

Depth 
of blast 

hole 
(m) 

Length of 
stemming 

(m) 

Total 
charge 
(kg) 

Maximum 
charge per 
delay(kg) 

Initiation 
systems Explosives 

56 150 3-3.5 3-3.5 2-11 1-4 120-
2904 36-800 

Non-electric 
shock tube 

delay detonator 
and milli-

second 
connector 

Emulsion 
explosive 
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The measured magnitudes of peak particle velocity and frequency of the 168 blasting vibration 
data along the horizontal radial, horizontal tangential and vertical direction from 56 blasts were 
evaluated taking into consideration the established damage criteria of the “Safety regulations for 
blasting” (GB6722-2014) in China; As required in Table 1, in view of the lock gate belongs to 
new pouring mass concrete with concrete strength grade of C50 and curing time has been over 
28 days at the start of blasting for bedrock excavation for open channel project, the safety criteria 
of particle vibration velocity for lock gate could be set as 8 cm/s, 10 cm/s and 12 cm/s, respectively 
when the main vibration frequency is 𝑓 ≤  10 Hz, 10 Hz < 𝑓 ≤  50 Hz and 𝑓 >  50 Hz,  
respectively. The evaluation of damage risk of the blasts on lock gate according to “Safety 
regulations for blasting” in China is shown in Fig. 11.  

It was observed in Fig. 11 that a major part of the recorded peak particle velocity were below 
the initiative control standard of particle vibration velocity [V] = 5.0 cm/s and the PPV values 
versus different frequency for all blasts were below allowable limit of PPV for new pouring mass 
concrete with curing time over 28d described in the safety criteria of “Safety regulations for 
blasting” in China. This work could be conducive to future design of similar blasting engineering 
about lock gate damage control. 

 
Fig. 11. Evaluation of damage risk of the blasts on lock gate according to “Safety regulations for blasting” 

Haibo Li contributed to the conception and design of the study. Xiang Xia and Yaqun Liu 
contributed significantly to analysis and manuscript preparation; Dr. Zeng performed the data 
analyses and wrote the manuscript; Hong Zuo and Jinlin Jiang helped perform the analysis with 
constructive discussions. 

4. Conclusions 

This paper presents the attenuation law and time-frequency characteristics of blasting vibration 
signal of open channel in Taishan Nuclear Power, At the same time, the initiative control measure 
for blasting vibration effect is carried out by controlling maximum explosive weight per delay in 
advance, the main conclusions of the study are drawn as follows: 

1) The Sadaovsk empirical formula on regressive analysis along the horizontal radial, 
horizontal tangential and vertical direction is expressed as 𝑣 = 77.3 𝑄 ⁄ 𝑅⁄ . ,  𝑣 = 63.2 𝑄 ⁄ 𝑅⁄ . , 𝑣 = 241.8 𝑄 ⁄ 𝑅⁄ . , respectively. In terms of the peak particle 
velocity of monitoring data, the vertical direction is generally greater than horizontal radial and 
horizontal tangential direction in the near field of blasting source and the peak particle velocity of 
vertical direction is usually lower than horizontal radial and horizontal tangential direction in the 
far field of blasting source; therefore, it is noteworthy that we should take three different direction 
components of particle vibration velocity rather than single direction into account as safety criteria 
for blasting vibration. 
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2) As for those monitoring data, the blasting vibration signal is analyzed by Empirical Mode 
Decomposition based on Hilbert-Huang transform which is decomposed into 9 intrinsic mode 
functions from c1 to c8 and R for residual error within the range of 10-15. The three-dimensional 
energy density spectrum show the energy mainly concentrates on the scope of 10 Hz-80 Hz and 
0.180 s-0.625 s that is in accordance with the velocity curve of original vibration signal where the 
time region for velocity vibration amplitude mainly vary from 0.180 s to 0.625 s and the power 
spectral density of original vibration signal where the frequency region for power spectral density 
mainly concentrate on 10 Hz-80 Hz, which is much higher than natural frequency of lock gate and 
is beneficial to structural safety and stability of surrounding rock mass for reducing the probability 
of resonance. 

(3) The initiative control standard of particle vibration velocity is determined to [V] = 5.0 cm/s 
according to “Safety regulations for blasting” and expert opinion, a major part of the recorded 
peak particle velocity were below the initiative control standard of particle vibration velocity  
[V] = 5.0 cm/s and the PPV values versus different frequency for all blasts were below allowable 
limit of PPV for new pouring mass concrete with curing time over 28d described in the safety 
criteria of “Safety regulations for blasting” in China; We have controlled maximum explosive 
weight per delay at different distance from the explosion source on the basis of the blast-induced 
wave propagation law in the form of Sadaovsk empirical formula, In the subsequent process of 
rock blasting, it shown excellent effect on blasting damage control for lock gate and surrounding 
rock mass. 
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