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Abstract. The influence of complex pre-stress on the circular thin plate is investigated in this 
study to solve the non-uniform stress distribution problem. The differential equation of the circular 
plate with complex pre-stress distribution is derived based on the strain-displacement equation. 
The analytical method of free vibration for the circular plate with complex pre-stress distribution 
is proposed, in which the complex pre-stress and displacement function of the circular plate are 
expanded into the cosine trigonometric series. The influence of the different types of welding 
residual stress distribution on the natural frequency and the mode shape of the circular plate 
structure is compared. Finally, the effectiveness of the proposed model is verified through finite 
element method. 
Keywords: complex pre-stress, circular thin plate, dynamic characteristics, natural frequency, 
analytical method. 

1. Introduction 

The circular thin plate structure is widely used in marine, aerospace, and automotive 
engineering. A large amount of research has been devoted to study the vibration problem of the 
circular plate with theoretical analysis, numerical calculation, and experimental investigation 
[1, 2]. Axisymmetric vibration problems [3, 4] and nonlinear vibration problems [5-8] have 
become hot research topics. The pre-stress or initial stress usually exists in the structure before it 
undertakes the work loading. Pre-stress includes welding residual stress, assembly stresses, and 
hydrostatic pressure. These types of pre-stress are defined as complex pre-stress. The influence of 
pre-stress on structural strength and fatigue has been investigated [9]. The existence of pre-stress 
stress provides a considerable influence on the local and global stiffness matrices and thus on 
natural frequencies, mode shapes, and dynamic response [10, 11]. Many studies have focused on 
the uniformly distributed pre-stress problem, such as hydrostatic pressure, 
water-pressure-deduced stress, or fluid-velocity-based stress [12, 13]. However, most of the 
existing studies are limited to a uniform or specific pre-stress distributions problem [14, 15]. 
Welding residual stress is a common non-uniform distribution pre-stress in engineering design 
and construction. The traditional solution is no longer suitable to solve non-uniform pre-stress 
distribution problems [16-18]. Moreover, few works have stated the solution for the vibration 
problem of a circular plate with welding residual stress distribution despite its frequent existence 
in structure. Thus, analyzing the vibration characteristic of a circular plate with non-uniform pre-
stress distributions is necessary. 

The present study aims to provide an efficient analytical method for a circular plate structure 
with non-uniform pre-stress distributions. The proposed method can analyze the dynamic behavior 
of the arbitrary pre-stress distribution problems of the circular plate, such as with/without 
pre-stress distribution, local area or overall pre-stress distribution, and non-uniform pre-stress 
distribution. The analytical method indicates that the complex pre-stress, regardless of its 
distribution or value, is expressed as a special series that can state almost all of the pre-stress 
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distributions and achieve partial decoupling among the structural modes in the vibration equation. 
This remainder of this paper is organized as follows. Section 2 demonstrates the basic model 

of the circular plate pre-stress. Section 3 presents the motion differential equation for the circular 
plate. Section 4 provides the solution procedures of the differential equation. Section 5 validates 
the influence of complex pre-stress on the dynamic characteristics of the circular plate, such as 
natural frequency and mode shape, with a numerical analysis. Finally, Section 6 provides the 
concluding remarks. 

2. Pre-stress model 

2.1. Pre-stress model in circular thin plate 

An elastic isotropic thin plate is used to establish a pre-stress distribution model, in which the 
pre-stress value varies with different locations. Some assumptions are made as follows. A 
fluid-structure coupling problem is omitted. The pre-stress and stress caused by vibration satisfy 
the linear superposition principle. Vibration satisfies the small elastic deformation condition. 
Stress is uniformly distributed in the thickness direction. Structural stress is perpendicular to the 
cross section in vibration. Structural pre-stress remains constant during vibration. 

A polar coordinate system 𝑂௥ఏ is established, in which the coordinate origin is located at the 
center of the neutral plane of the circular plate, as shown in Fig. 1. 𝑟 and 𝜃 represent the radial 
and circumferential directions of the polar coordinate system, respectively; 𝑧 is the direction of 
plate thickness; ℎ is the thickness of the circular thin plate; and 𝑅 is the radius of the circular plate, 
which satisfies ℎ/𝑅 ≪ 1. 

 
Fig. 1. Schematic of circular thin plate 

As shown in Fig. 1, 𝐷ଵ and 𝐷ଶ are the pre-stress domain. Stress 𝛔 in the circular plate structure 
can be expressed as: 𝛔 = 𝛔଴ + 𝛔௙, (1) 

where: 𝛔 = [𝜎௥, 𝜎ఏ, 𝜎௭, 𝜏௥ఏ, 𝜏௥௭, 𝜏ఏ௭]்.  

Is the structural stress; 𝛔௙ = [𝜎௙,௥, 𝜎௙,ఏ, 𝜎௙,௭, 𝜏௙,௥ఏ, 𝜏௙,௥௭, 𝜏௙,ఏ௭]் is the dynamic stress caused by 
dynamic loading; and 𝛔଴ = [𝜎଴,௥, 𝜎଴,ఏ, 𝜎଴,௭, 𝜏଴,௥ఏ, 𝜏଴,௥௭, 𝜏଴,ఏ௭]்  is a complex pre-stress, in which 𝛔଴ = 0 indicates no complex pre-stress distribution. 

For the thin plate, 𝜎௭ = 𝜏௥௭ = 𝜏ఏ௭ = 0, and stress can be expressed as: 𝛔 = [𝜎௥, 𝜎ఏ, 0, 𝜏௥ఏ, 0,0]். (2) 

If only the radial direction pre-stress 𝜎଴,௥  and circumferential pre-stress direction 𝜎଴,ఏ  are 
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considered, then the pre-stress can be expressed as 𝛔଴ = [𝜎଴,௥, 𝜎଴,ఏ, 0,0,0,0]். 

3. Differential equations of pre-stressed circular plate 

The relationship between structural stress and strain with complex pre-stress distribution for 
the circular plate structure is examined in this section. 

3.1. Force analysis of element body 

The forces and moments that act on the element body consist of two parts when the circular 
plate structure is vibrating, that is, the force and moment caused by the vibration displacement and 
the coupling force caused by the vibration displacement and pre-stress.  

An element body with the size of d𝑟 and 𝑟𝑑𝜃 is selected, as shown in Fig. 2. 𝑄௥ and 𝑄ఏ are 
the shear force in the element body, and 𝑀௥, 𝑀ఏ, 𝑀ఏ௥, and 𝑀௥ఏ are the bending moments in the 
element body. The polar coordinate system indicates that the shear force and bending moment can 
be expressed as: 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧𝑄௥ = −𝐷 𝜕𝑤𝜕𝑟 ∇ଶ𝑤,𝑄ఏ = − 𝐷𝑟 𝜕𝑤𝜕𝜃 ∇ଶ𝑤,𝑀௥ = −𝐷 ቈ𝜕ଶ𝑤𝜕𝑟ଶ + 𝜇 ቆ1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟ଶ 𝜕ଶ𝑤𝜕𝜃ଶ ቇ቉ ,

𝑀ఏ = −𝐷 ቈቆ1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟ଶ 𝜕ଶ𝑤𝜕𝜃ଶ ቇ + 𝜇 𝜕ଶ𝑤𝜕𝑟ଶ ቉ ,
𝑀௥ఏ = 𝑀ఏ௥ = −𝐷(1 − 𝜇) ቆ1𝑟 𝜕ଶ𝑤𝜕𝑟𝜕𝜃 − 1𝑟ଶ 𝜕𝑤𝜕𝜃 ቇ ,

 (3) 

where 𝐷 = 𝐸ℎଷ 12(1 − 𝜇ଶ)⁄  is the bending strength of the circular plate structure, 𝜇  is the 
Poisson’s ratio, 𝐸 is the Young’s modulus, and ℎ is the plate thickness. 

 
Fig. 2. Section force and moment caused by vibration 

3.2. Coupling force analysis 

Assume that the complex pre-stress remains constant during structural vibration. Then, curves 𝑂𝐴 and 𝑂𝐶  of the original neutral plane are 𝑙ை஺௭  and 𝑙ை஼௭  in the course of structural vibration, 
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respectively, and can be expressed as: ൜𝑙ை஺௭ = 1 + 𝜀௥,𝑙ை஼௭ = 1 + 𝜀ఏ. (4) 

Thus, the section area along the curves 𝑂𝐴 and 𝑂𝐶 in unit length can be expressed as: 

⎩⎪⎨
⎪⎧𝑆௥ = න௛ଶି௛ଶ 𝑙ை஺௭ 𝑑𝑧 = ℎ,

𝑆ఏ = න௛ଶି௛ଶ 𝑙ை஼௭ 𝑑𝑧 = ℎ. (5) 

The section area along curves 𝑂𝐴 and 𝑂𝐶 remains constant in unit length during structural 
vibration based on the principle of equal volume according to Eq. (5).  

Assume that the pre-stress force remains constant during structural vibration. The section 
tensile forces 𝑁଴,௥  and 𝑁଴,ఏ  for unit length in directions 𝑟  and 𝜃  also remain constant. If the 
circular plates are in static equilibrium, then the section tensile forces are parallel to the 𝑟 and 𝜃 
axes, and: 

൜𝑁଴,௥ = 𝜎଴,௥ℎ,𝑁଴,ఏ = 𝜎଴,ఏℎ.  

Moreover, no force component exists in other directions. 
Displacement function 𝑤(𝑟, 𝜃, 𝑡) exists in the element body; thus, when the element is static, 

the section tensile force 𝑁଴,௥ is no longer parallel to the 𝜃 axis, and the angle between the section 
tensile force 𝑁଴,௥ and 𝜃 axis is ∂𝑤/ ∂𝑟. Similarly, section tensile force 𝑁଴,ఏ is no longer parallel 
to the 𝑟 axis, and the angle between the section tensile force 𝑁଴,ఏ and 𝑟 axis is 𝜕𝑤/𝑟𝜕𝜃, as shown 
in Fig. 3. 

 
a) 

 
b) 

Fig. 3. Element body angle 

Angles ∂𝑤/ ∂𝑟 and 𝜕𝑤/𝑟𝜕𝜃 exists; thus, section tensile force 𝑁଴,௥ has a component Δ𝑁଴,௥,௭ in 
the 𝑧 direction, and section force 𝑁଴,ఏ  has a component Δ𝑁଴,ఏ,௭  in the 𝑧 direction. These force 
components can be expressed as: 

൞Δ𝑁଴,௥,௭ = 𝜎଴,௥ℎ 𝜕𝑤𝜕𝑟 ,Δ𝑁଴,ఏ,௭ = 𝜎଴,ఏℎ 𝜕𝑤𝑟𝜕𝜃 , (6) 

where forces Δ𝑁଴,௥,௭ and Δ𝑁଴,ఏ,௭ are the coupling force between the pre-stress and the vibration 
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displacement, respectively, as shown in Fig. 4. 
Pre-stress is constantly perpendicular to the cross section of the element body. The coupling 

force caused by the pre-stress force and vibration displacement exists in the 𝑟 and 𝜃 directions. 
Any type of coupling and torques moments does not exist in any direction by the pre-stress vector. 
The coupling force caused by the pre-stress and vibration displacement in the 𝑧 direction affects 
the force balance equation of the element body. The force equilibrium equation in the 𝑧 direction 
and the moment equilibrium equations must be established. 

 
Fig. 4. Element body coupling force 

3.3. Vibration equation of circular plate with complex pre-stress distributions 

Coupling forces exist in the circular plate during structural vibration, which is caused by the 
coupling pre-stress and vibration displacement. The vibration equation should be modified, and 
the coupling forces must be considered in the equilibrium equations. 

(A) Force equilibrium equation in the 𝑧 direction. 
In the element body of the circular plate, two shear forces 𝑄௥ and 𝑄ఏ exist, which are caused 

by the structural vibration in the 𝑧 direction. Two coupling forces Δ𝑁଴,௥,௭ and Δ𝑁଴,ఏ,௭ are caused 
by the pre-stress and vibration displacement, respectively. Thus, the force equilibrium equation in 
the 𝑧 direction can be expressed as follows: 𝜕𝑄௥𝜕𝑟 + 𝜕𝑄ఏ𝑟𝜕𝜃 + 𝜕Δ𝑁଴,௥,௭𝜕𝑟 + 𝜕Δ𝑁଴,ఏ,௭𝑟𝜕𝜃 = 𝜌ℎ 𝜕ଶ𝑤𝜕𝑡ଶ , (7) 

where 𝜌 is the density of the plate material, and ℎ is the thickness of the plate structure. 
(B) Moment equilibrium equations. 
No coupling or torque moments are considered in the element body; thus, the body force in 

the 𝑟 and 𝜃 directions are omitted. The moment equilibrium equations in these directions can be 
expressed as: 

൞𝜕𝑀௥𝜕𝑟 + 𝜕𝑀௥ఏ𝑟𝜕𝜃 + 𝑄௥ = 0,𝜕𝑀௥ఏ𝜕𝑟 + 𝜕𝑀ఏ𝑟𝜕𝜃 + 𝑄ఏ = 0. (8) 

Simultaneously, Eqs. (7) and (8) yield: 𝜕ଶ𝑀௥𝜕𝑟ଶ + 2 𝜕ଶ𝑀௥ఏ𝜕𝑟𝜕𝜃 + 𝜕ଶ𝑀௥𝑟ଶ𝜕𝜃ଶ − ൤𝜕Δ𝑁଴,௥,௭𝜕𝑟 + 𝜕Δ𝑁଴,ఏ,௭𝑟𝜕𝜃 ൨ = −𝜌ℎ 𝜕ଶ𝑤𝜕𝑡ଶ . (9) 
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The vibration differential equation of the circular plate with complex pre-stress distribution 
can be expressed as a partial differential equation by substituting Eq. (6) into Eq. (9), as shown as 
follows: 

∇ଶ∇ଶ𝑤 − ℎ𝐷 ൤ 𝜕𝜕𝑟 ൬𝜎଴,௥ 𝜕𝑤𝜕𝑟 ൰ + 𝜕𝑟ଶ𝜕𝜃 ൬𝜎଴,ఏ 𝜕𝑤𝜕𝜃 ൰൨ + 𝜌ℎ𝐷 𝜕ଶ𝑤𝜕𝑡ଶ = 0, (10) 

where ∇ଶ𝑤 = డమ௪డ௥మ + ଵ௥ డ௪డ௥ + ଵ௥మ డమ௪డఏమ ; 𝜎଴,௥  and 𝜎଴,ఏ  are the complex pre-stresses in the 𝑟  and 𝜃 
directions, respectively; 𝜌 is the density of the plate material; and ℎ is the thickness of the plate 
structure. Eq. (9) can be expressed in a short form as follows: 

𝐿(𝑤) − 𝐶൫𝑤, 𝜎଴,௥, 𝜎଴,ఏ൯ = − 𝜌ℎ𝐷 𝜕ଶ𝑤𝜕𝑡ଶ , (11) 

where: 

𝐿() = ቆ ∂ଶ∂𝑟ଶ + 1𝑟 ∂∂𝑟 + 1𝑟ଶ ∂ଶ∂θଶቇଶ = ∂ସ∂𝑟ସ + 2𝑟 ∂ଷ∂𝑟ଷ − 1𝑟ଶ ቆ ∂ଶ∂𝑟ଶ − 2 ∂ସ∂𝑟ଶ ∂θଶቇ      + 1𝑟ଷ ቆ ∂∂𝑟 − 2 ∂ଷ∂𝑟 ∂θଶቇ + 1𝑟ସ ቆ4 ∂ଶ∂θଶ + ∂ସ∂θସቇ,  

𝐶൫𝑤, 𝜎଴,௥, 𝜎଴,ఏ൯ = ℎ𝐷 ൤ 𝜕𝜕𝑟 ൬𝜎଴,௥ 𝜕𝑤𝜕𝑟 ൰ + 𝜕𝑟ଶ𝜕𝜃 ൬𝜎଴,ఏ 𝜕𝑤𝜕𝜃 ൰൨,  

are the coupling teams of complex pre-stress and vibration displacement, respectively. The 
pre-stress values (𝜎଴,௥, 𝜎଴,ఏ) are the function of coordinates 𝜃 and 𝑟. Thus, its partial derivative of 
spatial coordinates cannot be ignored. 

In comparison with the classic motion equation of the circular plate without a complex 
pre-stress, the coupling item 𝐶(𝑤, 𝜎଴,௥, 𝜎଴,ఏ) is added. In comparison with the motion equation of 
the circular plate with uniform pre-stress distribution, the varying factor of the pre-stress 
amplitude is considered. Thus, a new approach is required to gain the analytic solution of Eq. (11). 
The analytical solution can be applied to the circular plate structure with arbitrarily distributed 
stress and has a wide range of applications than previous analytical methods. 

4. Solution of motion equation 

This section discusses the analytical solution of the free vibration problem for the circular thin 
plate structure.  

4.1. Boundary condition 

The physical boundary conditions of the circular plate include the free boundary, simply 
supported boundary, and fixed boundary. The simply supported boundary is discussed in the 
present work, and it can be expressed as: ൜𝑤|௥ୀோ = 0,𝑀௥|௥ୀோ = 0.  

4.2. General solution of vibration equation 

For the structure of the isotropic material plates, some hypotheses are defined to simplify the 
calculation; that is, pre-stress 𝜎଴,ఏ is a constant along the circumferential 𝜃 direction and pre-stress 
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𝜎଴,௥ is a function of the design variable 𝑟 in the 𝑟 direction.  
The modal decomposition method is applied based on the aforementioned hypotheses, and the 

mode of the plate may be expressed as a sum of eigenmodes or eigenfunctions. Eq. (11) can be 
obtained with a form of power series expansion using a Galerkin procedure. The solution of the 
circular thin plate structure in the polar coordinates system can be expressed as a trigonometric 
function series as follows: 

𝑤 = ෍ 𝑊ఎே
ఎୀ଴ cos ൬2𝜂 − 12 𝛼𝑟൰ 𝑒௜ఠ௧,   𝛼 = 𝜋𝑅, (12) 

where 𝜔 is the angular frequency, 𝑅 is the radius of the plate, and 𝑊ఎ is the shape function. 
The free vibration equation of the circular plate with complex pre-stress distribution is derived 

by substituting Eq. (12) into Eq. (10), as shown as follows: 

෍ ቊቈ൬2𝜂 − 12 𝛼൰ସ + 1𝑟ଶ ൬2𝜂 − 12 𝛼൰ଶ቉ cos ൬2𝜂 − 12 𝛼𝑟൰ேఎୀ଴+ ቈ2𝑟 ൬2𝜂 − 12 𝛼൰ଷ − 1𝑟ଷ ൬2𝜂 − 12 𝛼൰቉ sin ൬2𝜂 − 12 𝛼𝑟൰ቋ 𝑊ఎ  
      −𝐶൫𝑤, 𝜎଴,௥, 𝜎଴,ఏ൯ = 𝜔ଶ 𝜌ℎ𝐷 ෍ 𝑊ఎே

ఎୀ଴ cos ൬2𝜂 − 12 𝛼𝑟൰, (13) 

where the expression form of complex pre-stresses 𝜎଴,௥  and 𝜎଴,ఏ  directly affect the type of 
analytical solution. 

The differential equation can be obtained by multiplying both sides of Eq. (13) by cos(𝑛𝛼𝑟), 
using the orthogonality of the trigonometric function, and integrating the function from 𝑟 = 0 to 𝑟 = 𝑅 for the circular plate, as shown as follows: 

ቈ൬2𝑛 − 12 𝛼൰ସ + ൬2𝑛 − 12 𝛼൰ଶ቉ 𝑊௡ − 2𝑅 න 𝐶ோ
଴ ൫𝑤, 𝜎଴,௥, 𝜎଴,ఏ൯cos(𝑛𝛼𝑟)𝑑𝑟 = 𝜔ଶ 𝜌ℎ𝐷 𝑊௡. (14) 

Define 𝐾 = ׬ 𝐶ோ଴ (𝑤, 𝜎଴,௥, 𝜎଴,ఏ)cos(𝑛𝛼𝑟)𝑑𝑟,  where 𝐾  represents the effect of complex 
pre-stress. The function 𝐾  indicates that the structural modes couple together, and a single 
structural mode can no longer be computed, such that the entire coupling equation must be solved 
to obtain the coupling modes. Selecting the expressions formed for complex pre-stress is essential; 
it requires not only to represent the arbitrary pre-stress distribution but also helps to achieve 
structural mode decoupling. In present work, the trigonometric series, which can satisfy the 
aforementioned requirements, is selected. The analytical solution of the circular thin plate can be 
obtained by solving term 𝐾. 

4.3. Solution of characteristic equation 

Eq. (15) is solved based on the different distribution forms of complex pre-stress, and the free 
vibration characteristic equation is obtained. 

4.3.1. Without pre-stress distribution 

If the circular thin plate does not have a complex pre-stress distribution (𝜎଴,௥ = 𝜎଴,ఏ = 0), then 
the integration term 𝐾 = 0 and the free vibration characteristic equation of the circular thin plate 
structure can be expressed as: 
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ቈ൬2𝑛 − 12 𝛼൰ସ + ൬2𝑛 − 12 𝛼൰ଶ቉ = 𝜔ଶ 𝜌ℎ𝐷 . (15) 

Thus, the natural frequency of the circular plate is obtained as: 

𝜔 = ඨ 𝐷𝜌ℎ ቈ൬2𝑛 − 12 𝛼൰ସ + ൬2𝑛 − 12 𝛼൰ଶ቉.  

4.3.2. Uniform pre-stress distribution 

If complex pre-stresses 𝜎଴,௥ and 𝜎଴,௥ are constant, then Eq. (15) is translated into a uniform 
pre-stress distribution problem. Define 𝜎଴,௥ = 𝜆 and 𝜎଴,ఏ = 𝜏. Then, the integration term 𝐾 can be 
obtained as follows: 

𝐾 = − ℎ𝜆𝐷 ൬2𝜂 − 12 𝛼൰ଶ ෍ න 𝑊ఎோ
଴ cos ൬2𝜂 − 12 𝛼𝑟൰ cos(𝑛𝛼𝑟) 𝑑𝑟ே

ఎୀ଴ . (16) 

Eq. (16) indicates that the pre-stress in the circumferential direction does not affect the 
characteristic equation. The integration term 𝐾 can be expressed as 𝐾 = − ௛ఒ஽ ቀଶఎିଵଶ 𝛼ቁଶ 𝑊௡  by 
using the orthogonality of the trigonometric function. The free vibration equation of the circular 
plate with uniform pre-stress distribution can be obtained by substituting 𝐾 into Eq. (14), as shown 
as follows: 

൥൬2𝑛 − 12 𝛼൰ସ + ൬2𝑛 − 12 𝛼൰ଶ൩ 𝑊௡ + 2𝑅 ℎ𝜆𝐷 ൬2𝜂 − 12 𝛼൰ଶ 𝑊௡ = 𝜔ଶ 𝜌ℎ𝐷 𝑊௡. (17) 

The natural frequency of the circular plate is obtained as: 

𝜔 = ඨ 𝐷𝜌ℎ ඨ൬2𝑛 − 12 𝛼൰ସ + ൬2𝑛 − 12 𝛼൰ଶ + 2𝑅 ℎ𝜆𝐷 ൬2𝜂 − 12 𝛼൰ଶ.  

4.3.3. Complex pre-stress  

If the welding residual stress value of 𝜎଴,௥ and 𝜎଴,ఏ varies in one direction, all of them are the 
function of design variable 𝑟. The general principle indicates that the amplitude can be expanded 
into a trigonometric function series, and the one-dimensional structural pre-stress can be expressed 
as: 

൞σ଴,௥ = σ௥,௚cos ൬2𝑔 − 12 α𝑟൰ ,   𝑔 = 1,2, … ,σ଴,ఏ = σఏ,௝cos ൬2𝑗 − 12 α𝑟൰,   𝑗 = 1,2, … .  (18) 

where 𝜎௥,௚ and 𝜎ఏ,௝ are the amplitude of the complex pre-stress in the 𝑟 direction and 𝜃 direction 
components, respectively; and 𝑔 and 𝑗 are positive integers. Substituting Eq. (18) into integration 
term 𝐾 yields: 
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𝐾 = − ℎ𝜎௥,௚2𝐷 ൬2𝜂 − 12 𝛼൰ ෍ න 𝑊ఎோ
଴ {(𝑔 + 𝜂 − 1)cos[(𝑔 + 𝜂 − 1)𝛼𝑟]cos(𝑛𝛼𝑟)ே

ఎୀ଴     −(𝑔 − 𝜂)cos[(𝑔 − 𝜂)𝛼𝑟]cos(𝑛𝛼𝑟)}𝑑𝑟.  (19) 

The product-to-sum formula and the orthogonality of the trigonometric function yield: 

න cos௅
଴ [(𝑔 + 𝜂 − 1)𝛼𝑟] ⋅ cos(𝑛𝛼𝑟)𝑑𝑟 = ൜𝑅/2,    𝑔 + 𝜂 − 1 = 𝑛,0,   𝑔 + 𝜂 − 1 ≠ 𝑛,  (20) න cos௅
଴ [(𝑔 − 𝜂)𝛼𝑟] ⋅ cos(𝑛𝛼𝑟)𝑑𝑟 = ൜𝑅/2,    𝑔 − 𝜂 = 𝑛,0,   𝑔 − 𝜂 ≠ 𝑛.  (21) 

The integral expressions of the coupling terms of complex pre-stress and vibration 
displacement can be obtained by substituting Eqs. (20) and (21) into Eq. (19), as shown as follows: 

𝐾 =
⎩⎪⎨
⎪⎧− 𝑅ℎ𝜎௥,௚4𝐷 ൬2𝑛 − 12 𝛼൰ ෍(𝑔 + 𝑛 − 1),   𝑛 > 𝑔,ே

௡ୀଵ− ℎ𝜎௥,௚4𝐷 ൬2𝑛 − 12 𝛼൰ ෍(𝑔 − 𝑛),   𝑛 < 𝑔.ே
௡ୀଵ

 (22) 

Eq. (22) implies that coupling occurs only among the specified modes. Each mode is coupled 
with only a few specific modes, rather than with all the other modes. Therefore, for the final 
vibration equation, the terms that correspond to the specific coupling modes must be calculated. 
Moreover, after simplification, the calculations do not involve integral operations. Thus, the 
decoupling of partial modes can reduce the computation cost dramatically without accuracy loss. 𝑁 equations can be constructed and expressed into a matrix form, as shown as follows: (Λ + Ψ௚௝)𝑋 = 0, (23) 

where 𝑋 = {𝑋ଵ, … , 𝑋௡ିଵ, 𝑋௡}; Λ is a sparse diagonal matrix that represents the non-stress part; and Ψ௚௝ is a sparse non-diagonal matrix. If complex pre-stress exists in the circular plates with Ψ ≠ 0, 
then Λ + Ψ is no longer a spare diagonal matrix. The corresponding free vibration characteristic 
equation of the circular thin plate structure can be obtained by substituting Eq. (23) into Eq. (17).  

4.3.4. Complex pre-stress with series 

If the complex pre-stresses 𝜎଴,௥  and 𝜎଴,ఏ  are highly complicated, the pre-stress can be 
expressed in a series as follows: 

⎩⎪⎨
⎪⎧𝜎଴,௥ = 𝜎௥,௚ ෍ cos ൬2𝑔 − 12 𝛼𝑟൰ ,   𝑔 = 1,2, … ,ீ

௚ୀଵ𝜎଴,ఏ = 𝜎௥,௝ ෍ cos ൬2𝑗 − 12 𝛼𝑟൰ ,௃
௝ୀଵ    𝑗 = 1,2, … ,  (24) 

where 𝜎௥,௚ and 𝜎௥,௝ are the amplitude of the complex pre-stresses. The method adopted to Eq. (22) 
indicates that 𝑁 equations can be established. However, the complex pre-stress influence matrix Ψ௚௝ can be expressed as a highly complex form, as shown as follows: 
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Ψ = ෍ ෍௃
௝ୀଵ

ீ
௚ୀଵ Ψ௚௝. (25) 

The corresponding free vibration characteristic equation of the circular thin plate structure can 
be obtained by substituting Eq. (25) into Eq. (14). 

4.4. Modal solution 

The free vibration characteristic equation of a simply supported circular plate structure is 
established based on several typical distributions of complex pre-stresses. Although the 
characteristic equation with complex pre-stress is more complicated than that without pre-stress 
and uniform pre-stress, it is still a linear equation set, such that the determinant of the characteristic 
equation coefficient is zero: |Λ + Ψ௚௝| = 0. (26) 

The natural frequencies and modes of the circular thin plate with complex pre-stress can be 
obtained using Eq. (26). 

5. Numerical analysis 

This section discusses the structural modes and the modal problem of the circular plate 
structure with complex pre-stress force distribution. 

5.1. Model description 

The boundary condition of the circular plate structure is a simply supported boundary, as 
shown in Fig. 5.  

The parameters of the circular thin plate structure are as follows. The radius of the circular 
plate 𝑅 is 300 mm, and the plate thickness is 6 mm. The material of the circular plate is steel with 
the following mechanical performance parameters: density 𝜌 = 7800 kg/m3; modulus of elasticity 𝐸 = 2.1×1011 N/m3; and Poisson’s ratio 𝜇 = 0.3.  

In the circular thin plate, a circumferential weld is located at 𝑟 = 200 mm. The width of the 
welding stress zone is 𝑙 = 40 mm. Welding residual stress exists near the seam welding, and 
welding residual stress is self-balanced in the structure.  

 
Fig. 5. Distribution of welding residual stress 

Seam Welding 

Welding Residual 
Stress Domain
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5.2. Welding residual stress distribution model 

The parameter of the welding residual stress is obtained by simulation analysis using finite 
element method (FEM) code, Marc. Three types of welding residual stresses are used for 
comparison. The maximum value of radial residual stress 𝜎଴,௥  is 150 MPa, and that of the 
circumferential welding residual stress 𝜎଴,ఏ is 250 MPa. In the present study, the variation of the 
welding residual stress in the thickness direction is neglected for simplicity, and the radial welding 
residual stress 𝜎଴,௥  is assumed to remain constant along the circumferential direction. The 
trigonometric function is used to fit the circumferential and radial welding residual stresses, as 
shown in Fig. 6. The positive and negative values are the tensile and compressive stresses, 
respectively.  

 
a) Welding residual stress  

in radial direction 

 
b) Welding residual stress  

in circumferential direction 
Fig. 6. Welding residual stress of circular plate  

5.3. Natural frequencies 

The Matlab R2013 is used to analyze the free vibration of the circular plate structure. The 
influence of welding residual stress on natural frequency are compared, the first ten natural 
frequencies of the structure are shown in Table 1. 

Table 1. The first ten natural frequencies under different weld residual stress amplitude 

Orders 

Natural frequency (Hz) 
Without 
welding 
residual 
stress 

With welding residual stress 
Case I Case II Case III 

Frequency Difference 
(%) Frequency Difference 

(%) Frequency Difference 
(%) 

1 68.3 60.3 –11.71 57.2 –16.25 55.6 –18.59 
2 192.3 188.7 –1.87 187.5 –2.49 186.0 –3.27 
3 192.3 188.7 –1.87 187.5 –2.49 186.0 –3.27 
4 354.2 347.3 –1.95 349.3 –1.38 348.5 –1.61 
5 354.2 355.0 0.226 350.9 –0.932 350.2 –1.129 
6 411.8 410.2 –0.389 409.8 –0.486 409.4 –0.583 
7 552.4 548.4 –0.724 547.2 –0.941 546.6 –1.05 
8 552.4 548.4 –0.724 547.2 –0.941 546.6 –1.05 
9 672.4 667.7 –0.69899 666.2 –0.92207 665.4 –1.04 
10 672.4 667.7 –0.699 666.2 –0.922 665.4 –1.04 

Table 1 shows that the amplitude of the weld residual stress has a considerable effect on natural 
frequency, especially in the first order. The variation magnitude of natural frequencies increases 
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with the pre-stress amplitude. Meanwhile, the relative influence of the welding residual stress 
decreases with the increase in order. This result can be attributed to the decrease in the overall 
structural strength of the circular plate caused by the existing pre-stress, particularly near the seam 
welding. 

5.4. Mode shape 

The influence of welding residual stress on the modal is analyzed, and the typical order is 
compared, as shown in Fig. 7. The structural modal shapes of first to sixth order are compared. 
The first mode does not have a welding residual stress distribution, and the others have welding 
residual stresses. 

 
a) First mode 

 
b) Second mode 

 
c) Third mode 

 
d) Fourth mode 

 
e) Fifth mode 

 
f) Sixth mode 

Fig. 7. Mode shape in different pre-stress distributions 
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The mode shapes of the circular thin plate changes, particularly in the welding residual stress 
area, due to the welding residual stress (Fig. 7). The results are as follows. The symmetry 
characteristic of mode shapes is lost because of the welding residual stress. In the first or sixth 
order mode shape, some modes of mutation appear in the welding residual stress distribution area. 
In the second- to fifth-order mode shapes, some modal mutations appear at the center of the 
circular plate, although the area is far from the seam welding. In the fourth- and fifth-order mode 
shapes, modal mutations appear periodically in the seam welding; the influence of the welding 
residual stress on the mode shape increases with the amplitude because the overall structural 
strength of the circular plate decreases due to the existing pre-stress, particularly near the seam 
welding. 

5.5. Method verification 

FEM is used to verify the analytical solution of the proposed method. The accuracy and 
advantage of the proposed method are validated by comparing its results with the FEM results. 
The FEM commercial code, Abaqus 2012, is applied to analyze the natural frequency of the 
circular plate structure. The design parameters are the same for the analytical solution method and 
FEM. Fig. 8 shows the finite element model.  

 
Fig. 8. Finite element model of the circular plate structure 

The comparison results of the natural frequencies between the proposed method and FEM are 
shown in Table 2. 

Table 2. comparison of the presented method and FEM 

Orders 

Natural frequency (Hz) 
Case I Case II Case III 

Present 
method 

FEM 
method 

Difference 
(%) 

Present 
method 

FEM 
method 

Difference 
(%) 

Present 
method 

FEM 
method 

Difference 
(%) 

1 60.3 59.1 –1.99 57.2 56.4 –1.39 55.6 54.3 –2.34 
2 188.7 186.2 –1.32 187.5 184.2 –1.76 186.0 184.5 –0.81 
3 188.7 186.3 –1.27 187.5 185.1 –1.28 186.0 184.2 –0.96 
4 347.3 348.9 0.46 349.3 352.4 0.89 348.5 355.1 1.89 
5 355.0 353.6 –0.39 350.9 348.5 –0.68 350.2 347.1 –0.88 
6 410.2 407.8 –0.58 409.8 405.3 –1.09 409.4 405.1 –1.05 
7 548.4 550.6 0.40 547.2 552.4 0.95 546.6 549.3 0.49 
8 548.4 550.8 0.44 547.2 551.3 0.75 546.6 548.9 0.42 
9 667.7 672.1 0.66 666.2 664.2 –0.30 665.4 670.5 0.76 

10 667.7 672.3 0.69 666.2 664.3 –0.28 665.4 670.4 0.75 
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Table 2 shows that the results obtained by the proposed method and the FEM agree well, 
particularly in the high-frequency band, which verifies the validity of the proposed method. 
Generally, these results show that the proposed method is accurate and that its results are reliable. 
Form the table, the welding residual stress cannot be fully fitted to the welding residual stress 
curve in the finite element model due to mesh density, thereby leading to the difference between 
the theoretical and finite element solutions. 

6. Conclusions 

The vibration equation with complex pre-stress (welding residual stress) distribution for a 
circular plate is derived. The analytical solution of the differential equations is obtained by 
defining the mode shape function, and the influence of welding residual stress on the circular plate 
structure is compared. The results of this study provide a novel approach for the analysis of the 
influence of welding residual stress on the structural vibration problem and expands the research 
domain of complex pre-stress. 
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