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Abstract. Rolling element bearing faults account for main causes of rotating machine failures. It 
is crucial to identify the incipient fault before the bearing steps into serious fault condition. The 
Hilbert envelope spectrum has been proved powerful and with high practical value to detect 
transient components in vibration signal but sensitive to noise. Based on the conventional singular 
value decomposition (SVD) theory, accumulative component kurtosis (ACK) is introduced to 
de-noising of vibration signal processing. The proposed ACK-SVD emphasizes the accumulative 
components (ACs) rather than the single singular component (SC) to select the effective SCs to 
recover signal. The superiority of the ACK-SVD over traditional SVD de-noising is verified by 
both simulated signals and actual vibration data from two rolling element bearing rigs. The results 
demonstrate the proposed method can efficiently identify the rolling element bearing faults, 
especially the early ones with strong background noise. 
Keywords: singular value decomposition, rolling element bearing, fault diagnosis, Hilbert 
envelope. 

1. Introduction 

Rolling element bearings (REBs) are critical mechanical components in rotating machinery 
with extensively application fields especially in modern industrial areas and their working state 
directly affects the performance of the whole machinery and the production efficiency. Compared 
to other components used in modern rotating machinery, REBs failures account for approximately 
45 % of the machine breakdowns [1, 2] and moreover, the REBs-related faults lead to the 40 % 
among the most failures in induction motors according to failure surveys by the electric power 
research institute [3] (EPRI). Consequently, it has practical value to implement 
condition-monitoring and fault-diagnosis to REBs in case of machine shutdowns, as well as the 
economic losses and industrial casualties. 

Among the variety of methods developed for rotating machinery fault diagnosis, signal 
processing technique based on the vibration signals is commonly used for the fault detection as 
the vibration signals carry the very important information about anomalies caused internally in the 
structure of the machinery. There are two steps commonly accepted to achieve the fault diagnosis 
and detection: (1) fault feature extraction and (2) identification of the fault pattern. The former 
step is vital to the whole process because it affects not only the complexity but also the accuracy 
of the fault diagnosis [4]. Addressing the fault feature extraction, different to the traditional 
analysis method such as time-domain statistics index, FFT analysis, the advanced and effective 
strategies have been proposed in the past decades, including Wavelet Transform (WT) [5-7], 
spectral kurtosis [8, 9], empirical mode decomposition (EMD) [10-12], minimum entropy 
deconvolution [13, 14], and stochastic resonance [15, 16]. WT can decompose and reconstruct 
signals via extending or compressing the wavelet basis, and it can perform the time-frequency 
characteristics of the signal with variable resolution, but the appropriate selection of mother 
wavelet depends on the researchers’ empirical experience, the signal itself, and the parameters to 
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preset. Moreover, the WT will lose the self-adaptability at different scales once the wavelet base 
is selected [17]. EMD can perform the intrinsic mode function (IMF) components extraction from 
the complex multi-component signal adaptively. With the aid of Hilbert transform applied to the 
IMFs, the signal’s integrity of time-frequency distribution can be achieved. However, there are 
still some problems unsolved, mode-mixing, endpoint effect and the lack of theoretical 
background in details. 

SVD is a non-parametric signal analysis tool which can be implemented without pre-defined 
basis functions. Additionally, SVD is considerably fast-calculating, easier-applicable comparing 
with other signal processing techniques. Owing to the above merits, SVD has been applied not 
only signal de-noising but also the fault feature extraction. Reza Golafshan improves the SVD 
reliability to the fault detection process by eliminating the background noise and the effectively 
selecting of singular value (SV) with probable highest kurtosis [18]. Different to the work in ref 
[12], where Yu D. et al. combines the EMD with Hilbert transform together to propose the local 
marginal spectrum which is verified effective in fault diagnosis of rolling bearings by practical 
vibration signals, SVD has been applied to feature matrix formed by the IMFs and residue from 
EMD process, the SVs forms the feature vectors based on which the Mahalanobis distance to the 
normal state can be calculated to measure the fault condition of rolling bearings [19], while, the 
SVD has been also used to form the condition feature vectors on the product function obtained by 
local mean decomposition (LMD) to vibration signals [20]. 

In a word, the key of SVD-based de-noising methods is commonly to find an appropriate 
threshold to select the sensitive SVs and their corresponding SCs which are used to reconstruct a 
matrix with lower rank for the processing subsequently. The current methods always attach 
importance to the fact that the significant SVs indicate their corresponding SCs dominant in the 
signal. From this view, many schemes selecting the sensitive SVs has been put forward such as 
the difference spectrum of singular values (DSSV), the ratios of neighboring singular values 
(NSVRs), and another novel method to select the sensitive components is to estimate some index 
indicated by each SC [21]. The basic principle of the kurtogram [22] is to use the kurtosis as a 
measure to detect the presence of impulse components and to indicate the frequency band where 
these occur, inspired by this method and the significance of kurtosis, ACK is proposed to estimate 
the impact of each single SC to the final recovered signal by the kurtosis index, the detailed flow 
chart is shown in Fig. 3. Envelope spectrum is one of the extensive applied techniques [23] in 
academic research and engineering applications to extract the fault-induced frequency but 
sensitive to the noise contained in the acquired vibration signal, consequently, the envelope 
spectrum is applied to evaluate the performance of ACK-SVD. The simulation and experimental 
results demonstrate the effectiveness in the fault diagnosis of rolling element bearing compared 
the traditional method DSSV, which proves a remarkable improvement of SVD in early incipient 
faults of rotating machinery. 

The remainder of this paper is organized as follows. Section 2 reviews the principle of SVD 
based de-noising, as well as limitations. Subsequently, the accumulative component kurtosis 
(ACK) based SVD is proposed to signal de-nosing. The effectiveness of the proposed method is 
verified by simulation study and experiments in Section 3 and 4, respectively. Finally, conclusions 
are drawn in Section 5. 

2. Principle of SVD and application to the signal de-noising 

2.1. Principle of SVD  

The SVD is a matrix factorization method from the mathematical view, and its definition is, 
for a matrix 𝐴 ∈ 𝑅௠×௡ , there exist two orthogonal matrices: 𝑈 = ሾ𝑢ଵ, 𝑢ଶ, … , 𝑢௠ሿ ∈ 𝑅௠×௠  and 𝑉 = ሾ𝑣ଵ, 𝑣ଶ, … , 𝑣௡ሿ ∈ 𝑅௡×௡, which satisfy the following equation: 𝐴 = 𝑈∑𝑉், (1)
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where Σ = ൣ𝑑𝑖𝑎𝑔൫𝜎ଵ, 𝜎ଶ, … , 𝜎௤൯, 𝑂൧ or its transposition, which is decided by whether 𝑚 < 𝑛 or 𝑚 > 𝑛. Σ ∈ 𝑅௠×௠, 𝑂 is zero matrix, and 𝑞 = 𝑚𝑖𝑛(𝑚, 𝑛). These parameters ሼ𝜎௜ሽ (𝑖 = 1, 2,…, 𝑞) 
are defined SVs of 𝐴, and 𝜎ଵ ≥ 𝜎ଶ ≥ ⋯ ≥ 𝜎௤ > 0. 

2.2. The implement of SVD based de-noising to vibration signal 

The mechanical fault vibration signal presents itself a series of impulses resulting from contact 
between the fault component and the health one, typically the case of spall faults, cracks or 
excessive gap in gears or rolling element bearings. While the raw signal collected from actual 
working situation may contain the machine noise which is supposed to be stationary or white 
Gaussian noise. Hence, the essential distinction between the background noise and the fault 
induced periodic impulses results in the difference of Hankel matrix, in turn, the SVs. Based on 
the state above, the SVD based de-noising methods seek decorrelating data space in terms of a set 
of new data variables which are mutually orthogonal and optimize certain statistical measures such 
as SVs. The data space redefined by these new variables is called the feature space which is a 
lower dimension space relative to the original one, and this property usually is called dimension 
reduction [24]. The transformation from data space to feature space hopefully brings greater 
separation between the signal and the noise. 

The vibration signals collected from the REBs housing are usually time-series data, it could 
not be subjected to the SVD techniques directly as the SVD is always applied to the matrix  
analysis, consequently, it is a necessary pretreatment to transform the one-dimensional signal to 
matrix before applying the SVD techniques, and Hankel matrix is commonly used and convinced 
an effectively method [24]. The dimension reduction makes the SVD a useful tool for de-noising 
of vibration signals which consisted of three main steps mentioned later and the SVD based 
de-noising flow chart shown in Fig. 2. 

Step 1: transform of time-series vibration signal to matrix. 
The measured signal in practice is a time-series signal 𝑥 = ሾ𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)ሿ and its 

Hankel matrix is shown in Eq. (2): 

𝑋 = ൦ 𝑥(1) 𝑥(2) . . . 𝑥(𝑛)𝑥(1 × 𝑘 + 1) 𝑥(1 × 𝑘 + 2) . . . 𝑥(1 × 𝑘 + 𝑛)⋮ ⋮ ⋱ ⋮𝑥((𝑚 − 1) × 𝑘 + 1) 𝑥((𝑚 − 1) × 𝑘 + 2) . . . 𝑥((𝑚 − 1) × 𝑘 + 𝑛)൪
௠×௡

, (2)

where 1 < 𝑛 < 𝑁, 𝑛 = 𝑁 − (𝑚 − 1) × 𝑘, and 𝑘 is a constant integer, the key parameter called 
delay step in the reconstruction of Hankel matrix; the 𝑋 ∈ 𝑅௠×௡. The delay step always is 1, and 𝑚 could be three times the number of components in the raw signal [25, 26]. 

Step 2: SVD implementation. 
According to Eq. (4), the Hankel matrix 𝑋 can be decomposed into 𝑚 sub-matrix 𝐴௜ which 

satisfies the Eq. (3), and in the form shown in Eq. (4): 

𝑋 = ሾ𝑢ଵ, 𝑢ଶ, ⋯ , 𝑢௠ሿ ⎣⎢⎢
⎢⎡𝜎ଵ 0 ⋯ 0 00 𝜎ଶ ⋯ 0 0⋮ ⋮ ⋱ ⋮ ⋮0 0 ⋯ 𝜎௠ 00 0 ⋯ 0 0⎦⎥⎥

⎥⎤ ⎣⎢⎢
⎡𝑣ଵ௧𝑣ଶ௧⋮𝑣௡௧⎦⎥⎥

⎤, (3)

𝑋 = 𝜎ଵ𝑢ଵ𝑣ଵ௧ + 𝜎ଶ𝑢ଶ𝑣ଶ௧ + ⋯ + 𝜎௠𝑢௠𝑣௠௧ = 𝑋ଵ + 𝑋ଶ + ⋯ + 𝑋௠, (4)

where 𝑢௜ ∈ 𝑅௠×ଵ is the 𝑖th column vector of left singular matrix 𝑈, 𝑣௜ ∈ 𝑅௡×ଵ, is the 𝑖th column 
vector of right singular matrix 𝑉. Actually, the every sub-matrix 𝑋௜ in Eq. (4) corresponds to a 
(SC) 𝑥௜ in the raw signal.  

Step 3: Reverse Hankel construction. 
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According to the construction of Hankel matrix shown in Eq. (2), the 𝑥௜ in the raw signal can 
be obtained by the first row vector combined the last column vector without the first element of 
the Hankel matrix 𝑋௜ depicted in the Fig. 1. By comparison, another reconsitution method named 
diagonal averaging is more reasonable to obtain each element 𝑥௜  by averaging along the 
anti-diagonals of the corresponding 𝑋௜ shown in Ref. [21, 27]. Both methods derived from the 
principle of Hankel matrix demonstrate that the raw signal can be reconstructed perfectly if all the 
SCs are added together. Accordingly, shown in the Fig. 2, there are two different ways to transform 
the SCs into the time-series signal which depend on the reverse Hankel construction implement 
to the SCs in Hankel matrix or their matrix sum, the method I is adopted in present work. 

 
Fig. 1. The transformation from 𝑋௜ to 𝑥௜ in the raw signal 

 
Fig. 2. The flow chart of the SVD based de-noising 

2.3. The ACK SVD de-noising method 

The crucial step in the SVD based de-noising method is to find the appropriate subspace 
spanned by the periodic impulses signal from the space by the raw vibration signal. Moreover, the 
related research almost focus on the SVs or their extensions such as DSSV, mean value of SVs 
and CCSVD, while, the recovered signal is often neglected. Hence, the ACK is proposed to 
efficiently select the effective SCs to constitute the de-noised signal. 

Specifically, the ACK-SVD is firstly to decompose the raw vibration signal into series of SCs 
in time-series format by the method I mentioned in Fig. 2, which is the same as the traditional 
SVD based de-noising. Then, the SCs is added together one by one to recover the 𝑋  which 
represents the purified signal, the kurtosis of X is calculated and set to the variable ACK once a 
new SC is added. Lastly, the maximum of ACK is sought out or the relative difference 𝑒 of ACKs 
is less than a certain level, the singular order can be obtained, then 𝑋 is the desired purified signal. 
Additionally, the relative difference 𝑒 is defined as the Eq. (5). The processed signal is then fed 
into Hilbert envelope analysis to investigate fault information indicated by the vibration signal: 𝑒௜ = 𝐴𝐶𝐾௜ାଵ − 𝐴𝐶𝐾௜𝐴𝐶𝐾௜ . (5)
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Fig. 3. The flow chart of ACK 

3. Simulation validation 

3.1. Vibration model for rolling element bearing 

To highlight the advantages of the proposed method, simulated signals are generated according 
to the fault mechanism [28]. When a local defect occurs on the contact surface between different 
components of a rolling element bearing, successive impulses produced by the contact of the 
defect zones may excite resonances in the bearing and the machine. The impulse response function 
of the bearing-housing-sensor system 𝑠௜(𝑡) can be illustrated in Eq. (6): 𝑠௜(𝑡) = 𝑒ି஻೔௧cos(2𝜋𝑓௜𝑡 + 𝜑௜), (6)

where 𝑓௜ is the resonant frequency excited by defect impact, 𝐵௜ is the coefficient of resonance 
damping and 𝜑௜  is the phase. Considering the successive motion of the rolling elements, the 
simulated vibration signal can be written as Eq. (7): 

𝑥(𝑡) = ෍(𝐴ெ + 𝐴் cos(2𝜋𝑓௥𝑡 + 𝜑))ே
௜ୀଵ ⋅ 𝑠௜(𝑡 − 𝑖𝑇଴ − 𝑡௜) + 𝑛(𝑡). (7)

The first part represents the displacement caused by the quiescent load and the rotating speed, 
where 𝑓௥  specifies the rotating frequency, 𝑇଴  the nominal time interval between two adjacent 
impulses, 𝑡௜ is random variable of the time lag between two impacts caused by the presence of slip 
which is an unpredictable behavior, the random 𝑡௜ usually accounts for 1-2 % of 𝑇଴, 𝐴ெ and 𝐴் 
represent the amplitude due to the static load and the unbalance load of the rotator, respectively. 
The last part represents background noise and 𝑛(𝑡) is referred to the Gaussian distributed white 
noise. 

For the brief but rational simulation, this section discusses the localized defect on outer race 
whose fault characteristic frequency (i.e. BPFO) is 105.5 Hz, and 12 kHz of the sampling rate (i.e. 



1x 2x lx

ix
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𝑓௦ ), 2 kHz of resonant frequency that excited by defect impact, and 0.1s of the data length, 
respectively. The rotating speed of the shaft with inner race is 1772 rpm. The last term is the 
Gaussian noise with SNR –7 dB. With the parameters mentioned above, the periodic impulses 
signal and the background noise are shown in Fig. 4(a) and (b), respectively; the mixed signal and 
its envelope spectrum in Fig. 4(c) and (d), respectively. Moreover, the Fig. 4(c), from which it is 
obvious that the periodic impulses completely buried by the heavy background noise, and its 
envelope spectrum presented in Fig. 4(d) provides little useful information about the fault. 

 
Fig. 4. Simulation signals of outer race defect: a) periodic impulse signal; b) the back noise signal;  

c) the mixed signal; d) the Hilbert envelope spectrum of the raw signal 

3.2. The contrastive analysis between the ACK-SVD and DSSV 

As mentioned in above section, the DSSV is often employed to select the effective SVs and 
the SCs furtherly. The mixed signal shown in Fig. 4(c) is subjected to conventional SVD technique 
to obtain the SV sequence, which is plot by the blue color and the difference spectrum of SV by 
the black one as shown in Fig. 5. According to DSSV principle, the first two SVs of relative high 
value are chosen as the effective ones and their corresponding SCs the efficient ones to the 
de-noising signal constructing. The ACK varies with the number of SC added together as shown 
in Fig. 6, the peak arises after the fifth SC added, which is consistent with the kurtosis maximum 
rule, then, the singular order is 5. Since the kurtosis is sensitive to the impulses signal, it is 
reasonable to say the former five SCs in time-series format have the common peaks and they 
strengthen each other leads to the growing of ACK. When later SCs containing the random 
background signal, they may weaken the peaks and strengthen the trough in the accumulative 
signal, in other word, the transient periodic impulses enhances when added together but the 
random noise keep unchanged due to the merit of Gaussian noise. Consequently, the kurtosis of 
the accumulative signal reduces or keeps little change as the more SCs are added. Based on the 
analysis above, the waveform of recovered signal by DSSV method is shown in Fig. 7(a) and its 
envelope spectrum in Fig. 7(b); meanwhile, the Fig. 7(c) displays the recovered signal by 
ACK-SVD and its envelope spectrum is shown in Fig. 7(d). 
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Fig. 5. Singular values and the difference spectrum 

 
Fig. 6. The accumulative component kurtosis 

 
Fig. 7. The waveforms by DSSV and ACK-SVD: a) the waveform of recovered signal by DSSV;  

b) the envelope spectrum of the signal in a); c) time-series format of recovered signal  
by ACK-SVD; d) the envelope spectrum of the signal in c) 

From waveforms shown in the Fig. 7(a) and Fig. 7 (c), the signal recovered by ACK-SVD has 
relative high amplitude and more obvious impulses component than the one by DSSV. More to 
the point, the envelope spectrums presented in Fig. 7(b) and Fig. 7(d) illustrate the ACK-SVD’s 
superiority over the DSSV with more harmonic frequencies and higher amplitudes even though 
the presence of neglected background noise. Up to now, with the illustration based on the 
simulation, it is rational to demonstrate the ACK-SVD method can identify the fault-related 
frequencies with the aid of Hilbert envelope spectrum. 

To state the accumulative singular component with relative high kurtosis carrying the clear 
fault-induced information, the 5th one who has the biggest kurtosis and its two neighbors named 
4th and 6th have been presented in Fig. 8 labeled with a), b) and c), respectively, from which it’s 
not hard to conclude that the accumulative singular component with relative big kurtosis has 
relative larger amplitudes at each fault-induced frequencies that is easier to get the fault 
information in the presence of noise. Moreover, it proves the ACK-SVD efficient. 
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Fig. 8. The envelope spectrum of maximum ACK and its near two one: a) envelope spectrum  

of the former four singular components; b) envelope spectrum of the former five  
singular components; c) envelope spectrum of the former six singular components 

4. Experimental verification  

To investigate the effectiveness of the proposed ACK-SVD method for weak signal extraction, 
two experimental cases are taken into account including bearing signals with slight defect seeded 
artificially and an early outer race defect resulting from the natural degradation of fault. 

4.1. Case 1: bearing fault signals with slight defect on inner race 

4.1.1. The experiment setup of bearing fault test 

As shown in the Fig. 9, the bearing test rig is constituted of a 2 HP induction motor, a load 
motor and a torque transducer. The induction motor drives the shaft of the torque transducer 
coupled with the shaft of load motor which provides the working load to the test bearing. The 
defect diameters ranging from 0.007 to 0.040 inches at inner raceway, rolling element (i.e. ball) 
and outer raceway of the induction motor bearings were introduced by electro-discharge 
machining (EDM) separately. After faults seeded, fault bearings were reinstalled into the 
induction motor and the vibration data was collected by acceleration sensors under loads ranging 
from 0 to 3 HP and the rotating speed from to 1797 to 1720 rpm. The accelerometers were attached 
to the housing with magnetic bases to acquire vibration data at the sampling frequency 12 kHz. 

A vibration signal with slight defect on the inner raceway surface was obtained from the Case 
Western Reserve University (CWRU) Bearing Data Centre Website [29]. The structural 
parameters and detailed information of the tested bearing with inner raceway defect are listed in 
Table 1 and Table 2, respectively. 

Table 1. The structural parameters of the tested bearing 
Inside diameter 

(mm) 
Outside diameter 

(mm) 
Thickness 

(mm) 
Ball diameter 

(mm) 
Pitch diameter 

(mm) 
25 52 15 8.1818 44.2 

Table 2. Detailed fault information of the test bearing 
Defect location 𝐷௦ (D×W) (in.) Rotating speed (RPM) 𝑓௖ (Hz) 𝑓஻  (Hz) 𝑓ூ (Hz) 𝑓௢ (Hz) 
Inner raceway 0.011×0.007 1772 11.76 139.2 159.9 105.87 
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Fig. 9. The bearing test rig 

4.1.2. Experiment result analysis 

As signal in time-domain could reflect the vibration characteristic to some extent, the 
waveform of the slight defect on the inner raceway is shown in Fig. 10(a), from which the obvious 
transient impulses indicate the fault state of the bearing and from its corresponding envelope 
shown in Fig. 10(b), the failure is confirmed to be the inner raceway defect further. Moreover, the 
signal in Fig. 10(a) is fed into ACK-SVD to obtained the de-noised signal presented in Fig. 10(c), 
from waveforms depicted in Fig. 10(a) and Fig. 10(c), it is difficult to tell the differences between 
the origin signal and the de-noised one as same as the envelop spectrums shown in Fig. 10(b) and 
Fig. 10(d), respectively. The difference is further demonstrated by the absolute deviations of 
envelop amplitudes depicted in Fig. 11 which is so small that could be overlooked. In addition, 
the rotating frequency 𝑓௥ = 29.3 Hz and the double rotating frequency 2𝑓௥ = 58.6 Hz along with 
defective frequency 𝑓ூ = 159.7 Hz, second harmonic 2𝑓ூ = 319.4 Hz and third harmonic  3𝑓ூ = 479.1 Hz are clearly observed both in Fig. 10(b) and Fig. 10(d), which further indicates the 
ACK-SVD effective in the fault detection. 

 
Fig. 10. Vibration signal with slight defect on inner raceway: a) waveform in time domain  

and its corresponding spectrum in b); c) waveform in time domain  
under ACK-SVD and its corresponding spectrum in d) 
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Fig. 11. The absolute amplitude deviations in frequency domain. 

The detailed analysis above validates the proposed ACK-SVD in the bearing fault detection 
with slight defect seeded artificially, and the ACK-SVD performance does accord with DSSV 
with the negligible error. However, as the same to the most bearing fault detection researches 
[30-32] which pay attention to the mature faults with a relative high vibration root mean square 
(RMS) and apparent transient impulses in waveform which make it easier to identify faults, the 
artificial seeded defect cannot reflect the degradation and propagation of the initial fault whose 
occurrence is crucial to the bearing condition monitoring and fault detection. Therefore, it is 
necessary to investigate the effectiveness of the ACK-SVD especially in the early period of defect 
where the transient impulse is so weak that is submerged in the background noise. In the next 
section, the ACK-SVD and conventional SVD were applied to the incipient fault vibration signals 
from an accelerated bearing life test and their performances were evaluated by time and frequency 
domain. 

4.2. Case 2: Accelerating experiment of bearing 

4.2.1. Experiment setup 

For the purpose to demonstrating the ACK-SVD method effective, a bearing run-to-failure 
experiment of the detecting the rolling bearing outer race fault was conducted. As shown in  
Fig. 12, the four Rexnord ZA-2115 bearings were installed on the shaft with rotational speed 2000 
rpm which was driven by motor through rub belts, each bearing was equipped by two 
accelerometers from x and y direction, and the radials load with 2.7 KN was applied to the 
bearing 2 and 3. The test bearing was double rows with 16 rollers in each one, a pitch diameter of 
2.815 in, roller diameter of 0.331 in, and the tapered contact angle of 15.17°. Eight vibration 
sensors could synchronously collect the vibration signal with the data acquisition of a National 
Instruments DAQ Card-6062E at the sampling rate 20 kHz and data length is 20480 points. With 
an oil circulation system regulating the flow and temperature of the lubricant by which all the 
bearings are forced lubricated, the test could be switch down if the magnetic adhering the wearing 
or fault-induced debris in oil circulation or the temperature exceeded a certain level. 

According to the paper [7], the outer race ball pass frequency (BPFO) of test bearing can be 
obtained by Eq. (7) with the structural and kinematical parameters of the experiment bearing 
mentioned before: 

𝑓௢ = 𝑛2 ቆ1 − 𝑑𝐷௣ cos𝛼ቇ 𝑓௥, (8)

where 𝑛 is number of balls, 𝑑 is the diameter of the rolling element, 𝐷௣ is the groove section size, 𝛼 is the contact angle, and 𝑓௥ is the shaft rotating frequency. 
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Fig. 12. Bearing test rig and sensor locations 

4.2.2. The experiment results analysis  

The vibration data set with run-to-failure process collected from February 12, 2004 10:32:39 
to February 19, 2004 06:22:19 was employed here for further analysis. At the end of the test, outer 
race failure occurred in bearing 1, and RMS values of the entire life cycle were applied to describe 
the degradation process of the bearing 1 shown in Fig. 13, which indicated the degradation process 
of bearing could be divided into three stages, moreover, the base line shown in Fig. 13 was 
calculated by the average of RMS values with group number from 0 to 400, where the REB was 
in normal working state. The RMS almost keeps little change for a relative long period in stage I 
where the normal vibration comes mainly from the bearing inherent characteristic resulting from 
the wearing; since the occurrence of the defect, the RMS increases little proportionally until 
stepping into stage II where the small spall or cracks expands and later is smoothed by the 
excessive rolling depression which accounts for the RMS fluctuating, but the average value of 
RMS is higher than the one in the stage I. At the stage III, the RMS grows exponentially to an 
extensively high level where the spall or the cracks expand seriously. From the analysis above, 
the bearing status in the stage III is so extensively urgent that other components could suffer 
abnormal vibration which may lead to worse situation any time, even the unpredictable accidents. 
This means it necessity to alarm if the bearing condition steps into stage III, leaving enough 
response time for the maintenance personnel to take action prior to catastrophic failures. 
Furthermore, the stage II should be labeled as the incipient period due to the linear predictability 
and appropriate vibration intensity level of RMS. It should be pointed out that the RMS grows to 
a very high level suddenly at the end of the stage II, the burst in RMS indicates the rolling element 
bearing’ health deteriorates seriously. All in all, as the fault detection in early stage is very crucial 
to the condition monitoring, the stage II should be highly emphasized. 

 
Fig. 13. The run-to-failure RMS of bearing 1 
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The waveforms and envelope spectrums of vibration signals collected at the start and the end 
point of the stage II were presented in Fig. 14, specifically, Fig. 14(a) and (c) indicate that the 
transient impulses are more apparent as the RMS growing, which results from the amplitude of 
fault-induced impulses is higher than the one of background noise and this trend becomes more 
apparent as the bearing fault degrades. Meanwhile, the Fig. 14(b) and (d) show the envelope 
spectrums of the signals from Fig. 14(a) and (c), respectively, which present defective frequency 
and its harmonics at the end of stage II are clearly observed and relative higher than the start of 
stage II. Based on the analysis above, it is reasonable that the vibration signal shown in Fig. 14(c) 
serves as the incipient fault signal and should be subjected to further analysis. 

 
Fig. 14. The vibration signals with different time: a) the waveform with a serious defect  

at the end of stage II and its envelope spectrum in b); c) the waveform  
with a slight defect at the start of stage II and its envelope spectrum in d) 

The incipient fault signal is subject to the SVD techniques to obtain the SVs and the difference 
spectrums presented in Fig. 15. As the principle of conventional SVD, the first four singular 
components are taken to recover the de-noised signal whose waveform and envelope spectrum are 
depicted in Fig. 17(c) and (d), respectively. Based on the ACK-SVD method, the ACK index 
changes as shown in Fig. 16 from which we can see the ACK grows largely to a level and remains 
slight fluctuation due to the more information but less noise components carried by the former 
singular components and less information but more background noise the later ones. While, the 
relative difference parameter e in the Eq. (5) is 0.24 % when the 13th SC is added, the value of 𝑒 
is so small that the ACK remains static or little change while more SCs are added together, 
moreover, the trend of ACK varies with ignorable changes after the order 13. Hence the first 13 
SCs are chosen to represent the purified signal. The Fig. 17(a) and (b) show the waveforms without 
process and their envelope spectrums, Fig. 17(c) and (d) with the DSSV principle and Fig. 17(e) 
and (f) with the ACK-SVD method applying 13 as the value of singular order 𝐾. 

The waveforms in Fig. 17(a), (c) and (e) manifest little information about the fault except that 
the unprocessed vibration signal indicates transient peaks as well as the one processed by 
conventional SVD, but the envelope spectrums show that the signal with conventional SVD lose 
some vital information to confirm the fault compared with the unprocessed signal. Moreover, the 
waveform obtained by ACK-SVD has relative small amplitude which makes itself more like 
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normal vibration signal, however, its envelope spectrum shown in Fig. 17(f) manifesting the 
clearer fault characteristic frequency and its harmonics which makes it efficient for fault diagnosis 
in spite of the presence of background noise. Overall, the proposed ACK-SVD method has better 
fault detection ability of the incipient fault of rolling element bearings. 

 
Fig. 15. Difference spectrum of singular values  

of real vibration signal 

 
Fig. 16. The kurtosis values of the  
accumulative singular components 

 
Fig. 17. Vibration signal of rolling element bearing early fault and their envelope spectrums:  

a) the waveform without process of incipient fault and its envelope spectrum in b);  
waveform with conventional SVD of incipient fault in c) and its envelope spectrum in d);  

waveform with ACK-SVD in e) and its envelope spectrum in f) 

Longlong Li had done the most simulation work and write the paper while Yahui Cui had 
proposed the conception of this manuscript. Runlin Chen checked the simulation program. Xiaolin 
Liu had modified the figures and Yawei Cao had partially down the data processing. 

5. Conclusions 

In this paper, the ACK-SVD method is put forward to the mechanical vibration signal 
de-noising. Unlike the existing SVD methods, a new index based on the kurtosis is applied to 
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evaluate the effect of each single singular component to the recovered signal, which can efficiently 
reduce the noise. The effectiveness of the proposed ACK-SVD method is demonstrated by the 
simulated and experimental vibration signal. Results show that the proposed method can 
successfully detect the fault of rolling bearings, especially the incipient one. The main 
contributions of the proposed strategy include: 

1) A novel index named accumulative component kurtosis (ACK) is raised to evaluate the 
effect of singular components to the recovered one. The appropriate selection of the sensitive 
singular component is conducted according to the ACK. 

2) ACK-SVD has the superiority to detection the fault characteristic frequencies over the 
conventional SVD in the fault early stage, which is vital to the incipient fault diagnosis. 

3) As the ACK-SVD algorithm is almost based on the matrix calculation, it is supposed to be 
efficient in time-consumption, which has high value in the online monitoring or real-time 
detection of defects. 

In this preliminary study, the proposed method was tested and demonstrated to be effective to 
do fault diagnosis of rolling element bearing. As to the engineering application value, the 
ACK-SVD method should be applied to adequate practical cases to prove. 
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