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Abstract. The development of machine learning brings a new way for diagnosing the fault of 
rolling element bearings. However, the method in machine learning with high accuracy often has 
the poor ability of generalization due to the overuse of feature engineering. To address this 
challenge, Naïve Bayes classifier is applied in this paper. As the one of the cluster of Bayes 
classifiers, its ability of classification is very outstanding. In this paper, the method is provided 
with a detailed description for why and how to diagnose the fault of bearing. Finally, an evaluation 
of the performance of Naïve Bayes classifier is presented with real world data. The evaluation 
indicates that Naïve Bayes classifier can achieve a high level of accuracy without any feature 
engineering. 
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1. Introduction 

Signal based methods are proved to be effective in the study on the fault diagnosis of bearings. 
In signal based methods, fault feature extraction, the key in the process of the fault diagnosis, 
determines the quality of the diagnosis. Although the Fourier analysis can efficiently separate the 
vibration signals in frequency domain for fault feature extraction, the lack of information on fault 
feature in time domain through the Fourier analysis is inevitable. Moreover, the fault features 
extracted by the Fourier analysis are helpless for non-stationary signal. Fortunately, the fault 
features extracted include information on both time domain and frequency domain with the 
emergence of wavelet analysis and Empirical Mode Decomposition, which is very helpful for the 
diagnosis of non-stationary signal. 

Compared with signal based methods, the fault diagnosis methods, adopting machine learning, 
are more competitive. Lots of researchers and research results support the application of machine 
learning in fault diagnosis with a solid theoretical foundation. Besides that, the features extracted 
by machine learning from data are more objective than signal based methods. Moreover, the 
criterion based on the accuracy of fault diagnosis is more helpful for researchers and engineers in 
the choice of fault diagnosis methods. 

With the development of the study on machine learning, knowledge based method has attracted 
increasing attention again. Many methods in machine learning are used in the fault diagnosis of 
bearing. For example, Hidden Markov Model [1], Artificial Neural Network [2] and support 
vector machine [3]. Even more, some methods in deep learning are also adopted to diagnose the 
fault of bearings [4]. It is important that all the methods above appear superior in performance [5]. 

It is worth noting that the features extracted by machine learning from data are more objective 
than signal based methods [6]. In fact, faults feature extraction is an important step in the process 
of fault diagnosis. Signal separation need to be executed in faults feature extraction. Due to the 
signal includes the information about the system monitored, the knowledge of the system can be 
acquired through the signal analysis. Signal separation is an important method in signal analysis, 
and it maps the signal into a group of significant basis, which show the components of the signal 
effectively. However, the definition of the significant basis is not clear, which generates different 
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results using signal separation [7]. Compared with signal separation, the methods in machine 
learning extract the fault feature automatically in a unified standard. Therefore, the feature 
extracted by machine learning is objective. 

The accuracy of fault diagnosis is a desirable characteristic for diagnosis systems [8]. All the 
desirable characteristics are standards or criterions for practitioners to evaluate and choose the 
different diagnosis methods. However, the accuracy of fault diagnosis is rarely mentioned in 
traditional method such as the Fourier analysis and wavelet analysis. In the study of machine 
learning, accuracy is the primary indicator of the performance of methods. Therefore, the accuracy 
of fault diagnosis can provide a nice guideline for the choose of diagnosis methods. 

The fault diagnosis systems of bearings often require a much higher accuracy rate due to the 
importance of the bearings. Bearings are the frequently used units, and its failure often brings 
about the fatal breakdown of system [9]. More importantly, the failure caused by the fault bearings 
may bring about the loss of production and human casualties. 

In order to improve the accuracy of diagnosis system, researchers try many methods in 
machine learning. However, a dilemma is exposed to practitioners. The method with high 
accuracy often has the poor ability of generalization [10]. The reason for the dilemma is that the 
overuse of feature engineering restricts the ability of generalization, although the accuracy is 
improved by the feature engineering. Therefore, it is necessary to find a method in machine 
learning to achieve the high accuracy without any or less feature engineering [11].  

To address this challenge, the Naïve Bayes Classifier is proposed. The performance of the 
Naïve Bayes Classifier is evaluated by the vibration data of bearing that collected in real-world. 
The result of the evaluation demonstrates that the diagnosis performance of Naïve Bayes Classifier 
without feature engineering outperforms many classification technologies using feature 
engineering. 

2. The principle of fault diagnosis using Naïve Bayes classifier 

The theoretical foundation of Naïve Bayes classifier is Bayesian decision theory. It considers 
the fault diagnosis as a sequence classification in machine learning. Based on that, vibration signal 
is classified into different categories in sequence classification, then the fault diagnosis of bearings 
is finished through the category of the vibration signal. 

2.1. The theoretical foundation of Naïve Bayes classifier 

The theoretical foundation of Naïve Bayes classifier is Bayesian decision theory [10]. It thinks 
how to label samples optimally using posterior probability and mislabel loss. In fact, posterior 
probability and mislabel loss are the key elements in Bayesian decision theory. Posterior 
probability ( | ) defines the probability that sample  with the attributes = ( , , … , ) 
belongs to category ∈ = ( , , … , ). Mislabel loss ,  describes the loss produced by the 
mislabel of the sample with label  to the . The conditional risk, composed of Posterior 
probability ( | )  and Mislabel loss , , is defined as ( | ) = ∑ , ( | ) . The 
conditional risk defines the loss produced by the classification of the sample s with the attributes 

 to category . 
In the training step, the objective is to minimize the sum of the conditional risk for every 

sample in the data set, which results in the hypothesis ℎ determines  belongs to which category. 
In fact, many methods in machine learning have the common objective in training phrase, then 
they achieve the ℎ through learning in the data set = { , , … , }. The optimal hypothesis ℎ∗ 
is the one that minimizes the sum of the conditional risk for every sample. In Bayesian decision 
theory, the sum of the conditional risk for every sample in the data set is called the total risk (ℎ). 
However, there is no need to minimize the total risk (ℎ). According to the Bayes decision rule, 
the only thing needed is to minimize the conditional risk ( | ) through choosing the optimal 
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label for  to achieve the objective in training phrase, which can be represented as the formula in 
Eq. (1). In most literatures, ℎ∗ is also called the optimal Bayes classifier: ℎ∗( ) = arg ∈ min ( | ). (1)

Naïve Bayes Classifier is the extreme one in the cluster of Bayes classifier. In general, the 
mislabel loss ,  in Naïve Bayes classifier is defined in Eq. (2): 

, = 0,          = ,        1,          otherwise. (2)

The aim for the definition of the mislabel loss in Naïve Bayes classifier is to minimize the 
error of the classification. Therefore, the Naïve Bayes classifier can be represented as: ℎ∗( ) = arg ∈ max ( | ). (3)

According to Bayes theorem, ( | ) can be represented as: ( | ) = ( ) ( | )( ) . (4)

( ) in Eq. (4) is called evidence, which is independent of the label. Therefore, Eq. (3) can be 
formulated as follow: ℎ∗( ) = arg ∈ max ( ) ( | ). (5)

In fact, the difficulty in the training phrase is to solve the ( | ). However, Naive Bayes 
classifier adopts the attribute conditional independence assumption to overcome the difficulty. 
Based on the assumption, ( | ) can be represented as follow: 

( | ) = ( , , ⋯ , | ) = ( | ). (6)

Then, the formula of Naive Bayes classifier in Eq. (3) can be represented as: 

ℎ∗( ) = arg ∈ max ( ) ( | ). (7)

Obviously, the assumption, attribute conditional independence assumption, makes the 
calculation easy to solve. However, compared with other classifier in the cluster of Bayes classifier, 
the simplification of ( | ) is extreme. 

2.2. Sequence classification 

Sequence classification is a typical problem in machine learning [12]. The sequence classified 
is often defined as an order list of event. The event may be a symbol, a real number. At present, 
the sequence in sequence classification is a time series. Every sequence associates a label, and 
every sequence have a fixed length in order to be available to a specified classifier [13]. Therefore, 
the fault diagnosis of bearings using vibration signal can be categorized to sequence classification 
through Naïve Bayes classifier. 
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3. The procedure of fault diagnosis using Naïve Bayes classifier 

The procedure of fault diagnosis using Naïve Bayes classifier is the same with the procedure 
of classification in machine learning. There are three steps: data clean, training classifier and 
classification. 

3.1. Data clean 

The main aim of data clean is to align the sequence that needed to be classified in the data set. 
In fact, the performance of various classifier in machine learning is affected by the quality of the 
data set, however, data clean is main approach to improve the quality of the data set. There are 
some manipulations in data clean such as value transform, type conversion and invalid data 
deletion [14]. All the manipulations can improve the quality of data set effectively. In sequence 
classification, align the sequence is the most important thing for data clean. Because any classifier 
is available to the specified length sequence, it is necessary for classifiers to tailor the sequence. 

3.2. Training the classifier 

Through the step of data clean, the data set  is represented as  = {( , ), ( , ), ⋯ , ( , )}. Each sample in  consists of the sequence and the label. 
The sequence = ( , , … , ) is a time series has the length , which is the vibration signal. 
The label  is the system state or the failure mode, and ∈ { , , … , }. 

The first step in training phrase is to calculate the ( ). The Eq. (8) is used to calculate it: 

( = ) = ∑ ( = ). (8)

The (∙) is the indicator function. When ( ), it equals to 1, otherwise, it equals to 0. 
In the second step of training phrase, suppose that the th element in the attribute vector  = ( , , … , ) is , which has  possible values denoted by , , … , . The possibility 

of the attribute  equals to the value  is calculated by Eq. (9): 

= = = ∑ = , =∑ ( = ) . (9)

Up to now, the training of classifier is finished through all the two steps. 

3.3. Classification 

After the training, the Naïve Bayes classifier can be used to classify. The procedure is 
described below. 

Step 1: calculate the possibility that the sequence belongs to category : 

( = | ) = ( = ) ( = ). (10)

Step 2: identify the label  of the sequence: = arg ∈ max ( = | ). (11)

Finally, the result of diagnosis can be determined by the . 
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4. Experimental verification and result 

In order to test the performance of Naïve Bayes classifier on the fault diagnosis of bearings, 
the vibration data from Case Western Reserve Lab (CWRU) [15] is chosen. This data set has been 
analyzed by a number of other researchers [16-18], and those analysis results can be considered 
as a benchmark. 

 
Fig. 1. The vibration separator 

Vibration data was collected through accelerometers, and the accelerometers are placed at the 
12 o’clock position at the drive end of the motor housing. Vibration signals are gathered through 
a 16 channel DAT recorder with sample rate 12 K/s and 48 K/s. the loads of Driver and bearing 
include four different types (0, 1, 2 and 3 hp), and there are four different fault types (Normal 
condition, ball fault, inner race fault and outer race fault). Every fault type has four fault  
conditions. The fault conditions are different in the fault diameters: 0.007 in, 0.014 in, 0.021 in 
and 0.028 in. Twenty data sets are used in this paper, which include two fault types: Normal 
condition and the inner race fault. All the data in this paper are sampled in rate 12 K/s. The data 
in Normal condition is made up of 480000 points, and all the other data have at most  
125886 points. 

All the twenty data sets are separated to form the new data set in a fixed length of 4096 in data 
clean, in order to align the sequence. Each sample in the new data set includes 4096 points, and 
the amounts of samples are 878. The label of each sample is equal to the data from which the 
sample separated. The label of the samples = {0, 1, 2, 3, 4}, and the definition of the element is 
shown in Table 1. All of the experiments in this paper are done on lintel Core i7-6700 2.60 Hz 
with 32GB RAM. 

Table 1. The fault type for labels 
Serial number Label The fault types 

1 0 Normal condition 
2 1 The fault diameter is 0.007 in 
3 2 The fault diameter is 0.014 in 
4 3 The fault diameter is 0.021 in 
5 4 The fault diameter is 0.028 in 

The classification result is obtained by Naïve Bayes classifier in Table 2, which is followed 
the process of the fault diagnosis using Naïve Bayes classifier in Section 3. The accuracy is 
compared with three results that achieved through SVM and SVM with feature engineering. 

Table 2. The accuracy of different methods 
Algorithm Naïve Bayes SVM SVM + fractal dimension SVM + wavelet packet 
Accuracy 96 % 72 % 80.6 % [11] 94 % [19] 
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5. Conclusions 

In this paper, Naïve Bayes classifier is employed to diagnose the different fault conditions of 
bearings. From the experimental verification and the result of fault diagnosis application in 
Section 4, it can be draw that Naïve Bayes classifier is effective in diagnosing the fault of bearings 
through the vibration signals. Furthermore, the Naïve Bayes classifier achieves a better 
performance than other methods with feature engineering. The proposed method not only provides 
a desirable characteristic: accuracy, but also provides a strong ability of generalization. Therefore, 
it is helpful for practitioners on trade-off between accuracy and generalization. 
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