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Abstract. The thermo-elastic vibration response of simple supported axially moving Euler beam 
is investigated. The differential equation of moving beam is established by recourse to Hamilton 
principle and the thermal effects is considered by introducing the equivalent thermal bending 
moment. A 2-D transient temperature field is calculated by the alternating-directional implicit 
(ADI) method and the equivalent thermal moment is calculated numerically. The dimensionless 
equation is discretized by Galerkin method and the modal analysis of gyroscopic system is used 
to calculate the forced vibration response. The time-history curve of the beam’s upper middle 
point is obtained for thermal or non-thermal situations. 
Keywords: thermo-elastic vibration, axially moving beam, gyroscopic system, alternating-
direction implicit method, Galerkin method. 

1. Introduction 

In the field of engineering applications, many structures are typical axially moving systems, 
such as aerial cable tramways, band saws and power transmission chains. Mote [1] studied the 
band saw vibrations by regarding it as an axially moving beam and the frequency curves were 
obtained. Simpson [2] analyzed the natural frequencies and mode curves of the axially moving 
beam with clamped boundary, his calculated results show that modes distorted violently as the 
moving speed increases. Moreover, Wickert [3] brought forth that axially moving beam belongs 
to gyroscopic system and researched the forced vibration of axially moving beam by modal 
analysis and Green’s function method. The above articles conducted their investigations on the 
vibration performance and response of the axially moving beam under a certain uniform 
temperature field. However, in the actual situations, many structures are operated in transient 
thermal environment, and thus the thermal effect must be considered. Guo [4] considered the 
coupled thermo-elastic vibration characteristics of the axially moving beam, and acquired the 
curves of complex frequencies versus the axially moving speed. Wang and Li [5] computed the 
thermo-elastic responses of axially moving viscoelastic sandwich beams using pseudo-normal 
modes method, and found that the thermal impact has large influence on the beam’s response. 
However, in the above investigations the vibration responses were mostly calculated under 
assumed non-constant temperature fields directly, while the others did not mention the specified 
algorithms they used. 

As the problem involves two physical fields, it is important to find an appropriate method to 
ensure the problem being solved in a reasonable computational cost. In this paper, the temperature 
fields are calculated firstly by the ADI method, then the superposition method is used to calculate 
the vibration response. 

2. The basic equations 

An axially moving beam with uniform cross-section is considered as shown in Fig. 1. The 
thermal boundaries are: the upper one suddenly getting a certain temperature rise and remains 
unchanged, while the others remain their original temperatures unchanged. Consider the beam of 
density ߩ, length ݈ , width ܾ , height ℎ, cross-section area ܣ, moment of inertial ܫ , tension ܴ , 
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Young’s modulus ܧ, and coefficient of thermal expansion ்ߙ . The beam travels at a uniform 
constant velocity ݒ between two boundaries. The out-plane motion of the beam is specified by the 
transverse displacement ݓሺݔ, ሻݐ ܤ .  and ߱  are the amplitude and frequency of the external 
excitation respectively. By inserting the thermal moment ்ܯ into the equation derived by Mote 
[1], we attain the differential equation: ܣߩሺݓ୲୲ + ௫௧ݓݒ2 + ௫௫ሻݓଶݒ − ௫௫ݓܴ + ௫௫௫௫ݓܫܧ + ௫௫,்ܯ = ሻ, (1)ݐcosሺ߱ܤ

for the simple supports boundary conditions: ݓሺ0, ሻݐ = ,௫௫ሺ0ݓ    ,0 ሻݐ = ,ሺ݈ݓ    ,0 ሻݐ = ,௫௫ሺ݈ݓ    ,0 ሻݐ = 0, (2)

where ்ܯሺݔ, ሻݐ = ܾ ׬ ሺ்ܶߙܧ− − ଴ܶሻݖ݀ݖ௛ ଶ⁄ି௛ ଶ⁄  and ଴ܶ is the initial temperature.  

 
Fig. 1. Schematic of an axially moving beam 

Introducing the dimensionless variables and parameters as follow: 

ݓ = ݓ݈ ߠ    , = ሺܶ − ଴ܶሻ଴ܶ ݔ    , = ݔ݈ ݖ    , = ݐ    ,ℎݖ = ݈ܿݐ ݒ    , = ଴ଶ݌ ,ݒܿ = ܣܧܴ ߙ    , = ℎଶ12݈ଶ ߚ    , = ܣܧ݈ ܾܨ    , = (3) ,ܣܧ݈ܤ

where ܿଶ = ܧ ⁄ߩ  is the velocity of the longitudinal wave. Omitting the bars in the dimensionless 
variables, Eq. (1) can be transformed into dimensionless equation as: ∂ଶݐ∂ݓଶ + ݒ2 ∂ଶݔ∂ݓ ݐ∂ + ଶݒ ∂ଶݔ∂ݓଶ − ଴ଶ݌ ∂ଶݔ∂ݓଶ + ߙ ∂ସݔ∂ݓସ + ௫௫,்ܯߚ = ሻ. (4)ݐcosሺܾ߱ܨ

When using the Galerkin method to discretize the equation, the displacement function can be 
expanded as: 

,ݔሺݓ ሻݐ = ∑௞ୀଵே௙ ሻ. (5)ݔߨሻsinሺ݇ݐ௞ሺݍ

Introducing Eq. (5) into Eq. (4) and moving the thermal terms into right part, the equation 
becomes: 

ሷܙ்ܟ + ሶܙ௖்ܟߨݒ2 + ܙ்்ܟ = ሻݐcosሺܾ߱ܨ + ்ߙܾܧ12 ଴ܶߚߙ ∂ଶ߯ఏ∂ݔଶ , (6)

where: ߯ఏ = න ଵݖ݀ݖߠ ଶ⁄
ିଵ ଶ⁄ ܟ      , = ൫sinሺݔߨሻ, sinሺ2ݔߨሻ … , sinሺ݂ܰݔߨሻ൯், 
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ܙ = ൫ݍଵ, ,ଶݍ … ௖ܟ      ,ே௙൯்ݍ = ൮ ∑௡ୀଵ௡∶ୀ௞
ே௙ −2݊݇ሺ݇ଶ − ݊ଶሻߨ ሺ1 − ሺ−1ሻ௞ା௡ሻsinሺ݊ݔߨሻ൲், 

்ܟ = ቀ൫ሺ݌଴ଶ − ሻଶߨଶሻሺ݇ݒ +  .ሻቁ்ݔߨሻସ൯sinሺ݇ߨሺ݇ߙ
Multiplying the two sides of Eq. (6) by ܟ and integrating the equation in the dimensionless 

range [0, 1], let ௙ܰ = 4, then we have: 

ሷܙۻ + ሶܙ۱ߨݒ4 + ܙ۹ = 2 න ܨሺܟ + ଵݔሻ݀ܩ
଴ , (7)

where ܨሺݐሻ = ሻݐsinሺܾ߱ܨ ,ݔሺܩ , ሻݐ = ்ߙܾܧ12 ଴ܶߚߙ ∂ଶ߯ఏ ⁄ଶݔ∂ , and ۻ , ۹  is diagonal matrix 
(symmetry matrix) and ۱ is skew-symmetry matrix: 

ۻ = ൮1 0 0 00 1 0 00 0 1 00 0 0 1൲ ,      ۱ =
ۈۉ
ۈۈۈ
ۇ 0 − ߨ43 0 − ߨ43ߨ815 0 − ߨ125 00 ߨ125 0 − ߨ815ߨ247 0 ߨ247 0 ۋی

ۋۋۋ
ۊ ,

۹ = ൫܏܉ܑ܌ ௝݇൯,    ௝݇ = ൫ሺ݌଴ଶ − ሻଶߨଶሻሺ݆ݒ + ݆    ,ሻସ൯ߨሺ݆ߙ = 1 … 4.
 (8)

Introducing the state variables and general load vectors ܠ = ൬ܙሶܙ൰, ۵௙ = ቆ2 ׬ ܨሬሬԦሺܟ + ଵ଴ݔሻ݀ܩ ૙ ቇ்
, 

Eq. (7) can be arranged as: ۷ܠ + ܠ۵ = ۵௙ሺݐሻ, (9)

where ۷ = ቀۻ ૙૙ ۹ቁ, ۵ = ቀ ۱ ۹−۹ ૙ቁ. Eq. (9) is a standard form of the gyroscopic system, so it can 
be solved by the modal superposition method. 

According to the research of Meirovitch [6, 7], the solution to the eigenvalue problems: ܠ۷ߣ + ܠ۵ = ૙, (10)

consists of ݊ pairs of pure imaginary complex conjugates ߣ௥ = ±݅߱௥  and ݊ pairs of complex 
conjugate eigenvectors ܠ௥ and ܠ௥ ሺݎ = 1,2. . . ݊ሻ. Let ܡ௥ and ܢ௥ be the real part and imaginary part 
of ܠ௥ and any arbitrary 2݊-dimensional vector ܞ can be expressed as a linear combination form: ܞሺݐሻ = ∑௥ୀଵ௡ ሺߦ௥ሺݐሻܡ௥ + ௥ሻ. (11)ܢሻݐ௥ሺߟ

For the load vector ۵௙ሺݐሻ, the corresponding general coordinates are: 

ሻݐ௥ሺߦ = න ቀܡ௥்۵௙ሺ߬ሻcos߱௥ሺݐ − ߬ሻ + ݐ௥்۵௙ሺ߬ሻsin߱௥ሺܢ − ߬ሻቁ ݀߬௧
଴ ݐሺ0ሻcos߱௥ܠ௥்۷ܡ+         + (12) ,ݐሺ0ሻsin߱௥ܠ௥்۷ܢ
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ሻݐ௥ሺߟ = න ቀܢ௥்۵௙ሺ߬ሻcos߱௥ሺݐ − ߬ሻ − ݐ௥்۵௙ሺ߬ሻsin߱௥ሺܡ − ߬ሻቁ ݀߬௧
଴ ݐሺ0ሻcos߱௥ܠ௥்۷ܢ+         −  .ݐሺ0ሻsin߱௥ܠ௥்۷ܡ

3. Heat transfer model  

For calculating the thermal load in right side, the 2D temperature field of the structure must be 
solved. The differential equation can be written as the following dimensionless form: ∂ݐ∂ߠ = ܾଵ ∂ଶݔ∂ߠଶ + ܾଶ ∂ଶݖ∂ߠଶ, (13)

where ܽ = ݇ ܿ௣⁄ , ܾଵ = ܽ ݈ܿ⁄ , ܾଶ = ݈ܽ ܿℎଶ⁄ , ݇  represents the thermal conductivity and ܿ௣  the 
volume heat capacity. The thermal boundaries are written as: ߠሺ0, ,ݖ ሻݐ = ,ሺ1ߠ    ,0 ,ݖ ሻݐ = ,ݔ൫ߠ    ,0 1 2ൗ , ൯ݐ = ,ݔ൫ߠ    ,0 − 1 2ൗ , ൯ݐ = ,ݔሺߠ    ,99 ,ݖ 0ሻ = 0. (14)

The alternating-direction implicit method [8, 9] is an effective approach in solving the 
heat-transfer problems which divides each iteration step into two steps for applying implicit format 
in ݔ and ݖ directions respectively, as shown in Fig. 2. Thus, the equation in each step can be 
transformed into a tri-diagonal form matrix which can be solved by Thomas algorithm efficiently.  

At the first step, applying implicit format in ݖ direction and explicit format in ݔ direction, we have: −ܵ௭൫ߠ௜ିଵ,௝௡ାଵ + ௜ାଵ,௝௡ାଵߠ ൯ + ሺ1 + 2ܵ௭ሻߠ௜,௝௡ାଵ = ܵ௫൫ߠ௜,௝ାଵ௡ + ௜,௝ିଵ௡ߠ ൯ + ሺ1 − 2ܵ௫ሻߠ௜,௝௡ , (15)

then, applying formulation in the contrast directions, we have: −ܵ௫൫ߠ௜,௝ିଵ௡ାଶ + ௜,௝ାଵ௡ାଶߠ ൯ + ሺ1 + 2ܵ௫ሻߠ௜,௝௡ାଶ = ܵ௭൫ߠ௜ିଵ,௝௡ାଵ + ௜ାଵ,௝௡ାଵߠ ൯ + ሺ1 − 2ܵ௭ሻߠ௜,௝௡ାଵ. (16)

where ܵ௫ = ܾଵ݀ݐ ሺ݀ݔሻଶ⁄ , ܵ௭ = ܾଶ݀ݐ ሺ݀ݖሻଶ⁄ . According to the equations above, the temperature 
field in any time can be calculated. After numerical integrating and differentiating, ߯ఏ  and ∂ଶ߯ఏ ⁄ଶݔ∂  can be attained. Therefore, the thermal moment will be evaluated. 

 

 
Fig. 2. Illustration of the ADI method  

4. Numerical examples 

Consider a beam with modulus of elasticity ܧ = 7.0×1011 Pa, density ߩ = 2778 kg/m3. Let the 
length ݈ = 0.5 m, the width ܾ = 0.05 m, the height ℎ = 0.05 m, the axial speed ݒ = ܿ/100, the 
initial tension ܴ =  6000 N, the force amplitude ܤ =  500 N, the heat conductivity  ݇ =  207 W/(m2·K), the specific heat ܿ௣ =  2484000 J/(m3·K) and the coefficient of thermal 
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expansion ்ߙ = 2.39×10-5 m/K. 
The whole real-time response will be solved by dividing the heating process into short time-

steps and the thermal load can be calculated numerically. At each step, assuming ∂ଶ߯ఏ ⁄ଶݔ∂  is 
constant, the load can be written as: 

2 න ܨሺܟ + ଵݔሻ݀ܩ
଴ = ܨ2 න ଵܟ

଴ ݔ݀ + ்ߙܾܧ24 ଴ܶߚߙ න ܟ ∂ଶ߯ఏ∂ݔଶ ଵݔ݀
଴ = ሻݐଵሺ܆ + ௖, (17)܆

where ܆૚ሺݐሻ = ሺ2ܨ2 ⁄ߨ , 0, 2 ⁄ߨ3 , 0ሻ் and ܆௖ is constant vector. 
In each time step period ሾݐ௜, ௜ାଵሻݐ௥ሺߦ :௜ାଵሻ can be written asݐሺߟ ,௜ାଵሻݐሺߦ ௜ାଵሿ, the general coordinatesݐ = ܋௥்ܡ2 ൬ܾܨ ߱߱ଶ − ߱௥ଶ sin൫ሺ݅ + 1ሻ߱ℎ൯ − ܾܨ ߱߱ଶ − ߱௥ଶ sinሺ݅߱ℎሻcosሺ߱௥ℎሻ       −ܾܨ ߱௥߱ଶ − ߱௥ଶ cosሺ݅߱ℎሻsinሺ߱௥ℎሻቇ + ܋௥்ܢ2 ൬−ܾܨ ߱௥߱ଶ − ߱௥ଶ cos൫ሺ݅ + 1ሻ߱ℎ൯       +ܾܨ ߱௥߱ଶ − ߱௥ଶ cosሺ݅߱ℎሻcosሺ߱௥ℎሻ − ܾܨ ߱߱ଶ − ߱௥ଶ sinሺ݅߱ℎሻsinሺ߱௥ℎሻቇ       +ܡ௥்܆௖sinሺ߱௥ℎሻ + ௖൫1܆௥்ܢ − cosሺ߱௥ℎሻ൯ + ሺ0ሻcosሺ߱௥ℎሻܠ௥்۷ܡ + ௜ାଵሻݐ௥ሺߟ ,ሺ0ሻsinሺ߱௥ℎሻܠ௥்۷ܢ = ܋௥்ܢ2 ൬ܾܨ ߱߱ଶ − ߱௥ଶ sin൫ሺ݅ + 1ሻ߱ℎ൯ − ܾܨ ߱߱ଶ − ߱௥ଶ sinሺ݅߱ℎሻcosሺ߱௥ℎሻ       −ܾܨ ߱௥߱ଶ − ߱௥ଶ cosሺ݅߱ℎሻsinሺ߱௥ℎሻቇ − ܋௥்ܡ2 ൬−ܾܨ ߱௥߱ଶ − ߱௥ଶ cos൫ሺ݅ + 1ሻ߱ℎ൯       +ܾܨ ߱߱ଶ − ߱௥ଶ cosሺ݅߱ℎሻcosሺ߱௥ℎሻ − ܾܨ ߱߱ଶ − ߱௥ଶ sinሺ݅߱ℎሻsinሺ߱௥ℎሻቇ       +ܢ௥܆௖sinሺ߱௥ℎሻ − ௖൫1܆௥்ܡ − cosሺ߱௥ℎሻ൯ + ሺ0ሻcosሺ߱௥ℎሻܠ௥۷ܢ −  ሺ0ሻsinሺ߱௥ℎሻܠ௥்۷ܡ

(18)

where ܋ = ൫2 ൗߨ 0 2 ൗߨ3 0 0 0 0 0൯்
. 

First, the eigenvalue problem can be solved and the frequencies of the system are presented as 
in Table 1. 

Then, the temperature field can be drawn in Fig. 3. 

 
a) 

 
b) 

Fig. 3. The transient temperature field in a) 200 and b) 400 dimensionless time 

For the thermo-elastic issue, the time-region response under mechanical and thermal loads can 
be solved as follow. The beating phenomenon appears because the frequency of load is near the 
fundamental frequency of the system. Fig. 4(a) shows that the deflection at middle point presents 
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the beating phenomenon indeed when the temperature is a constant, which shows the validity of 
the present numerical method. Fig. 4(b) is the result, when a sudden rise of temperature is applied 
on the upper boundary, which shows a large additional deflection. When the temperature condition 
disappears, the equilibrium position returns to the original straight line. 

Table 1. The first four order frequencies  
of axially moving beam 

Orders First Second Third Fourth 
Dimensionless 

frequencies 0.2833 1.1387 2.5635 4.5604 
 

 
Fig. 4. Displacement in middle point for 

non-thermal and thermal situations 

5. Conclusions 

The modal superposition method of gyroscopic system has been used to compute the 
thermo-elastic response of axially moving beam subjected to mechanical and thermal loads. The 
2D temperature field is calculated numerically by the ADI method and the differential equation is 
discretized by the Galerkin method. When the temperature field is a constant, the displacement 
appears a beating phenomenon under the harmonic load whose frequency is closed to fundamental 
frequency. The results show that thermal load has important influence on the beam’s deflection 
which deviates from straight equilibrium line during a rise of temperature condition is applied on 
boundary. The method used herein allows one to obtain a fast solution of thermo-elastic vibration 
problem. 
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