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Abstract. This paper presents a formulation and solution for the problem of transverse and 
longitudinal vibration of the portal frame with damping. The dissipation of vibration energy in the 
model is caused by simultaneous constructional, internal and external damping. The eigenvalues 
of the system for a selected and variable parameters were calculated. The effect of different type 
of damping on amplitude decay factor was presented. 
Keywords: viscous damping, damped vibration, portal frame, amplitude decay factor. 

1. Introduction 

The dynamic properties of frames with additional discrete elements and crack, or loaded by 
the force were investigated in works [1-8]. In these works, authors formulated and solved the 
problem of stability and / or free and forced vibration of different type of frame without damping 
in considered system. In papers [1] and [2] the analysis of vibrations and stability of loaded Γ and 𝑇  type frames were presented. In [3] was presented the results of research the influence of 
elastically restrained of supports on eigenfrequencies of frame. The influence of a crack depth and 
location on the vibrations of frame were presented in works [4-6]. The eigenfrequencies of a Γ 
type frame with additional discrete elements and crack was presented in paper [4]. The analysis 
of free vibrations of the 3D model of cracked open frame using FEM was proposed in work [5]. 
In paper [6], authors were studied the influence of bifurcation load magnitude and crack size on 
vibration frequency and amplitude of frame. Authors of work [7] analysed the vibrations of a 
multi-bar and elastically ends frames where the all frame elements were inclined. An analytical 
and numerical dynamic analysis of planar frame structures were presented in work [8]. In the real 
systems the vibration damping phenomenon always exist. Taking into account the different source 
of energy dissipation in mathematical model of real systems help determinates the dynamic 
properties of investigated systems. The formulation and solution for the problem of damped 
vibration of Γ frame is demonstrated in the study [9]. In that case only constructional damping 
were considered. Work [10] describes the problem of transverse vibrations of cracked frame with 
constructional and internal damping. 

This study was concerned on a simultaneous influence of the impact of complex damping 
(constructional, external and internal) on longitudinal and transverse vibration of the portal frame. 
The dissipation of vibration energy in the model, derives from the constructional damping in the 
supports, from internal damping of viscoelastic material of the frame and from viscous medium 
surrounding the system. The formulation of free vibration issue was based on Hamilton’s  
principle.  

2. Physical model of the system 

In adopted model, illustrated in Fig. 1, the energy dissipation is the consequence of resistance 
to motion in frame supports 𝐶 , viscoelastic material of frame 𝐸∗ and medium surrounding the 
system 𝐶  (still fresh water). 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2018.18894&domain=pdf&date_stamp=2019-02-15
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Fig. 1. Scheme of the considered system 

3. Mathematical model and boundary problem 

Basis on the Hamilton’s principle the boundary problem for Bernoulli-Euler beams was 
formulated: 

𝛿 (𝑇 − 𝑉)𝑑𝑡 + 𝛿𝑊 𝑑𝑡 = 0, (1) 

𝑇 = 12 𝜌 𝐹2 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑡 𝑑𝑥 , (2) 

𝑉 = 12 𝐽 𝐸2 𝜕 𝑊 (𝑥 , 𝑡)𝜕𝑥 + 𝐹 𝐸2 𝜕𝑈 (𝑥 , 𝑡)𝜕𝑥 + 12 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑥 𝑑𝑥 , (3) 

𝛿𝑊 = 𝐸∗ 𝐽  𝜕𝜕𝑥 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑡 𝛿 𝜕 𝑊 (𝑥 , 𝑡)𝜕𝑥 𝑑𝑥
     + 𝐸∗𝐹  𝜕𝜕𝑥 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑡 𝛿 𝜕 𝑊 (𝑥 , 𝑡)𝜕𝑥 𝑑𝑥 − 𝐶 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑡 𝛿𝑊 (𝑥 , 𝑡)𝑑𝑥
    − 𝐶 𝜕𝜕𝑡 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑥 𝛿 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑥 𝑑𝑥
     +𝐶 𝜕𝜕𝑡 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑥 𝛿 𝜕𝑊 (𝑥 , 𝑡)𝜕𝑥 𝑑𝑥 ,     

 (4) 

where: 𝑇 – kinetic energy, 𝑉 – potential energy, 𝛿𝑊  – virtual work of non-conservative forces, 𝑊 (𝑥, 𝑡) – transverse displacements, 𝑈 (𝑥, 𝑡) – longitudinal displacements, 𝐸  – Young’s modulus, 
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𝐹  – cross-sectional areas, 𝐽  – moment of inertia in cross-sections, 𝑙  – length of the beams, 𝐿  – 
total length of frame, 𝜌  – material density, 𝑥  – spatial coordinate, 𝑡 – time, 𝑖 = 1, 2, 3. 

The continuity and geometrical boundary conditions are expressed as: 𝑢 (0) = 0,   𝑤 (0) = 0,   𝑤 (𝑙 ) = 𝑤 (0),   𝑤 (𝑙 ) = 𝑢 (0),   𝑢 (𝑙 ) = −𝑤 (0),𝑤 (𝑙 ) = 𝑤 (0),   𝑤 (𝑙 ) = 𝑢 (0),    𝑢 (𝑙 ) = −𝑤 (0),   𝑢 (𝑙 ) = 0,   𝑤 (𝑙 ) = 0, (5) 

After placing to (1), Eq. (2)-(4) and taking into account the conditions Eq. (5), obtained the 
two equations of motion (in transversal and longitudinal direction): 

𝐽 𝐸 + 𝐸∗ 𝜕𝜕𝑡 𝜕 𝑊 (𝑥 , 𝑡)𝜕𝑥 + 𝐶 𝜕𝑊 (𝑥 , 𝑡)𝜕 𝑡 + 𝜌 𝐹 𝜕 𝑊 (𝑥 , 𝑡)𝜕 𝑡 = 0, (6) −𝐹 𝐸 + 𝐸∗ 𝜕𝜕𝑡 𝜕 𝑈 (𝑥 , 𝑡)𝜕𝑥 + 𝜌 𝐹 𝜕 𝑈 (𝑥 , 𝑡)𝜕 𝑡 = 0, (7) 

and natural boundary conditions: (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (0) = 𝐶  𝑗 𝜔∗𝑤 (0),   (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (𝑙 ) = −𝐶  𝑗  𝜔∗𝑤 (𝑙 ), (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (𝑙 ) − (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (0) = 0, (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (𝑙 ) − (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (0) = 0, (𝐸 + 𝐸∗𝑗𝜔∗)𝐹  𝑢 (𝑙 ) − (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (0) = 0, (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (𝑙 ) + (𝐸 + 𝐸∗𝑗𝜔∗)𝐹  𝑢 (0) = 0, (𝐸 + 𝐸∗𝑗𝜔∗)𝐹  𝑢 (𝑙 ) − (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (0) = 0, (𝐸 + 𝐸∗𝑗𝜔∗)𝐽  𝑤 (𝑙 ) + (𝐸 + 𝐸∗𝑗𝜔∗)𝐹  𝑢 (0) = 0. 
(8) 

The Eqs. (6) and (7) are solved as follows: 𝑊 (𝑥 , 𝑡) = 𝑤 (𝑥 )𝑒 ∗ , (9) 𝑈 (𝑥 , 𝑡) = 𝑢 (𝑥 )𝑒 ∗ . (10) 

Substitution of Eqs. (9) and (10) into Eqs. (6) and (7) leads to, respectively: 𝑤 (𝑥 ) − 𝛾 𝑤 (𝑥 ) = 0, (11) 𝑢 (𝑥 ) + α 𝑢 (𝑥 ) = 0, (12) 

where: 

 𝛾 = 𝜌 𝐹𝐽 (𝐸 + 𝐸∗𝑗𝜔∗) 𝜔∗ − 𝐶𝜌 𝐹 𝑗𝜔∗ ,   𝛼 = 𝜌 𝜔∗(𝐸 + 𝐸∗𝑗𝜔∗). (13) 

The solution of Eqs. (11) and (12) are expressed in the form of functions: 𝑤 (𝑥) = 𝐵 𝑒 +  𝐵 𝑒 +  𝐵 𝑒 +  𝐵 𝑒 , (14) 𝑢 (𝑥) = 𝐵 𝑒 +  𝐵 𝑒 , (15) 

where: 

𝜔∗ = 𝑅𝑒(𝜔∗) ± 𝐼𝑚(𝜔∗)𝑗,   𝑗 = √−1,   𝛿̅ = 𝛼   ,   𝜆 = 𝛾 . (16) 

Introducing Eqs. (14) and (15) to boundary conditions Eqs. (5) and (8) leads to homogeneous 
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set of equations (𝐵  – unknown constants), which can be written as matrix: 𝐴 (𝜔∗) 𝐵 = 0, (17) 

where: 𝐴(𝜔∗)  = 𝑎 ,    (𝑝, 𝑞 = 1,2, … ,18),    𝐵 = 𝐵  ,    𝑘 = 1,2, … ,6. (18) 

If the determinant of the coefficient matrix equals to zero, considered system has a non-trivial 
solution (complex eigenvalues 𝜔∗), in form: det𝐴(𝜔∗)  = 0. (19) 

4. Parameters of the system 

Computations were carried out for the parameters: beams length 𝑙 = 1-4 [m]; 𝑙 = 2 [m]; 𝑙 = 1-4 [m]; beams diameter 𝐷 = 0.05 [m]; Young modulus 𝐸 = 2.1e11 [Pa]; material density 𝜌 = 7.7e3 [kg/m3].  
The damping parameters have the following non–dimensional form. 
For internal damping: 

𝜂 = 𝐸∗ℎ  𝐸 , (20) ℎ = 𝜌 𝐴𝐸 𝐽 𝐿 . (21) 

For constructional damping: 𝜇 = 𝑐  𝑑 . (22) 

For external damping: 

𝜈 = 𝐶  𝐿𝑑 , (23) 𝑑 = 𝐿 (ρ 𝐴 𝐸 𝐽 ),    𝐿 = 𝑙 + 𝑙 + 𝑙 . (24) 

For proportion between the length of the beams: 

𝐿 = (𝑙 + 𝑙 ) 𝑙 . (25) 

The main impact on damped vibration frequency and on amplitude decay factor have the 
values of 𝜇 from 0 to 2 (see [9, 10]). The value of 𝜂 of homogeneous steel was selected according 
to data from works [11-13]. External damping comes from viscous medium surrounding the 
considered frame. Value of external damping of still fresh water is 𝐶 = 1.0041e(-3) [Ns/m2] or 𝜈 = 0.49e(-6) [11, 12, 14]. 

5. Results 

The effect of the computations are presented in 2D and 3D graphs on Figs. 2-16. In Fig. 2. the 
first two natural frequencies of the frame (𝜔 ) and (𝜔 ) in relation to length 𝐿 are illustrated. 
Presented relationships are the reference results. The comparison of undamped system (Fig. 2) 
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with damped system (Fig. 3) confirmed that, 𝑅𝑒(𝜔∗) described the damped vibration frequency 
and 𝐼𝑚(𝜔∗) described the amplitude decay factor. Changes between the value of real part of the 
first two eigenvalues and the value of first two natural frequencies derived from movement 
resistance in the supports of frame. 

 
Fig. 2. Dependency between first two natural frequencies of frame and length 𝐿 (𝜂 = 0, 𝜇 = 0, 𝜈 = 0) 

 
a) 

 
b) 

Fig. 3. Dependency between first and second eigenvalue and length 𝐿 (𝜂 = 0.002, 𝜈 = 0.49e(-6), 𝜇 = 0.4) 

The aim of this paper was to analyze of an influence of different kinds of damping on vibration 
of portal frame. The effect of changes the geometrical parameters on eigenvalues of damped 
system were also examined. To compare the influence of external, internal and constructional 
damping on frame eigenvalues calculations were conducted and relationships between damping 
coefficients and length of beams modelled frame have been determined. 

Figs. 4-7 illustrated the influence of simultaneous changes in the length and constructional 
damping coefficient on eigenvalues of considered system.  

 
a) 

 
b) 

Fig. 4. Influence of 𝐿 and coefficient 𝜇 on 𝑅𝑒(𝜔 ∗) and 𝐼𝑚(𝜔 ∗) (𝜂 = 0.002, 𝜈 = 0.49e(-6)) 

In Figs. 5 and 7 can be observed some substantial changes in the amplitude decay factor of 
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first and the second eigenvalue with changes the value of coefficient µ. The imaginary part 
increasing to maximum values, for selected values of 𝜇 and 𝐿, followed by 𝐼𝑚(𝜔∗) → 0 when 𝜇 → ∞ (Figs. 4-7). Changes in 𝑅𝑒(𝜔∗) illustrated in Figs. 4 and 6 are induced by the intervention 
in boundary conditions of system. When the value of coefficient 𝜇 is the highest the resistance and 
friction in the support (caused by a high value of viscous resistance) “locked” the rotary motion. 
On the three-dimensional graphs presented below the transition from joint mountings to rigid 
mountings can be observed. 

 
a) 

 
b) 

Fig. 5. Dependency between first eigenvalue and coefficient µ (𝜂 = 0.002, 𝜈 = 0.49e(-6)) 

 
a) 

 
b) 

Fig. 6. Influence of 𝐿 and coefficient 𝜇 on 𝑅𝑒(𝜔 ∗) and 𝐼𝑚(𝜔 ∗) (𝜂 = 0.002, 𝜈 = 0.49e(-6)) 

 
a) 

 
b) 

Fig. 7. Dependency between second eigenvalue and coefficient 𝜇 (𝜂 = 0.002, 𝜈 = 0.49e(-6)) 

Figs. 8-11 presents the results of the investigations of relationships between the first eigenvalue 
of the frame and internal damping coefficient 𝜂. Introduction of the internal damping to considered 
system has insignificant influence on the first and the second damped vibration frequency (Figs. 9 
and 11). Significant changes can be observed in 𝐼𝑚(𝜔 ∗) and 𝐼𝑚(𝜔 ∗) with changes the value of 
coefficient 𝜂 (Figs. 8-11). The increase in the values of amplitude decay factor throughout the 
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investigated range is caused by higher values of coefficient 𝜂. 

 
a) 

 
b) 

Fig. 8. Influence of 𝐿 and coefficient 𝜂 on 𝑅𝑒(𝜔 ∗) and 𝐼𝑚(𝜔 ∗) (𝜇 = 0.4, 𝜈 = 0.49e(-6)) 

 
a) 

 
b) 

Fig. 9. Dependency between first eigenvalue and coefficient 𝜂 (𝜇 = 0.4, 𝜈 = 0.49e(-6)) 

 
a) 

 
b) 

Fig. 10. Influence of 𝐿 and coefficient 𝜂 on 𝑅𝑒(𝜔 ∗) and 𝐼𝑚(𝜔 ∗) (𝜇 = 0.4, 𝜈 = 0.49e(-6)) 

 
a) 

 
b) 

Fig. 11. Dependency between second eigenvalue and coefficient 𝜂 (𝜇 = 0.4, 𝜈 = 0.49e(-6)) 
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The obtained results helps to determine the proportion between the length of the beams 𝐿 for 
which the amplitude decay factor reaches the maximum value. Fig. 12 and 13 illustrated the 
dependency between the coefficient 𝜈  and 𝑅𝑒(𝜔∗)  and 𝐼𝑚(𝜔∗)  of the first and the second 
eigenvalue for frame. Only high value of external damping has significant effects on values of 
imaginary part of solution. Influence of coefficient 𝜈 on damped frequency 𝑅𝑒(𝜔∗) in Figs. 12 
and 13 is similar to influence of coefficient 𝜂 on 𝑅𝑒(𝜔∗) in Figs. 9 and 11. 

The comparison of the effect of complex damping on frame eigenvalues, leads to the 
conclusion, that the main influence on vibration amplitude has the values of constructional 
damping coefficient (Figs. 4-7). The progression of function 𝐼𝑚(𝜔∗), with changes the value of 
coefficient 𝜇, illustrated in Figs. 14 and 15 confirms that assumption. 

 
a) 

 
b) 

Fig. 12. Dependency between first eigenvalue and coefficient 𝜈 (𝜇 = 0.4, 𝜂 = 0.002) 

 
a) 

 
b) 

Fig. 13. Dependency between second eigenvalue and coefficient 𝜈 (𝜇 = 0.4, 𝜂 = 0.002) 

 
a) 

 
b) 

Fig. 14. Influence of coefficients 𝜇 and 𝜂 on 𝑅𝑒(𝜔∗) and 𝐼𝑚(𝜔 ∗) (𝐿 = 2, 𝜈 = 0.49e(-6)) 

The higher value of 𝐼𝑚(𝜔∗) then the amplitudes of vibration are more damped, as can be seen 
in the all above figures. In Fig. 16 the maximum values of amplitude decay factor for the two first 
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modes of vibration in the examined system depending on the length 𝐿 are presented. 

 
a) 

 
b) 

Fig. 15. Influence of coefficients 𝜇 and 𝜂 on 𝑅𝑒(𝜔 ∗) and 𝐼𝑚(𝜔 ∗) (𝐿 = 2, 𝜈 = 0.49e(-6)) 

 
Fig. 16. Dependency between the 𝐼𝑚(𝜔∗ ) and the length 𝐿 (for 𝜂 = 0.002, 𝜈 = 0.49e(-6)) 

6. Conclusions 

In this paper, the influence of internal, external and constructional damping on vibration of 
portal frame have been examined. The results presented in work shown, that taken into 
consideration the dissipation of vibration energy (as a result of different types of damping) to the 
mathematical model of vibrations of portal frame, causes substantial influence on the damped 
frequencies and vibration amplitude of the considered system. The density of medium surrounding 
the system has significant influence on values of amplitude decay factor and high value of external 
damping coefficient leads to the increasing of 𝐼𝑚(𝜔∗). The still fresh water resistance has a minor 
impact of frame vibration. The increase in the value of internal damping coefficient causes 
considerable increase in the amplitude decay factor while the insignificant changes in the damped 
frequency can be observed. The comparison of the effect of complex damping on frame 
eigenvalues, leads to the conclusion, that the main influence on vibration amplitude of investigated 
system was exerted the constructional damping. Changes between the value of real part of the first 
two eigenvalues and the value of first two natural frequencies derived from movement resistance 
– the rotary motion in supports is locked and the transition from joint to rigid mountings can be 
observed.  

The obtained results helps determine the geometric parameters of frame and values of the 
damping coefficients for which the minimum vibration amplitudes in the system are maintained 
i.e. helps to determine the proportion between the length of the beams L for which the amplitude 
decay factor reaches the maximum value. The method described in this work could be useful as 
an additional design tool for engineers to modelled multi-bar systems with minimal vibrations 
amplitude. Based on the obtained results it is also possible to reduce the amplitude of vibration 
using rotational viscous dampers. 
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