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Abstract. Localized faults in rolling bearing tend to result in periodic shocks and thus arouse 
periodic responses in the vibration signal. In this paper, a novel fault diagnosis method based on 
maximal spectral kurtosis tunable Q-factor wavelet transformation (TQWT) and group sparsity 
total variation denoising (GS-TVD) is proposed to address the issue of bearing incipient failure. 
Firstly, the range of Q-factor was pre-selected according to the spectral distribution of impulse 
component, and bearing vibration signal was transformed by the TQWT method. Then, the 
spectral kurtosis of each scale transform coefficients was calculated, and the optimal Q-factor and 
decomposition scale can be selected according to the kurtosis maximum principle. In order to 
remove the interference components and high-frequency noise from the reconstructed vibration 
signal generated by inverse TQWT, the GS-TVD approach is employed, thus the cyclic periodicity 
characteristic and transient impulses can be detected obviously. The two cases experimental 
results indicate that the proposed technique is more effective and applicable for bearing incipient 
fault diagnosis compared with traditional method. 
Keywords: group sparsity total variation denoising, tunable Q-factor wavelet transform, maximal 
spectral kurtosis, incipient fault diagnosis, bearing vibration signal. 

1. Introduction 

Rolling element bearings have been widely applied in rotating machines of the modern 
industry. During operation, some common and unknown failures such as pitting, spalling and 
localized wear are inevitable, and these bearing faults seriously affect the safety of machinery. 
Therefore, bearing fault detection and diagnosis have attracted substantial attention in recent years 
[1-3]. 

Vibration signal analysis is most widely used to diagnose rolling bearing faults. When a 
bearing operates with localized defect, it would excite the resonance frequency modulated by 
characteristic frequencies caused by bearing defects. This would cause the measured vibration 
signal with the nonlinear and non-stationary characteristics [4]. However, at the early stage, the 
fault symptoms generated by a localized damage has low amplitude, which are often immersed in 
heavy background noises and rotation frequencies. Common used indexes such as root mean 
square (RMS), peak-to-peak value and Kurtosis value, are effective to describe the degradation 
process of a bearing. However, the bearing fault type cannot be identified easily using these 
indexes and the certainty of the fault occurrence requires to be double assured. 

In the past years, many vibration signal processing techniques, such as wavelet packet 
transform [5], ensemble empirical mode decomposition (EEMD) [6], local mean decomposition 
(LMD) algorithm [7] and Variational mode decomposition (VMD) algorithm [8], higher order 
energy operator fusion [9], Quaternion singular spectrum [10], blind source separation method 
[11], low-rank matrix approximations [12], sparse representation [13, 14] and deep learning [15], 
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etc., have been developed to extract the fault features from measured signals for bearing fault 
diagnosis. Currently, the turntable 𝑄-factor wavelet transform (TQWT) was original proposed by 
Selesnick, and the advantage of TQWT is that the 𝑄-factor is easily and continuously adjustable 
[16, 17]. When a fault occurs on bearings, the measured vibration signals contain both the fault 
transient impact component and sustained oscillatory component. Therefore, the TQWT has the 
high 𝑄-factor and low 𝑄-factor simultaneously, which is very suitable to separate the fault related 
components from the sustained oscillatory components. Ref. [18] recently proposed ensemble 
empirical mode decomposition (EEMD) and TQWT method to extract the weak fault features of 
rolling bearing in an accelerated bearing life test. In this method, the EEMD is applied to 
decompose the vibration signals into a series of IMFs and then the TQWT is employed to separate 
the main IMF into high 𝑄-factor component and low 𝑄-factor component to diagnose the early 
fault. Furthermore, an improvement works has been aroused in applying intrinsic 
characteristic-scale decomposition (ICD) and TQWT for fault diagnosis of rolling bearings [19]. 
However, there are two main shortcomings in the above methods:  

1) The EEMD and ICD methods are time consuming in signal decomposition, and also the 
self-adaptive, mode mixing phenomenon and end effect problems cannot be eradicated. 

2) Although the TQWT is an interesting attempt to extract the fault characteristics, the 
selection of the proper 𝑄-factors is still a problem. As the filtered signal processed by 𝑄-factors is 
far away from its theoretical central frequency, and the bandwidth is often heavily polluted, it is 
difficult to represent the factual features clearly.  

To address the above issues, in this paper, a novel fault diagnosis method based on group 
sparsity total variation denoising (GS-TVD) and maximal spectral kurtosis TQWT is proposed. 
The optimal 𝑄-factors and decomposition level can be found for fault feature extraction by the 
maximal spectral kurtosis TQWT, which match the fault periodical impulses well. Unfortunately, 
it should be noted that some interference components and high-frequency noise may still be 
present in the optimal 𝑄-factors and decomposition level area. To overcome this problem, unlike 
the traditional signal decomposition method, the group sparsity total variation denoising  
(GS-TVD) approach is developed for noise reduction, which can preserve sharp edges in the 
underlying signal so that the transient impulse will be preserved for feature extraction. Finally, 
results of incipient feature extraction indicate that the period of transients can be detected more 
accurately and effectively in the case that previous approach failed, which can significantly 
improve the performance of proposed method for extracting transient impulses from heavy noisy 
vibration signal. 

The rest of this paper is organized as follows. Section 2 mainly introduces the maximal spectral 
kurtosis TQWT method and group sparsity total variation denoising method in detail. The flow 
chart of the proposed model for bearing incipient fault diagnosis is presented in Section 3. 
Section 4 investigates the effectiveness of the proposed method compared with the other method 
in feature extraction by using two bearing fault cases. Conclusions are drawn in Section 5.  

2. Methodology development 

2.1. Maximal spectral kurtosis tunable 𝑸-factor wavelet transform 

The resonance characteristics of oscillatory signal can be depicted by quality factor 𝑄 , 𝑄 = 𝑓 𝐵⁄ , where 𝑓  represents center frequency of signal and 𝐵  is bandwidth. The tunable  𝑄-factor wavelet transform (TQWT) was proposed by Selesnick as a flexible discrete wavelet 
transform for oscillatory signal processing [16]. The TQWT method includes three easily 
changeable parameters, i.e. quality factor 𝑄, total over-sampling rate 𝑟 and number of levels of 
decomposition 𝑗.  

Fig. 1 illustrates the wavelet time domain waveform and frequency response curves with 
different 𝑄-factors (e.g., 𝑗 = 2, 𝑄 = 1, 2, 3, 4, 5, 6). Fig. 2 illustrates the wavelet waveform and 
frequency response curves with fixed 𝑄 -factors and different 𝑗  scales (e.g., 𝑄 =  2.5,  
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𝑗 = 1, 2, 3, 4, 5, 6). From Fig. 1 and Fig. 2, it can be concluded that the quality factor 𝑄 controls 
the oscillatory behavior and waveform shape of wavelet waveform, and the decomposition level 𝑗 controls the expansion extent and bandpass location of wavelet waveform.  

 
a) Wavelet waveform 

 
b) Frequency response curves 

Fig. 1. Wavelet waveform and frequency response curves  
with different 𝑄-factors (e.g., 𝑗 = 2, 𝑄 = 1, 2, 3, 4, 5, 6) 

 
a) Wavelet waveform 

 
b) Frequency response curves 

Fig. 2. Wavelet waveform and frequency response curves  
with same 𝑄-factors and different j scales (e.g., 𝑄 = 2.5, 𝑗 = 1, 2, 3, 4, 5, 6) 

For each level of TQWT decomposition, the signal 𝑠(𝑛) with sampling frequency 𝑓  can be 
decomposed into low-pass and high-pass sub-band signals with sampling frequencies 𝛼𝑓𝑠 and 𝛽𝑓𝑠, respectively, the parameters 𝛼 and 𝛽 are scaling values. Moreover, the low-pass filter 𝐹 (𝜔) 
and low-pass scaling 𝐿𝑃𝑆𝛼  are used to obtain low-pass sub-band. Similarly, the high-pass 
sub-band can be generated by high-pass filter 𝐹 (𝜔) and high-pass scaling 𝐻𝑃𝑆𝛼 accordingly. 
The TQWT approach uses following given low-pass and high pass filters:  

𝐹 (𝜔) = ⎩⎪⎨
⎪⎧1, |𝜔| < (1 − 𝛽)𝜋,𝜃 𝜔 + (𝛽 − 1)𝜋𝛼 + 𝛽 − 1 , (1 − 𝛽) ≤ |𝜔| < 𝛼𝜋,0, 𝛼𝜋 ≤ |𝜔| ≤ 𝜋,  (1) 

𝐹 (𝜔) = 0, |𝜔| < (1 − 𝛽)𝜋,𝜃 𝛼𝜋 − 𝜔𝛼 + 𝛽 − 1 , (1 − 𝛽) ≤ |𝜔| < 𝛼𝜋,1, 𝛼𝜋 ≤ |𝜔| ≤ 𝜋,  (2) 

where 𝜃(𝜔) is the frequency response of the Daubechies filter which has two vanishing moments. 
The 𝜃(𝜔) can be defined as follows: 
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𝜃(𝜔) = 0.5 × 1 + cos(𝜔) × 2 − cos(𝜔),   |𝜔| ≤ 𝜋. (3) 

The 𝑄-factor 𝑄  and parameters 𝑟 can be formulated via filter bank parameters 𝛼  and 𝛽  as 
follows [16]: 

𝑄 = 𝑓𝐵 = 2 − 𝛽𝛽 ,   𝑟 = 𝛽1 − 𝛼 , (4) 

where 𝑓  represents center frequency of signal and 𝐵  is bandwidth of sub-band 𝑗 . For more 
details about decomposition and reconstructed operations can be found from Selesnick [16].  

For maximal spectral kurtosis TQWT method, it applies the principle of maximum kurtosis, 
the kurtosis of each scale wavelet coefficient can be calculated once the original vibration signals 
are decomposed by TWQT method, then the calculated Kurtosis value can be used for selecting 
the optimal frequency band, finally, the corresponding reconstructed signal is obtained by inverse 
TQWT method. 

2.2. Group sparsity total variation denoising 

Total variation denoising (TVD) assumes that the noisy signal 𝑦 is of the form [20-22]: 𝑦 = 𝑥 + 𝑤, (5) 

where 𝑥 is unknown signal and 𝑤 white Gaussian noise. The unknown signal 𝑥 can be obtained 
by solving the following optimization problem:  

𝑥 = argmin∈ 𝐹(𝑥) = 12 |𝑦 − 𝑥| + 𝜆𝜙(𝐷𝑥) . (6) 

The regularization parameter 𝜆 > 0 controls how much smoothing is performed, and matrix 𝐷 
is first-order difference matrix, i.e.: 

𝐷 = ⎣⎢⎢⎢
⎡−1 1 0 0 … 0 0 00 −1 1 0 … 0 0 0⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯0 0 0 0 … −1 1 00 0 0 0 … 0 −1 1 ⎦⎥⎥⎥

⎤   

Note that 𝑣 = 𝐷𝑥 and penalty function 𝜙(𝑣) can be defined by: 

𝜙(𝑣) = |𝑣(𝑛 + 𝑘)| ⁄ .  

Here, the parameter 𝑘 represents the group size. 
If 𝑘 = 1, the penalty function 𝜙(𝑣) = ‖𝑣‖  and Eq. (6) is the standard 1-D TVD problem. If 𝑘 > 1, the penalty function 𝜙(𝑣) is a convex measure of group sparsity. In this paper, we discuss 

group-sparse total variation denoising (GS-TVD) method. 
Definition: A 𝑘-point group can be denoted by the vector 𝑣: 𝑣 , = [𝑣(𝑛),⋅⋅⋅, 𝑣(𝑛 + 𝑘 − 1)] ∈ 𝑅 . (7) 

Thus, the penalty function 𝜙(𝑣) can be modified and written by: 
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𝜙(𝑣) = 𝑣 , . (8) 

To calculate the optimization of 𝐹(𝑥), the optimization of penalty function 𝜙(𝑣) is calculated 
firstly. Not that for all 𝑣 and 𝑢 ≠ 0 with equality when 𝑢 = 𝑣, we have: 12‖𝑢‖ ‖𝑣‖ + 12 ‖𝑢‖ ≥ ‖𝑣‖ . (9) 

The Eq. (9) is used for each group, thus the optimization of 𝜙(𝑣) is presented as follows: 

𝑔(𝑣, 𝑢) = 12 1𝑢 , 𝑣 , + 𝑢 , , (10) 

with 𝑔(𝑣, 𝑢) ≥ 𝜙(𝑣), 𝑔(𝑢, 𝑢) = 𝜙(𝑢). Note that 𝑔(𝑣, 𝑢) is quadratic equation on 𝑣. The Eq. (10) 
can be written as: 𝑔(𝑣, 𝑢) = 12 𝜈 ⋅ Λ(𝑢) ⋅ 𝜈 + 𝑐, (11) 

where 𝑐 does not depend on the value of 𝑣, and Λ(𝑢) is a diagonal matrix, i.e., Λ(𝑢) = diag(|𝑣 |). 
After manipulation, we have: 

[Λ(𝑢)] , = |𝑢(𝑛 − 𝑗 + 𝑘)| ⁄ . (12) 

Therefore, by using Eq. (11), the optimization of 𝐹(𝑥) can be written as: 

𝐺(𝑥, 𝑢) = 12 ‖𝑦 − 𝑥‖ + 𝜆𝑔(𝐷𝑥, 𝐷𝑢) = 12 ‖𝑦 − 𝑥‖ + 12 𝜆𝑥 𝐷 Λ(𝐷𝑢)𝐷𝑥 + 𝜆𝐶, (13) 

i.e., 𝐺(𝑥, 𝑢) ≥ 𝐹(𝑥), 𝐺(𝑢, 𝑢) = 𝐹(𝑢). 
In order to minimize the function 𝐹(𝑥), the majorization-minimization (MM) algorithm [23] 

defines an iterative algorithm via: 𝑥( ) = argmin𝐺 𝑥, 𝑥( ) , (14) 

where 𝑖 is iteration exponent. The iteration is initialized with 𝑥( ). Thus the Eq. (14) is written as:  𝑥( ) = argmin‖𝑦 − 𝑥‖ + 𝜆𝑥 𝐷 Λ 𝐷𝑥( ) 𝐷𝑥. (15) 

Solving the above equation, we have: 𝑥( ) = [𝐼 + 𝜆𝐷 Λ 𝐷𝑥( ) 𝐷] 𝑦. (16) 

Note that the problem with update Eq. (16) is that as the iterations progress, some values of Λ(𝐷𝑥( )) will generally go to zero and becomes sparse, and therefore some entries of Λ (𝐷𝑥( )) 
in Eq. (16) will go to infinity, leading the result is not accurate. We use the matrix inverse lemma 
from Ref. [24] to address this issue. Generally, the matrix inverse lemma has several forms, a 
common form is: 
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(𝐴 + 𝐵𝐶𝐷) = 𝐴 − 𝐴 𝐵(𝐶 + 𝐷𝐴 𝐵) 𝐷𝐴 . (17) 

Thus, the [𝐼 + 𝜆𝐷 Λ(𝐷𝑥( ))𝐷]  in Eq. (16) can be written as: 

[𝐼 + 𝜆𝐷 Λ(𝐷𝑥( ))𝐷] = 𝐼 − 𝐷 1𝜆 Λ 𝐷𝑥( ) + 𝐷𝐷 𝐷. (18) 

Finally, using Eq. (18), the update Eq. (16) can be written as: 

𝑥( ) = 𝑦 − 𝐷 1𝜆 Λ 𝐷𝑥( ) + 𝐷𝐷 𝐷𝑦. (19) 

Therefore, the group-sparse total variation denoising (GS-TVD) problem can be solved by the 
iterative algorithm in Eq. (19).  

In order to investigate and compare the denoising performance of GS-TVD and general TVD 
method, Fig. 3 illustrates group-sparse TV denoising on a blocks signal. The test block signal and 
its corrupted signal are provided in Fig. 3(a). Fig. 3(b) and (c) respectively illustrate the denoising 
performance of GS-TVD and general TVD method. Moreover, denoising errors are shown in 
Fig. 3(d). By comparison, the simulation results indicate that the significant improvement in 
denosing is obtained with GS-TVD approach compared to the TVD method. Here, the group size 
was set to 𝑘 = 2, the regularlization parameter is 2, and the number of iteration is 20.  

 
a) The test signal and noisy  

test signal 

 
b) The test signal and denoising signal using  

TVD method 

 
c) The test signal and denoising signal using  

GS-TVD method 

 
d) Denoising error using TVD and  

GS-TVD method 
Fig. 3. Comparison of simulation results between GS-TVD compared to the TVD method 

3. Feature extraction of bearing fault using maximal spectral kurtosis TQWT and GS-TVD 
approach 

In this paper, a new incipient fault feature extraction technique by using maximal spectral 
kurtosis TQWT and group sparsity total variation denoising is proposed to extract fault 
frequencies from its measured signal. The procedures of fault feature extraction are divided into 
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six steps:  
1) Preselect the scope of quality factor-𝑄 according to the spectral distribution of impulse 

component, and the bearing vibration signals are decomposed by TWQT within this scope. 
2) Calculate the kurtosis of each scale wavelet coefficient obtained in step (1) and select the 

local maximum area according to its maximum kurtosis value. Keep the scale coefficient of the 
maximum area unchanged, and the other scale coefficients are set to 0. 

3) Apply the inverse TQWT method to the scale coefficient of the maximum area and the 
corresponding reconstructed signal is obtained. 

4) Determine the appropriate group size, and utilize the group sparsity total variation denoising 
method to reduce noises in the reconstructed signal, and the corresponding filtered signal is 
obtained. 

5) Calculate envelope spectrum of the filtered signal. 
6) Determine fault types by contrasting envelope spectral peak and the theoretical fault 

character frequency. 
The flow chart of the proposed fault feature extraction technique is illustrated in Fig. 4. 

 
Fig. 4. Flow chart of the proposed model for bearing incipient fault diagnosis 

4. Experimental evaluation 

4.1. Case 1 – experimental setup 

The bearing fault vibration signals were generated by the NSFI/UCR Center for Intelligent 
Maintenance Systems (IMS) [25, 26]. The experimental setup is shown in Fig. 5. The rotation 
speed is 2000 rpm and the sampling rate is set at 20 kHz. Vibration acceleration signals were 
collected every 10 mins by a NI 6062E-DAQ-Card. The accelerated life test experiment was 
carried out successively for 8 days until the magnetic plug exceeds a certain level and causes an 
electrical switch to close. Meanwhile, the severe wear failure of outer race was detected in 
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bearing 1. The geometric parameters and ball pass frequency outer (BPFO) race of the tested 
bearing are presented in Table 1.  

Fig. 6 shows the Kurtosis curve over the whole life-cycle of bearing 1 and shows that there is 
a long time in stable or normal operation for the bearing in whole life-cycle and the period of fault 
occurrence and severity is relatively short. As shown in Fig. 6, there is an obvious transient feature 
for the incipient fault at the stage of point 647. 

 
a) 

 
b) 

Fig. 5. Experimental setup for bearing accelerated life test [22, 23] 

 
Fig. 6. The Kurtosis curve of whole life-cycle of the rolling bearing 1 

However, due to the interference of environment and background noises, the engineers are not 
sure whether the fault is happened before point 647 or not. Hence, to verify the effectiveness of 
the proposed method for bearing incipient fault diagnosis, the experimental data at point 535 was 
chosen which has no obviously wave phenomenon during the whole life-cycle.  

Table 1. Geometric parameters and expected characteristic frequencies of the tested bearing  
Bearing type Rexnord ZA-2115 

Rotating speed of shaft  2000 rpm 
Pitch diameter  71.501 mm 
Roller diameter  8.4074 mm 
Roller number 16 
Contact angle  15.17 deg 

Ball pass frequency outer (BPFO)  236.4 Hz 

4.2. Results and discussion for Case 1 

The original vibration signal (2048 sampling points is selected, namely, approximately 0.1 s), 
the amplitude spectrum and its corresponding envelope spectrum of outer-race at point 535 are 
displayed in Fig. 7(a), (b) and (c), respectively. From Fig. 7(a), the cyclic periodicity characteristic 
of time domain waveform relevant to bearing fault cannot be discovered. Moreover, as shown in 
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Fig. 7(c), although the spectrum peak at 230 Hz which consists with the outer-race fault frequency 
can be detected without denosing, however, the spectrum peak masked by heavy background noise 
and features are not be evident enough to detect fault.  

The proposed method is then employed to analyze the outer-race vibration signal. First, for 
parameter 𝑄 setting, it can be seen from the amplitude spectrum (see Fig. 7(b)) that the spectrum 
of the shock component is wider, and if the value of 𝑄 is selected higher, due to that the noise 
component will increase and the underlying wavelets will have more oscillations with a narrower 
frequency responses, hence, we set the scope of resonant quality factor is 𝑄 ∈ [1, 2] with the 
interval ∆𝑄 =  0.1. The maximal spectral kurtosis TQWT method is applied on the original 
vibration signal, then the kurtosis values under different scales-𝑗 are obtained. The Kurtosis surf 
plot under different 𝑄-factor and decompose level is displayed in Fig. 8(a). It can be seen from 
Fig. 8(a), the maximum index of kurtosis 4.709 is emerged in 𝑄-factor 𝑄 = 1.55 and level 𝑗 = 3.5, 
as marked by the black rectangle, which means that this area contains much more transient impulse 
components information than other 𝑄 -factor and levels areas. Applying the inverse TQWT 
method to this area and the corresponding reconstructed fault signal is shown in Fig. 8(b). 
Obviously, the reconstructed signal illustrated in Fig. 8(b) shows that the background noise is 
suppressed relatively. However, the low-frequency noise components still exist, mainly because 
of the range of frequencies available band. By computation, the minimum frequency is: 

𝑓 = (1 − 𝛽)𝛼 𝑓2 ≈ 1011 Hz,  

and the maximum frequency is𝑓 = 𝛼 𝑓 /2 ≈  4688 Hz, thus the impact component with 
frequency 4252 Hz (see Fig. 7(b)) and high-frequency noise were contained within the scope 
[1011 Hz, 4688 Hz]. This conclusion can be verified by the corresponding envelope spectrum of 
the reconstructed signal as illustrated in Fig. 8(c). From Fig. 8(c), although the outer race fault 
frequency (𝑓 ) can be identified, several unrelated frequencies around 𝑓  still remain in 
frequency domain and also the 𝑓  information are not very obvious.  

 
a) Original experimental signal 

 
b) Amplitude spectrum of the original bearing 

vibration signal 

 
c) Envelope spectrum of the original bearing 

vibration signal 
Fig. 7. Original experimental signal, amplitude spectrum and envelope spectrum 

Furthermore, the group-sparse TVD method is employed to process the reconstructed bearing 
vibration signal, here, the group size is set to 𝑘 = 3, the regularization parameter 𝜆 = 2 and the 
iteration time is 300. The filtered signal with group-sparse TVD method and its envelope spectrum 
are illustrated in Fig. 9(a) and Fig. 9(b), respectively. It can be observed that the noise components 
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in reconstructed vibration signal have been removed evidently as shown in Fig. 9(a), and the cyclic 
periodicity characteristic is prominent in the filtered vibration signal. From Fig. 9(b), an obvious 
spectrum line 230.1 Hz, which is close to the 𝑓  frequency according to the Table 1, and its 
harmonics are exposed in the envelope spectrum, meanwhile, the amplitudes of fault frequencies 
illustrated in Fig. 9(b) are evidently enhanced compared with that in Fig. 8(c), thus making the 
feature extraction becomes easier and accurate. Moreover, besides the outer race fault frequency, 
it is observed that the spectrum peaks at 70 Hz and 100 Hz are also identified in Fig. 9(b), which 
consists with the double shaft rotating frequency (70 Hz ≈ 2 𝑓 =  33.33×2) and its triple 
frequencies (100 Hz ≈ 3𝑓 = 33.33×3). The above results illustrate that the fault characteristic 
frequencies can be detected by the proposed method even if the useful failure information is 
extremely weak. 

 
a) Kurtosis surf plot under different 𝑄-factor and decompose level 

 
b) The reconstructed  

vibration signal 

 
c) The envelope spectrum of the reconstructed 

vibration signal 
Fig. 8. Kurtosis surf plot under different 𝑄-factor and decompose level,  

and the reconstructed vibration signal from the maximum peak 

 
a) The filtered signal with GS-TVD method 

 
b) The envelope spectrum of the filtered signal 

Fig. 9. The filtered bearing signal and its envelope spectrum processed by proposed method 

To verify the superiority of the proposed approach, the Spectral Kurtogram (SK) combined 
with EEMD method is employed to analyze the original vibration signal. The SK is a powerful 
analysis tool to detect transients feature from their noisy vibration signals and has been widely 
studied and applied in the rotating machine diagnosis, see refs [27] and [28]. First, we apply the 
EEMD method [29, 30] to decompose the original vibration signal, thus the 12 IMF components 
are generated and displayed in Fig. 10, which can be helping to distinguish the periodic impulse 
from the mixed noisy signal. Then, we calculate the Kurtosis values of all the IMFs model orderly, 
see Table 2, and 2nd IMF model that contains the most fault information according to its 
maximum kurtosis value. 
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Table 2. The Kurtosis values of the IMFs model 
IMF model IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 

Kurtosis 3.350 3.902 3.819 2.119 3.118 3.801 3.051 2.593 1.548 1.455 2.143 3.063 

The Kurtogram of 2nd IMF model is displayed in Fig. 11(a), from which the optimal 
demodulation frequency band namely [0 Hz-2560 Hz] can be detected, as marked by the black 
rectangle. Thus, a band-pass filter is designed to extract the potential features from the 2nd IMF 
model. Last, the envelope spectrum is applied to the filtered signal, the corresponding envelope 
spectrum is illustrated in Fig. 11(b). As can be seen, the fault characteristic frequencies  𝑓 = 236.4 Hz cannot be detected in the envelope spectrum and it is also hard to distinguish the 
fault location from the incipient vibration signal. In conclusion, the comparison above re-confirms 
the efficiency of the proposed approach. 

 
a) IMF1-IMF6 

 
b) The Hilbert envelop spectrum of IMF1-IMF6 

 
c) IMF7-IMF12 

 
d) The Hilbert envelop spectrum of IMF7-IMF12 

Fig. 10. Sub-band components of original signal decomposed by using EEMD 

4.3. Case 2 – experimental setup 

The bearing vibration signals were generated by the Curtin University in Australia [31]. The 

0 0.02 0.04 0.06 0.08 0.1
-0.5

0

0.5

IM
F1

0 0.02 0.04 0.06 0.08 0.1
-0.5

0

0.5

IM
F2

0 0.02 0.04 0.06 0.08 0.1
-0.2

0

0.2

IM
F3

0 0.02 0.04 0.06 0.08 0.1
-0.1

0

0.1

IM
F4

0 0.02 0.04 0.06 0.08 0.1
-0.05

0

0.05

IM
F5

0 0.02 0.04 0.06 0.08 0.1
-0.05

0

0.05

IM
F6

Time/s

0 500 1000 1500 2000 2500 3000
0

0.01
0.02

0 500 1000 1500 2000 2500 3000
0

0.01
0.02

0 500 1000 1500 2000 2500 3000
0

0.005
0.01

A
m

pl
itu

de
/m

·s-2

0 500 1000 1500 2000 2500 3000
0

0.005
0.01

0 500 1000 1500 2000 2500 3000
0

5 x 10-3

0 500 1000 1500 2000 2500 3000
0

0.005
0.01

Frequency/Hz

0 0.02 0.04 0.06 0.08 0.1
-0.02

0
0.02

IM
F7

0 0.02 0.04 0.06 0.08 0.1
-0.05

0
0.05

IM
F8

0 0.02 0.04 0.06 0.08 0.1
-0.02

0
0.02

IM
F9

0 0.02 0.04 0.06 0.08 0.1
-5
0
5 x 10-3

IM
F1

0

0 0.02 0.04 0.06 0.08 0.1
-2
0
2 x 10-3

IM
F1

1

0 0.02 0.04 0.06 0.08 0.1
-0.01

0
0.01

IM
F1

2

Time/s

0 500 1000 1500 2000 2500 3000
0

0.005
0.01

0 500 1000 1500 2000 2500 3000
0

0.01
0.02

0 500 1000 1500 2000 2500 3000
0
1
2 x 10-3

A
m

pl
itu

de
/m

·s-2

0 500 1000 1500 2000 2500 3000
0

5 x 10-4

0 500 1000 1500 2000 2500 3000
0
1
2 x 10-4

0 500 1000 1500 2000 2500 3000
0

0.5
1 x 10-3

Frequency/Hz



2863. BEARING INCIPIENT FAULT DIAGNOSIS BASED UPON MAXIMAL SPECTRAL KURTOSIS TQWT AND GROUP SPARSITY TOTAL VARIATION 
DENOISING APPROACH. QING LI, STEVEN Y. LIANG 

1420 JOURNAL OF VIBROENGINEERING. MAY 2018, VOLUME 20, ISSUE 3  

experimental setup (Machinery Fault Simulator, MFS) is shown in Fig. 12. The rotation speed is 
29 Hz, sampling frequency is 51200 Hz and length of record is 10 seconds. The bearing 
information and the fault frequencies of inner race and outer race are summarized in Table 3. 

In this work, the inner race fault signal was chosen as an example for the subsequent analysis, 
and the theoretical inner race fault frequency is 103.59 Hz based on the equation 𝑓 = 1 + cos𝛽 , where 𝐵𝐷 and 𝑃𝐷 are ball diameter and pitch diameter of the rolling 
bearing, respectively. Parameter 𝛽  represents contact angle (𝛽 = 0), 𝑛 denotes the number of 
elements, 𝑅𝑆 represents shaft rotating speed (𝑅𝑆 = 29×60 = 1740 rpm). 

 
a) Kurtogram of second IMF model component b) The envelope spectrum of band-pass filtered signal 

Fig. 11. Kurtogram of second IMF model component and its frequency spectrum 

 
Fig. 12. Experimental setup 

Table 3. Bearing information and fault frequencies (note that SS is shaft speed, i.e., 29 Hz) 
Bearing No. Number of balls Ball diameter Pitch diameter FTF BPFI BPFO BSF 
MBER-16K 9 7.9375 mm 38.50 mm 0.3969×SS 3.572×SS 5.428×SS 2.32×SS 

4.4. Results and discussion for case 2 

In this experiment, the inner race vibration fault signal (5120 points), i.e. 0.1 second data was 
selected. In order to get a real early failure, a Gaussian white noise with amplitude 𝐴 = 17  
(a high amplitude noise was added for highlighting the effect of proposed method) was added to 
the original signals. The time domain waveform, amplitude spectrum and its corresponding 
envelope spectrum are shown in Fig. 13(a), (b) and (c), respectively. However, it can be found 
that the periodical pulses are submerged in heavy noise in the time domain signal, and the inner 
fault 𝑓  cannot be identified from the envelope spectrum and fault type cannot be  
determined yet.  

The proposed approach is applied to the experimental signal, the algorithm parameters of 
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maximal spectral kurtosis TQWT method are the same as the previous section. The Kurtosis surf 
plot under different 𝑄-factor and decompose level, and the reconstructed bearing vibration signal 
are shown in Fig. 14. From Fig. 14(a), the maximum index of Kurtosis 12.63 is emerged in 𝑄 -factor 𝑄 =  1.55 and level 𝑗 =  7.5, as marked by the black rectangle. The fault- induced 
impulses with cyclic periodicity characteristic can be identified from the reconstructed vibration 
signal. 

 
a) Experimental signal of inner race failure 

 
b) Amplitude spectrum 

 
c) Envelope spectrum 

Fig. 13. Experimental signal of inner race failure, amplitude spectrum and its envelope spectrum 

 
a) Kurtosis surf plot under different 𝑄-factor  

and decompose level 

 
b) The reconstructed vibration signal 

 
Fig. 14. Kurtosis surf plot under different 𝑄-factor and decompose level,  

and the reconstructed vibration signal from the maximum peak 

 
a) The filtered signal with GS-TVD method  

and its wavelet time-frequency diagram 

 
b) The envelope spectrum of the filtered signal 

 
Fig. 15. The reconstructed bearing signal and its envelope spectrum processed by proposed method 
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Similarly, the reconstructed bearing vibration signal is also processed by the group-sparse 
TVD method, and the group size is set to 𝑘 = 2, the regularlization parameter is 𝜆 = 2 and the 
iteration time is 300. The filtered signal with GS-TVD method and its wavelet time-frequency 
diagram, and its envelope spectrum are displayed in Fig. 15. 

Obviously, it can be observed that the GS-TVD algorithm not only extracts the transient 
impulse components but also the noise components in reconstructed vibration signal have been 
removed evidently. As shown in Fig. 15(a), the phenomenon of frequency modulation can be 
clearly observed by the wavelet time-frequency diagram, and the impact interval of 9.7 ms could 
be also identified via the wavelet time-frequency diagram and the time-domain waveform, which 
coincides with the inner race fault frequency. From Fig. 15(b), as can be seen, the characteristic 
frequency 100.2 Hz, which is agreeable with the theoretical fault frequency of inner race 
103.59 Hz, and its harmonic frequencies are clearly detected, hence, the proposed approach has a 
very powerful effect on the incipient fault diagnosis.  

 
a) IMF1-IMF7 

 
b) The Hilbert envelop spectrums of IMF1-IMF7 

 
c) IMF8-IMF13 

 
d) The Hilbert envelop spectrums of IMF8-IMF13 

Fig. 16. Sub-band components of original signal decomposed by using EEMD 

For a comparison, the EEMD result, i.e., 13 IMF components related to the inner race fault are 
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shown in Fig. 16. Meanwhile, the Kurtogram is also calculated to assist selecting the optimal 
frequency band for envelope demodulation analysis, as illustrated by Fig. 17(a). Based on highest 
SK value in Kurtogram, see Table 4, an optimal frequency band namely [0-1066.66 Hz] is selected 
for the 4th IMF model, as marked by the black rectangle, then the sensitive component within 
potential fault frequency is separated via a band pass filter. Unfortunately, the inner race fault 
characteristic frequencies 𝑓 = 103.59 Hz cannot be detected in the envelope spectrum, see 
Fig. 17(b). 

Table 4. The Kurtosis values of the IMFs model 
IMF model IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 

Kurtosis 2.983 2.199 3.039 4.840 2.528 2.816 2.286 2.717 2.386 2.050 1.801 1.672 3.314 

Obviously, although the double inner fault frequency (210 Hz) can be identified, the peak 
amplitude is lower than that of the proposed approach. Therefore, the comparison analysis 
demonstrates that the proposed maximal spectral kurtosis TQWT and group sparsity TVD 
approach can not only provide better de-nosing performance but also has superiority in enhancing 
performance for incipient fault diagnosis. 

 
a) Kurtogram of 4th IMF model component 

 
b) The envelope spectrum of band-pass filtered signal 

Fig. 17. Kurtogram and its frequency spectrum 

5. Conclusions 

In this paper, a novel maximal spectral kurtosis TQWT and group sparsity total variation  
denoising (GS-TVD) technique is proposed for bearing incipient fault diagnosis. Two main 
contribution of this work can be summarized as:  

1) The optimal 𝑄-factors and decomposition level can be found for fault feature extraction by 
the maximal spectral kurtosis TQWT, which match the fault periodical impulses well, overcoming 
the disadvantage of not being able to choose automatically using traditional TQWT method.  

2) The group sparsity total variation denoising (GS-TVD) approach is applied to remove the 
noise from the reconstructed vibration signal generated by maximal spectral kurtosis TQWT, and 
the periodical transient impulses were detected obviously. Experimental results show that the 
proposed approach has better performance than existing algorithm.  
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