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Abstract. This paper proposes the use of artificial neural network for the identification of the 
modes of filtration that will help to set the initial estimates of the parameters of the reservoir in 
accordance with the established nature of fluid flow in porous media. The evaluation procedures 
with the degree of accumulation, permeability, skin factor, coefficient of compressibility of 
formation and transmittance are described. The results of the experiment on a set of real data of 
well testing are used to assess the effectiveness of the proposed approach. 
Keywords: artificial neural network, the reservoir pressure variation curve, well test. 

1. Introduction 

The most useful graph in the analysis of reservoir behavior during well testing is the graph of 
the derivative of the pressure function. The filtration modes can be determined by studying the 
shape of the derivative curve in the study of the well by methods of lowering the level and restoring 
pressure. The formation parameters are calculated on the basis of the pressure data for the 
corresponding filtration mode. The characteristics of the derivative of the pressure function and 
the function of the pressure change, manifested over a period of one decade, can be interpreted as 
one or another flow regime. If the period is shorter than one decade, they most likely represent 
either noise or a transient process between different filtering modes. 

An artificial neural network (NN) can be trained to recognize such distinctive characteristics 
[5]. In this study, the NN was trained to identify the following 8 patterns: 1) zero slope of the 
straight line; 2) the unit slope of the straight line; 3) a straight line with a slope; 4) a straight line 
with a slope; 5) a straight line with a slope; 6) the hump of the curve; 7) dip in the curve; 8) the 
falling curve. 

Output nodes: 8 different characteristic templates

Input nodes: 10 equidistant values of the derivative over a period of one decade

Hidden layer
with 6 nodes

 
Fig. 1. Schematic representation of an artificial NN, used to identify filtration modes 

The zero slope pattern of the straight line characterizes the radial flow regimes in an infinite 
formation and the flow with a single non-conductive discharge. The pattern of a single slope of a 
straight line at an early and late time after the start of a well test corresponds to flow regimes with 
the effect of a wellbore and a pseudo-stationary filtration state, respectively. The flow regime in a 
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vertical fracture with finite conductivity is determined by the presence of a straight slope pattern. 
A direct-slope pattern is used to recognize the flow regime in a vertical fracture with infinite 
conductivity and/or a linear flow in an elongated formation. Imperfect well (spherical flow) is 
characterized by a straight sloping pattern. The curve hump pattern is used to identify the 
transitional period between the borehole effect mode and the radial flow regime in the infinite 
formation. The filtration in a system with a double porosity corresponds to a pattern of dip in the 
curve. Finally, the constant pressure regime at the formation boundary can be recognized using a 
steeply falling curve pattern at the end of the test. 

In Fig. 1 is a schematic representation of the artificial NN used [1, 3]. It consists of 10 
processing neurons in the input layer, 6 units in the hidden layer and 8 units in the output layer. 
Each unit in the output layer corresponds to one of the patterns. Since the duration of any template 
is not less than one decade, the data used for training the National Assembly on the example of all 
templates was also formed for this period. The decade of training data includes 10 points on the 
graph of the derivative of the pressure function, evenly distributed in the logarithmic space, 
because the derivative curve of the pressure function is constructed on a logarithmic scale. The 
NN is used to test one decade of the well test data at a time. Thus, by moving a “window” with a 
width of one decade from one point of real data to another, one can identify the template for each 
of these points. 

2. The description of different factors 

2.1. Accumulation factor 

During the influence mode of the wellbore, the change in pressure is a linear function of time. 
The graph of pressure change over time is a straight line. The value of the accumulation coefficient 
can be calculated by the following formula: ܥ = ௢ܤݍ ⁄ߙ24 , (1)

where ܥ  is the accumulation factor, m3/MPa; ݍ  – operating rate, m3/day; ܤ௢  – volume ratio, 
[m3]reservoir/[m3]all; ߙ – slope of the graph of pressure change versus time, MPa/h. 

The mode of influence of the borehole can be identified by the presence of a single slope 
pattern at the beginning of the graph of the derivative of the pressure function. If the NN indicates 
the existence of this filtration regime, then a graph of the pressure change versus time is 
constructed for the decade within which this mode was detected. For the selection of a straight 
line OLS was used. Since the NN is very insensitive to noise in the data, it sometimes identified 
something close to a straight line (especially at the beginning of the hump curve pattern). In this 
case, several straight lines were selected with an earlier end time for the effect of the wellbore. 
The slope of the line with the least error in the least squares is substituted into Eq. (1) to calculate 
the accumulation coefficient. 

In the case when the NN could not determine the pattern of a single slope at the beginning of 
the derivative plot, the dependence of the pressure change on time for the entire first decade was 
constructed. The same was done for shorter modes of influence of the wellbore. When calculating 
the coefficient of accumulation, the slope of the straight line was taken, which gave the minimum 
error in the least squares. 

2.2. Coefficient of permeability and skin factor 

The values of permeability and skin factor can be determined from the data for the period of 
radial flow in an infinite formation. During the well testing by the method of lowering the level, 
the graph of the measured pressure from the logarithm of time is a straight line. The equation of a 
straight line can be written in the following form [2]: 
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௪ܲ௙ = ௜ܲ − 2,1208 ℎ݇ߤ௢ܤݍ ൬logݐ + log ௪ଶݎ௧ܿߤ߶݇ + 0,8686ܵ − 2,0923൰, (2)

where ௪ܲ௙ – the dynamic wellbore pressure, MPa; ௜ܲ – initial well pressure, MPa; ߤ – viscosity, 
Pa·sec; ݇ – permeability, µm2; ℎ – thickness, m; ݐ – time, h; ߶ – porosity, dimensionless; ܿ௧  – 
total compressibility of the system, MPa-1; ݎ௪ – borehole radius, m; ܵ – skin factor, dimensionless. 

As a result, the permeability value is calculated from the slope of the graph on a semi-log scale 
as follows: ݇ = 2,1208 ℎ݉ߤ௢ܤݍ , (3)

where ݉ is the slope of the graph on a semilogarithmic scale, MPa. 
The value of the skin factor can be determined by the following formula: 

ܵ = 1,1513 ⋅ ൬ ௜ܲ − ଵܲ௛݉ − log ௪ଶݎ௧ܿߤ߶݇ + 2,0923൰, (4)

where ܲ ଵ௛ is the pressure at the time point equal to 1 hour extrapolated from the selected straight line, MPa. 
In well testing by the pressure recovery method, the graph of the measured pressure in the well 

with the closed wellhead from the Horner logarithm is a straight line. The equation of a straight 
line has the following form: 

௪ܲ௦ሺΔݐሻ = ௜ܲ − 2,1208 ℎ݇ߤ௢ܤݍ log ൬ݐ௣ + ΔݐΔݐ ൰, (5)

where ௪ܲ௦ is the wellhead pressure, MPa; ݐ௣ – operating time, h; ൫ݐ௣ + Δݐ൯ Δݐ⁄  – Horner’s time, 
dimensionless. 

2.3. Coefficients of elastic capacity and transmittance. 

The presence of a dip in the derivative curve of the pressure function assumes a reservoir 
heterogeneity. The coefficients of elasticity ߱  and transmittance ߣ  can be determined by 
determining the minimum point of dip in the curve using the procedure described by Bourdet, 
Whittle, Douglas, Pirard and Kniazeff (1983) [2]. At the minimum point: ݐ஽݌′஽ = 12 ൬1 + ߱ ଵଵିఠ − ߱ ఠଵିఠ൰. (6)

3. Computational simulations 

A flat derivative curve in the flow period in an infinite formation can be recognized by the NN 
as a zero-slope pattern. The data within the decade that were assigned to the zero-slope pattern 
was used to plot the graph, where the logarithm of the normal time or Horner time, depending on 
the type of well test. The straight line was selected by OLS. As already noted, the NN is practically 
insensitive to noise. Therefore, several graphs were created with different times of beginning and 
end of the flow in an infinite formation. The starting point was shifted forward in each chart, 
because The NN sometimes mistakenly adopted the pressure derivative curve as a function of the 
straight line with zero slope. The end point also shifted in each chart, but already back, because 
The NN can identify the beginning of a new filtration regime after the flow ends in an infinite 
reservoir for its continuation. The most probable period of flow in an infinite reservoir was 
determined by that straight line, which gave the minimum error in the least squares. 
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Since the trained NN in this study sometimes mistakenly took the peak of the curve hump in a 
straight line with zero slope, it was necessary to very carefully approach the identification of the present 
mode of radial flow in an infinite formation. From the practice of interpretation of the well test, it is 
known that this mode usually manifests itself about a decade and a half after the end of the wellbore 
effect. Therefore, any flat area that was found before this period was discarded. In some cases, the NN 
cannot identify any zero-tilt pattern at all. This usually happens if the flat areas were shorter than one 
decade, or if the data were very noisy. In such cases, it was assumed that the flow period in an infinite 
formation begins within a decade and a half after the end of the wellbore and lasts for one decade (or 
less, if the well test has ended earlier). For the selected data, a straight line was selected on a 
semi-logarithmic scale. Further, several straight lines were aligned on the same scale with different 
times of the beginning and the end of the flow period in the infinite formation. A straight line with a 
minimum OLS error was used to calculate permeability and skin factor values. 

Since the relationship between the coefficient of elastic capacity of the reservoir ߱ and the 
derivative of the pressure function ݐ஽ܲ′஽ is non-linear, the iterative Newton-Raphson procedure 
was used to calculate the derivative (at the minimum point) for a given value of the derivative ߱ 
[4]. Fig. 2 represents a graph in the logarithmic scale of the elastic capacity coefficient of the 
reservoir and the derivative of the pressure function, as well as a straight line fitted to this curve. 
This straight line was used to estimate the initial value of the elastic capacity coefficient of the 
formation in the Newton-Raphson procedure and is described by the following equation: ߱ = ሺݐ஽ܲ′஽ሻଵ,ଶହହ. (7)

Applying the Newton-Raphson procedure, the value ߱ can be calculated in this way: ߱௡௘௪ = ߱௢௟ௗ − ݂ሺ߱௢௟ௗሻ ݂′ሺ߱௢௟ௗሻ⁄ , (8)

where: 

݂ሺ߱ሻ = 1 + ߱ ଵଵିఠ − ߱ ఠଵିఠ − ஽ܲᇱ஽,     ݂′ሺ߱ሻݐ2 = ln߱ሺ1 − ߱ሻଶ ൬߱ ଵଵିఠ − ߱ ఠଵିఠ൰. (9)

The Newton-Raphson procedure is performed until the absolute difference between ߱௢௟ௗ and ߱௡௘௪ becomes less than some pre-selected deviation. After obtaining the estimate, the estimate 
can be determined from Eq. (6): ߣ = ஽ݐ߱ ln 1߱ . (10)

The NN was used to identify the presence of a dip pattern in the curve. The minimum point was 
determined by comparing the values of the derivative of the pressure function in the vicinity of the 
dip. If such a template does not exist or was not detected by the NN, then for ߱ and ߣ the initial 
approximation is 0.99. 

The experiments were carried out on the collection of real data from the well test in order to 
assess the effectiveness of the proposed approach.  

The well test data used by the pressure reduction method were taken from [6]. In Table 1 shows 
the values of the parameters of the well and the formation. The well was closed for about 188 
hours after more than one year of operation. Since the operating time is long and precisely 
unknown, the well test was considered as a well test method by lowering the level with a negative 
flow rate. The derivative of the pressure function and the activation levels for various 
characteristic patterns are shown in Fig. 3 and 4 respectively. 

A single slope pattern (the effect of the wellbore) is present for the first few decades, followed 
by a hump curve pattern at the same time as the zero slope pattern. The last pattern does not 
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correspond to the true mode of radial flow in an infinite formation, because It is too close to the 
end of the mode of influence of the wellbore. The current section of the flow in an infinite reservoir 
is located a decade and a half after the end of the influence mode of the wellbore, but it was not 
detected by the NN. Nevertheless, one can set this mode using the developed algorithm, which 
will allow you to calculate the values of permeability and skin factor. After the study of all 
filtration regimes, initial estimates of formation parameters are determined for the eight reservoir 
models, the values of which are given in Table 2. 
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Fig. 2. Coefficient of elastic capacity of a layer ߱ as a function of the pressure derivative ݐ஽݌஽ᇱ  

 
a) Initial time step 

 
b) Uniform step in line 

Fig. 3. Derived pressure functions at various steps by time in the first study 

Table 1. Reservoir and well parameters in the first study 
Parameter Value 

Type of well test Pressure recovery method 
Borehole radius 0.09 m 

Porosity 0.2 
Reservoir thickness 30.48 m 

Consumption 79.49 m3/day 
Viscosity 5.48⋅10-4 Pa⋅sec 

Volume factor 1.315 [m3]reaervoir/[m3]all  
Total compressibility 2.31⋅10-3 MPa-1 

Initial pressure 18.03 MPa 

Table 2. Comparison of initial estimates of reservoir parameters and estimates,  
obtained as a result of fitting curves 

Parameter Initial estimate Final estimate Confidence interval ݇ 1.32×10-2 1.73×10-2 ±2.55 % ܵ –5.14 –4.39 ±0.69 2.57± 57.88 97.08 ܥ % 

In Fig. 5 is a graph of the derivative of the pressure function with curves matched to the 
experimental points corresponding to the radial flow model in an infinite formation. The values 
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of the initial and final estimates of the reservoir parameters, as well as the confidence interval 
values, are summarized in Table 2. It can be seen that these and other estimates are sufficiently 
close to each other. 
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Fig. 4. Activation levels of different patterns in the first study 

 
Fig. 5. Correspondence of the selected curves to the well test data in the first study 

4. Conclusions 

1) The NN is not very sensitive to noise in the data. This property is both a virtue and a 
disadvantage. NN effectively classifies even highly noisy data, without their preliminary 
smoothing. However, the NN sometimes identified something close, but it was not really a 
template. Introduction to the algorithm of additional knowledge from the practice of interpretation 
of well test allowed to minimize false classifications. 

2) The NN showed not the best results in recognizing the zero-slope pattern of the straight line. 
To overcome this problem, it was possible by integrating our knowledge from the field of the well 
test interpretation and the algorithm for detecting the appropriate filtering mode depending on the 
output signals of the NN. The use of other NN with their shortcomings may require a change in 
the procedure for identifying the filtering mode. 

3) The proposed approach is aimed at increasing the speed of interpretation of the results of 
the well test. It is the next step to fully automatic express interpretation of well test based on 
modern computer facilities. The developed method can also be useful in the framework of 
automated monitoring of permanent sensors at the bottom of the well. 
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