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Abstract. The information on unknown parameters of an oil formation can be express through a 
multivariate distribution of probabilities in space of parameters. A new quantitative method for 
carrying out of the discriminant analysis of models of an oil formation on the basis of 
hydrodynamic slits by sequential prediction of the probabilities of pressure modification is offered 
in this paper. Investigation of look-ahead probability for several models of the slit formation was 
conducted. The developed method can be used as a universal tool for carrying out of the 
discriminant analysis of models irrespective of the number of parameters. 
Keywords: discriminant analysis, reservoir model, prognosis of probabilities, well test 
interpretation, look-ahead dispersion. 

1. Introduction 

It is well known that confidence intervals are a convenient and good criterion for the adequacy 
of the chosen model. However, confidence intervals can sometimes lead to incorrect results. 
Moreover, they cannot establish a difference between the candidate models of the formation, since 
the models are characterized by different sets of parameters with the corresponding dimensions of 
the probability distributions. As a result, it is difficult to compare different models in the space of 
parameters. This paper describes a new quantitative method for discriminant analysis of models, 
which allows to overcome these difficulties. This method is a direct continuation of the methods 
for obtaining confidence intervals based on Bayesian inference. The idea of the method is that the 
correct model should more accurately predict the pressure changes than other models. From a 
quantitative point of view, the probability of a real change in pressure at future times for a correct 
model should be higher than the predicted probability for the remaining models. The predicted 
probability distribution of events associated with pressure changes can be calculated with known 
probability distributions of the parameters. Similar to the proposed approach, the methods are 
discussed in [1]. 

2. The structure of the algorithm 

The basic algorithm of the method of sequential probability prediction (MSPP) for the 
discriminant analysis of reservoir models based on well test is as follows. 

1) Select several candidate reservoir models that, in one way or another, are consistent with 
well test and other available information. 

2) Use the first few results of pressure measurement to evaluate the reservoir parameters and 
predict the probability distribution for pressure at the next time point for each reservoir model. 

3) Calculate the probability by substituting the actual pressure values in the formula for the 
predicted probability distribution and update the value of the total probability by multiplying it by 
the calculated probability with respect to each reservoir model. 

4) Repeat the steps until a difference in the total probabilities for each reservoir model is 
achieved. 

5) Discriminant analysis of reservoir model candidates is carried out based on the calculated 
total probabilities. 
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3. The mathematical model 

The condition that the function describing the model can be approximated by expanding it in 
a Taylor series of the first order leads to the following expression: 

ሺીሻܨ = ൫ી෡൯ܨ + ෍ ቆ߲ߠ߲ܨ௝ቇఏୀఏ෡ ൫ߠ௝ − ෠௝൯௠ߠ
௝ୀଵ , (1)

where ી – a vector of ݉ of unknown parameters of layer, ી෡ – the average (expected) values of 
parameters (an assessment of ી  by a method of the smallest squares on the basis of ݊  of 
independent observations). 

The predicted probability distribution for each model is determined in accordance with the 
following procedure in the Bayesian derivation. In this case, the parameters ી are considered 
random variables with some probability distributions. 

Suppose that we know the variance ߪଶ of these distributions. Then the uncertainty associated 
with the model is described by the equation [2, 3]: 

Probሺી|ݕଵ, … , ௡ሻݕ = |۶|ଵ ଶ⁄ሺ2ߪߨଶሻ௠ ଶ⁄ exp ቆ− ଶߪ12 ൫ી − ી෡൯்۶൫ી − ી෡൯ቇ, (2)

where ݕ௜ is the pressure value for ݅ observation, ۶ is the Hessian matrix in the Gauss method [4]: 

۶ =
ۈۉ
෍ۇۈۈ ൬ ଵ൰ߠ߲ܨ߲ ൬ ଵ൰௡ߠ߲ܨ߲

௜ୀଵ … ෍ ൬ ଵ൰ߠ߲ܨ߲ ൬ ௠൰௡ߠ߲ܨ߲
௜ୀଵ⋮ ⋱ ⋮෍ ൬ ௠൰ߠ߲ܨ߲ ൬ ଵ൰௡ߠ߲ܨ߲

௜ୀଵ … ෍ ൬ ௠൰ߠ߲ܨ߲ ൬ ௠൰௡ߠ߲ܨ߲
௜ୀଵ ۋی

ۊۋۋ
ఏୀఏ෡

. (3)

In this case, the parameters ી form a multidimensional normal distribution around ી෡ with the 
covariance matrix ߪଶ۶ିଵ with known ݊ independent observations of the pressure measurement 
results. ી  is a dimension vector ݉ , and hence their probability distribution also has the  
dimension ݉. 

Using the ߠ෠  and ݊  parameter estimates, the real pressure value ݕ௡ାଵ∗  at the ݔ௡ାଵ  point is 
expressed by Taylor expansion with the terms up to the first order: ݕ௡ାଵ∗ = ,ሺીܨ ௡ାଵሻݔ = ,൫ી෡ܨ ௡ାଵ൯ݔ + ൫ી்܏ − ી෡൯, (4)܏ = ൭ ,ሺીܨ߲ ௡ାଵሻݔ ,ሺીܨ߲⋮⁄ଵߠ߲ ௡ାଵሻݔ ⁄௠ߠ߲ ൱ఏୀఏ෡. (5)

The gradient of the model function ܏ is calculated at the ݔ௡ାଵ point using the estimated values 
of the parameters based on the first ݊ observations. 

Having chosen the notation ݕො௡ାଵ = ,൫ી෡ܨ ∗௡ାଵݕ :௡ାଵ൯, Eq. (4) can be represented in the formݔ − ො௡ାଵݕ = ൫ી்܏ − ી෡൯. (6)

In accordance with Eq. (2), ݕ௡ାଵ∗  is normally distributed relative to ݕො௡ାଵ with the predicted 
variance: 
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௣ଶߪ = ்܏ ⋅ ଶ۶ିଵߪ ⋅ ܏ = ܏۶ିଵ்܏ ⋅ ଶ, (7)ߪ

and conditional probability: 

Probሺݕ௡ାଵ∗ ො௡ାଵሻݕ| = Probሺݕ௡ାଵ∗ ,ଵݕ| … , ௡ሻݕ = ௣ߪߨ2√1 exp ቆ− ௣ଶߪ12 ሺݕ௡ାଵ∗ − ො௡ାଵሻଶቇ. (8)ݕ

Eq. (8) characterizes the uncertainty associated with the model, which shows how adequate it 
is, and is completely determined by the average (expected) value of ݕො௡ାଵ  and the forecast  
variance ߪ௣ଶ. 

The projected variance ߪ௣ଶ affects three important points. First, Eq. (7) shows that the forecast 
variance contains all information about the uncertainty concerning the parameters, since It is 
calculated using the covariance matrix ߪଶ۶ିଵ. Second, it follows from the Schwartz inequality 
that the value of the predicted variance is limited by the determinant of the matrix ߪଶ۶ିଵ: ்܏ ⋅ ଶ۶ିଵߪ ⋅ ܏ = ்܏| ⋅ ଶ۶ିଵߪ ⋅ |܏ ≤ |்܏| ⋅ |ଶ۶ିଵߪ| ⋅ |܏| = |ଶ۶ିଵߪ| ⋅ ଶ. (9)|܏|

The more information about the parameters received, the lower the uncertainty associated with 
them. The dimension of the multidimensional normal distribution becomes narrower, and the 
determinant of the covariance matrix decreases. Accordingly, the forecasted variance decreases. 
Therefore, when the multidimensional normal distribution for the parameters takes the form of the 
Dirac delta function [2], the normal distribution for the true pressure change relative to the 
predicted (expected) pressure change also narrows to the delta function. In other words, the 
uncertainty associated with the parameters is transformed into an uncertainty associated with a 
change in pressure. And, finally, more importantly, the predicted variance is a scalar quantity 
regardless of the dimensionality of the covariance matrix. Thus, models with a different number 
of parameters can be compared using predictive variance. 
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Fig. 1. The relationship between Probሺݕ௡ାଵ∗ ∗௡ାଵݕ|௡ାଵݕො௡ାଵሻ, Probሺݕ| ሻ and Probሺݕ௡ାଵ|ݕො௡ାଵሻ 

The uncertainty associated with the data is described as follows. Suppose that the observed 
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change in pressure ݕ௡ାଵ is normally distributed relative to the real pressure change ݕ௡ାଵ∗  with the 
variance ߪଶ: 

Probሺݕ௡ାଵ|ݕ௡ାଵ∗ ሻ = ߪߨ2√1 exp ൬− ଶߪ12 ሺݕ௡ାଵ − ∗௡ାଵݕ ሻଶ൰. (10)

Exactly the same assumption was made in the derivation of Eq. (2). Eq. (10) expresses the 
uncertainty associated with the data, which characterizes how well the model corresponds to the 
data. 

Since the exact value of ݕ௡ାଵ∗  is unknown, the relationship between ݕ௡ାଵ and ݕො௡ାଵ is set by an 
exception in the integration by ݕ௡ାଵ∗ : Probሺݕ௡ାଵ|ݕො௡ାଵሻ = Probሺݕ௡ାଵ|ݕଵ, … , ௡ሻݕ = න Probሺݕ௡ାଵ|ݕ௡ାଵ∗ ሻ ⋅ Probሺݕ௡ାଵ∗ ∗௡ାଵݕො௡ାଵሻ݀ݕ|       = 1ට2ߨ൫ߪଶ + ௣ଶ൯ߪ exp ቆ− 12൫ߪଶ + ௣ଶ൯ߪ ሺݕ௡ାଵ − ො௡ାଵሻଶቇ. (11)ݕ

As a result, the observed pressure change ݕ௡ାଵ is normally distributed with respect to the 
predicted (expected) pressure change ݕ௡ାଵ∗  with the overall predicted variance  ߪଶ + ௣ଶߪ = ሺ1 + ሻ܏۶ିଵ்܏ ⋅ ଶߪ . This variance links the uncertainty of the ߪ௣ଶ  model and the 
uncertainty in the ߪଶ data, as shown in Fig. 1. 

4. Numerical simulations and results 

The result of substituting the observed pressure change ݕ௡ାଵ in Eq. (11) is the probability of 
observing ݕ௡ାଵ at the moment ݔ௡ାଵ for this model based on the first observations. This procedure 
is schematically shown in Fig. 2. Here the ݔ axis corresponds to the time, and the ݕ axis to the 
pressure. 

In Fig. 3 presents the probable probability distributions for the two models, which are 
designated as Model 1 and Model 2. It is seen that the probability of ݕ௡ାଵ for the first model is 
higher than for the second. Therefore, Model 1 is more adequate than Model 2. 
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Fig. 2. Schematic representation of the method  

of forecasting probabilities 
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Fig. 3. Schematic representation of the probability 

prediction method for two models 

Eq. (11) indicates that the probability of observing ݕ௡ାଵ at the moment ݔ௡ାଵ will be the higher, 
the smaller the total predicted variance ߪଶ +  ௡ାଵ closerݕ ௣ଶ and the observed change in pressureߪ
to the predicted (expected) value of ݕො௡ାଵ. 
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In Fig. 4 shows three possible cases for the two models. So, in Fig. 4(a), the expected pressure 
changes for the two models coincide, and the total predicted variances differ. In this case, the 
probability of observing ݕ௡ାଵ for a model with a smaller variance will be higher. In Fig. 4(b), the 
expected pressure changes for the two models are different, and the overall predicted variances 
are the same. In this case, the probability of observing ݕ௡ାଵ will be higher for a model in which 
the expected change in pressure is closer to its actual value. In Fig. 4(c) the expected pressure 
changes and the overall predicted variances differ. Then the probability of observing ݕ will be 
higher for a model that has a smaller variance and whose expected change in pressure is closer to 
its actual value. 

1ny   
a) The same expected values, 

different variances 

1ny   
b) Different expected values, 

identical variances 

1ny   
c) Different expected values, 

different variances 
Fig. 4. Three possible cases of predictive probability distributions for two models 

However, in cases where the actual change in pressure is closer to the expected value for a 
model with a larger overall predictive variance, this model will have a higher probability of 
observing ݕ௡ାଵ  at the time of ݔ௡ାଵ . This suggests that this model, which has a large overall 
predictive variance at this stage, may prove to be a correct model in the future. That is, a sequential 
procedure is used to check whether this assumption is true [5]. 

In other words, substituting the actual pressure change in the formula for the predicted 
probability distribution for each model is the process of deciding which of the models is most 
appropriate at the current stage. In this case, the sequential procedure is the accumulation of the 
results of decision-making at all stages. 

In the case when the variance ߪଶ is unknown, instead of Eq. (2) it is necessary to use equation: 

Probሺી|ݕଵ, … , ௡ሻݕ = Γሺ݊ 2⁄ ሻ|۶|ଵ ଶ⁄ ௠൫Γሺ1ିݏ 2⁄ ሻ൯௠Γሺݒ 2⁄ ሻ൫√ݒ൯௠ ൭1 + ൫ી − ી෡൯்۶൫ી − ી෡൯ݏݒଶ ൱ି௩ା௠ଶ . (12)

Then Eq. (11) will be transformed to the form: 

Probሺݕ௡ାଵ|ݕො௡ାଵሻ = Γሺሺݒ + 1ሻ 2⁄ ሻ൫ݏඥ1 + ൯ିଵΓሺ1܏۶ିଵ்܏ 2⁄ ሻΓሺݒ 2⁄ ሻ√ݒ ൭1 + ݒ1 ቆ ௡ାଵݕ − ඥ1ݏො௡ାଵݕ + ቇଶ൱ି௩ାଵଶ܏۶ିଵ்܏ . (13)

Thus, when the variance ߪଶ is unknown, ݕ௡ାଵ forms an ݐ – distribution relative to ݕො௡ାଵ with 
a total predictive variance of ݏଶ + ௣ଶݏ = ሺ1 + ݊ ଶ andݏሻ܏۶ିଵ்܏ − ݉ degrees of freedom. 

It should be noted that as the ݊ increases, the ݐ distribution becomes normal. Moreover, with ݊ − ݉ ≥ 30 instead of ݐ – distribution, it is entirely possible to use the corresponding normal 
distribution. 

The projected variance plays a key role in MSPP. Typically, ۶ି்܏ଵ܏ is smaller for a simpler 
model. To verify this, the probabilistic probability was studied for several reservoir models [6, 7]: 

– radial flow in an infinite formation (three parameters: ݇, ܵ and ܥ); 
– with a non-conductive reset (four parameters: ݇, ܵ, ܥ and ݎ௘); 
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– with an impenetrable outer boundary (four parameters: ݇, ܵ, ܥ and ݎ௘); 
– with constant pressure at the external boundary (four parameters: ݇, ܵ, ܥ and ݎ௘); 
– with double porosity and pseudo-stationary inter-porous flow (five parameters: ݇, ܵ, ܥ, ߱ 

and ߣ); 
– with double porosity, pseudo-stationary inter-porous flow and non-conductive reset (six 

parameters: ݇, ܵ, ߣ ,߱ ,ܥ and ݎ௘); 
– with double porosity, pseudo-stationary inter-porous flow and impermeable outer boundary 

(six parameters: ݇, ܵ, ߣ ,߱ ,ܥ and ݎ௘); 
– with double porosity, pseudo-stationary inter-porous flow and constant pressure at the outer 

boundary (six parameters: ݇, ܵ, ߣ ,߱ ,ܥ and ݎ௘). 
We studied the predictive probability characteristics for radial flow models in an infinite 

reservoir, a reservoir with a non-conductive discharge, a reservoir with an impenetrable outer 
boundary, and a reservoir with constant pressure at the outer boundary. From the point of view of 
the number of parameters, the flow model in an infinite reservoir was considered as a simple 
model, the rest as complex. In Fig. 5 shows the typical pressure variation curves and the 
corresponding ۶ି்܏ଵ܏  values. Information on the formation and fluid: borehole radius  ݎ௪ = 0.1 m, reservoir thickness ℎ = 5 m, volume factor ܤ௢ =1 [m3]reservoir/[m3]norm , viscosity ߤ = 10-3 Pa·sec, porosity ߶ = 0.2, initial pressure ௜ܲ = 20 MPa, total compressibility  ܿ௧ =  10-4 MPa-1, operating rate ݍ = 100 m3/day. The true values of the parameters are  ݇ = 0.05 µm2, ܵ = 10 and ܥ = 0.2 m3/MPa. For reservoir models with a ݎ௘ = 600 m boundary. 
Pressure data was used without adding random errors. The total number of data points was 101. 
The Hesse inverse ۶ିଵ matrix was calculated using points at the moments from ݔଵ to ݔ௡. The 
gradient ܏  was determined at the ݔ௡ାଵ  point. ݊  changed from 41 to 100. The effect of the 
boundary is already noticeable from the moment of ݔ଺଻ ≈ 20 h. In Fig. 5b oscillations in the values 
of ۶ି்܏ଵ܏  for complex models are noticeable due to rejection errors caused by the applied 
method of numerical inverse Laplace transform. With the exception of the reservoir model with 
constant pressure at the outer boundary, the values of ۶ି்܏ଵ܏ for the other complex models are 
always higher than for the simple model (the radial flow model in an infinite reservoir). Due to 
the boundary effects, the values of ۶ି்܏ଵ܏ for the reservoir model with constant pressure at the 
outer boundary become less than ۶ି்܏ଵ܏ for the radial flow model in the infinite formation. 

 
a) 

 
b) 

Fig. 5. The first study of predictive variance 

5. Conclusion 

On the basis of Fig. 5, we can conclude that for typical pressure variation curves the value 
decreases in the direction of simplification of the model. 

The developed method provides a universal tool for discriminant analysis of models regardless 
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of the number of parameters used. In this respect, the method compares favorably with methods 
based on confidence intervals, which cannot be used to compare models with different sets of 
unknown parameters. For example, it is not possible to directly compare the confidence intervals 
of permeability for two different models, such as the flow model in an infinite reservoir with three 
parameters (݇, ,ݏ ,݇) and the non-conductive four-parameter reservoir model (ܥ ,ݏ ,ܥ  ௘), becauseݎ
in the latter model, a strong negative correlation exists between ݇ and ݎ௘. 

The method takes into account not only the diagonal elements of the inverse Hessian matrix, 
but also the elements outside the main diagonal, and therefore it uses all available information 
about the parameters by means of the predictive variance. It should be noted that methods based 
on confidence intervals take into account only the diagonal elements of the Hessian matrix. 

This method meets the requirements of both the simplicity and complexity of the model. 
Theoretically, with an increase in the number of parameters, the overall correspondence of the 
model to the initial data increases due to a decrease in the number of degrees of freedom. However, 
the complication of the model reduces its predictable efficiency. This relationship is expressed 
quantitatively through ߪଶ and ۶ି்܏ଵ܏, which are components of the uncertainty associated with 
the model (۶ି்܏ଵ܏ ⋅  ,ଶ it decreases with increasing complexity of the modelߪ ,ଶ). In generalߪ
whereas ۶ି்܏ଵ܏ decreases with the simplification of the model. In this case, the overall forecast 
variance ߪଶ + ௣ଶߪ = ሺ1 + ሻ܏۶ିଵ்܏ ⋅  ଶ takes into account both the simplicity and the complexityߪ
of the model. 

The proposed method can simultaneously compare any number of reservoir models. Moreover, 
it is not required that any of the models be a subset of the other. 

References 

[1] Anraku T., Horne R. N. Discrimination between reservoir models in well test analysis. SPE 
Formation Evaluation, Stanford University, Vol. 10, Issue 2, 1995, p. 114-121. 

[2] Gmurman V. E. Theory of Probability and Mathematical Statistics: Proc. Allowance. 12 Edition, 
Higher Education, Moscow, 2006, p. 479, (in Russian). 

[3] Ash R. Basic Probability Theory. Dover Publications, New York, 2008, p. 350. 
[4] Magnus J. R., Neidekker H. Matrix Differential Calculus with Applications in Statistics and 

Econometrics. John Wiley and Sons, Chichester, England, 2007, p. 468. 
[5] Gottman J., Roy A. Sequential Analysis: a Guide for Behavioral Researchers. Cambridge University 

Press, 1990, p. 275. 
[6] Vasilievsky V. N., Petrov A. I. Investigation of Oil Reservoirs and Wells. Nedra, 1973, p. 344, (in 

Russian). 
[7] Deeva T. A., Kamartdinov M. R., Kulagina T. E., Mangazeev P. V. Hydrodynamic Studies of 

Wells: Analysis and Interpretation of Data. Tomsk, 2009, p. 243, (in Russian). 




