Fiber optic mechanical vibration sensor

Miguel A. Casas-Ramos1 , G. E. Sandoval-Romero2

1Posgrado de Maestría y Doctorado en Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000 Edificio T “Bernardo Quintana Arrioja”, 04510, Ciudad de México, México

2Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, A.P. 70-186, 04510, Ciudad de México, México

1Corresponding author

Vibroengineering PROCEDIA, Vol. 12, 2017, p. 84-87. https://doi.org/10.21595/vp.2017.18620
Received 11 May 2017; accepted 12 May 2017; published 30 June 2017

Copyright © 2017 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License
Abstract.

A novel cantilever-type fiber Bragg grating (FBG) mechanical vibration sensor has been proposed with an excellent sensitivity through the use of the mechanical axial property of a suspended optical fiber with two fixed ends, enhancing the sensitivity and the resonant frequency. The experimental results show a resolution of 0.006g (where g represents the gravitational acceleration of 1g= 9.81 m/s2), a resonant frequency of 227.3 Hz and a working bandwidth range of 10-210 Hz. The linearity and relative sensitivity errors are 1.9 % and ±4.4 %, respectively.

Keywords: acceleration, vibration, fiber Bragg grating, cantilever.

Acknowledgements

This study was supported by DGAPA-UNAM through Project IT101515. Miguel A. Casas-Ramos is grateful to CONACYT for the financial support in the form of a scholarship for the Master’s and Ph.D. Engineering Program through the Universidad Nacional Autónoma de México.

References

  1. Kersey A. D., Davis M. A., Patrick H. J. Fiber grating sensors. Journal of Lightwave Technology, Vol. 15, Issue 8, 1997, p. 1442-1463. [CrossRef]
  2. Yin S., Ruffin P. B., Yu F. T. S. Fiber Optic Sensors. Second Edition, CRC Press, New York, 2008. [CrossRef]
  3. Lee B. Review of the present status of optical fiber sensors. Optical Fiber Technology, Vol. 9, 2003, p. 57-79. [CrossRef]
  4. Majumder M., Gangopadhyay T. K., Chakraborty A. K., Dasgupta K., Bhattacharya D. K. Fibre Bragg gratings in structural health monitoring – present status and applications. Sensors and Actuators A: Physical, Vol. 147, 2008, p. 150-164. [CrossRef]
  5. Wu J., Masek V., Cada M. The possible use of fiber Bragg grating based accelerometers for seismic measurements. Canadian Conference on Electrical and Computer Engineering, IEEE, 2009, p. 860-863. [Publisher]
  6. Antunes P., Lima H., Alberto N., Bilro L., Pinto P., Costa A., Rodrigues H., Pinto J. L., Nogueira R., Varum H., Andre P. S. Optical Sensors Based on Fiber Bragg Gratings for Structural Health Monitoring. New Developments in Sensing Technology for Structural Health Monitoring. First Edition, Springer, 2011, p. 253-295. [Publisher]
  7. Cai L., Tan Y. G., Wei Q. Nonlinear vibration-FBG sensing technique for plate detection. Sensor Review, Vol. 35, 2015, p. 287-295. [CrossRef]
  8. Jülich F., Aulbach L., Wilfert A., Kratzer P., Kuttler R., Roths J. Gauge factors of fibre Bragg grating strain sensors in different types of optical fibres. Measurement Science and Technology, Vol. 24, Issue 9, 2013, p. 1-7. [CrossRef]
  9. Antunes P., Lima H., Monteiro J., André P. S. Elastic constant measurement for standard and photosensitive single mode optical fibres. Microwave and Optical Technology Letters, Vol. 50, 2008, p. 2467-2469. [CrossRef]
  10. Gere J. M., Goodno B. J. Mechanics of Materials. 7th Edition, Cengage Learning, Toronto, Canada, 2009. [CrossRef]