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Abstract. Nonlinear mechanical vibrations are widely found in engineering structures. Traditional
linear analysis methods are failing to meet the growing requirements of analysis accuracy.
Because of the complexity of nonlinear system, there is no general method for nonlinear system
analysis. Based on the describing function method, a polynomial inversion method may be used
in nonlinear system identification. Using this method, the measured DF can be inverted into the
form of force which has a clearer physical meaning and is easier to use for parameter fit. A MDOF
system with two types of nonlinearities at the same location is studied to demonstrate this method.
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1. Introduction

In the past, most attention was paid to linear systems, and theories and methods have been
developed for linear system modeling, simulation and prediction. However, there exist lots of
nonlinearities in an actual engineering system and some of them may have a significant effect in
system dynamic characteristics. The study of nonlinearities is indispensable and inevitable.
However, one should be forced to admit that there are no general analysis methods that can be
applied to all nonlinear system in all instances [1].

During the past decades, lots of work has been done in identification of system nonlinearities
and they can be roughly divided into two categories, time domain methods and frequency domain
methods. Time domain identification of nonlinear structural models relies on processing time
series while the data processing in frequency domain methods can take form of Fourier spectra,
frequency response and transmissibility functions, or power spectral densities [2]. The describing
function, DF, based on the definitions of the frequency response function and the first-order
harmonic balance method, was used in analyzing nonlinear structures by Tanrikulu O., et al. [3].
A further research was made by Ozer and Ozgiiven [4] in calculating the describing function’s
approximate solutions by using the Sherman-Morrison Method. Aykan and et al [5] proposed a
method to transform the describing function into the restoring force to make it more visualized.

Finding the nonlinear forces corresponding to the measured describing functions is called
describing function inversion [6]. In this paper, nonlinear system identification using describing
function is introduced briefly. A polynomial inversion method of inverting the measured
describing function is proposed. At last, an illustrative example is given to demonstrate this
method.

2. Theory
2.1. Describing function method

The use of non-linear describing function matrix to represent the nonlinear forces in a MDOF
system was proposed and developed by Ozer et al. [4]. They established a set of feasible methods
for nonlinear system identification, including early detection, nonlinear localization and parameter
estimation. This method was confirmed to have an acceptable application to a MDOF system with
several nonlinearities at different locations in a case study [7]. As this method was discussed in
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detail in ref. [7], a brief introduction is given below for readers’ comprehension.
The equation of motion for a nonlinear MDOF system under excitation can be written as:

[M] - (5} + [C]- (&} + [K] - (o} + {nlf (0} = {£}, (1)

where [M], [C], and [K] are mass, viscous damping and stiffness matrices of the linear system,
respectively. {f} and {x} stand for the external forces and the responses of the system. {nlf (x, x)}
represents the nonlinear internal forces in the system, and it is a function of the displacement
and/or velocity responses, depending on the type of nonlinearity present in the system.

A harmonic excitation with circular frequency w may be written:

{f} = {Fle. @)

Using first order harmonic balance method, the response is assumed to consist of only the first
fundamental harmonic, disregarding higher order harmonics. Since the response is harmonic as
the assume, {x} = {X}e/®t, the internal nonlinear forces can be harmonic too:

{nif (x, )} = [A(x, D)]{X}e, (©)

where [A(x,x)] is the ‘non-linearity matrix’ that is dependent on response amplitude. The
“non-linearity matrix” can be formed by using describing function v representations of internal
non-linear forces as follows:

n

Arrz Vrr + Z vrjl (4)
j=1j#r

ATj: —Urj. (5)

The relationship between describing functions and nonlinear forces will be introduced in
Section 2.2. From the equations above:

(—w?-[M] +j-w-[C] +[K]) - {X} + [A] - {X} = {F}. (6)
Then the nonlinear frequency response function (FRF) matrix [H"] can be calculated as:

[H"] = (-o® - [M] + - w-[C] + [K] + [AD ™. ™
The FRF of underlying linear system, [H~], can be written as:

[H'] = (w? - [M] +j-w-[C] + [K])7". ®)

Notice that the nonlinear FRF may be different at different excitation levels due to the
non-linearity matrix. The non-linearity matrix can formally be obtained by:

[a] = [E"] — [H*]74 ©

Eq. (9) is the core of this method. Once we get the non-linearity matrix, we have the ability to
localize and identify the nonlinearities in a MODF system. Although there still exist some
challenges, such as the calculation of [HL] and [H"], they were discussed and partially solved in
previous studies mentioned above. Readers who are interested can have a more comprehensive
understanding in ref. [4, 7].
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2.2. Polynomial inversion method

By the use of DF method, the nonlinear force describing function of the response’s amplitude
can be obtained. Generally, they are represented in the form of two related series, the response
amplitude, {dfx}, and corresponding DF values, {df}. The describing function, which can be
used for determining the type of nonlinearity as well as for parametric identification, has a quite
complex form and it will be worse if there exist multiple nonlinearities in one location of the
nonlinear system. This not only makes it necessary for a wealth of engineering experience but also
greatly increases the difficulty for identification. An inversion method that works for general
describing functions will effectively solve this problem. In the rest of this section, a polynomial
inversion method will be given in detail.

The describing function for general dynamic system nonlinearity can be written as:

; 21
v(x, %) = n]_AJ nlf (x,X)e /*dz, (10)
0

where the response x is supposed to be:

x(t) = Asin(wt + ) = Asin(1), (11)
T=wt+6. (12)

Eq. (10) indicates that the describing function is a complex function, and a complex function
can be divided into two parts, real part and imaginary part:

v(x, %) = v,(x,X) + j - v,(x, %). (13)

The real part v, corresponds to stiffness nonlinearities while the imaginary part j - v,
corresponds to damping nonlinearities [8]. For each part, the derivation for the inverse is given as
follows:

An arbitrary nonlinearity can be expressed as a sum of n nonlinearities, Ny, Ny,..., Ny,:

n

nlf; (x). 14
i=1

L

nlf (x) = nlf; (x) + nlfy(x) + - + nlf,(x) = Z

The DF for composite nonlinearities is given by:

j am n ] n 2n
D= Z Ifi(Asint) e™/7d =—Z f If.(Asint)e 7 d
v(4) nAfO i=1n f:(Asint) e /%dt A luis ), nlf;(Asint)e /Tdr

- Z;vi(A).

Eq. (14) and Eq. (15) indicate that the DF and the inverse DF transformations satisfy the
superposition principle. By polynomial fitting, an arbitrary function can be approximately
represented in the form of a sum of polynomials. Theoretically, the higher the polynomial order
we use, the more accurate result we will get.

Because the DF yields zero when the corresponding force is even, we represent the
input-output characteristic for a nonlinearity as an odd nth-order polynomial:

15)

nlf (x) = cpx+cyx|x| + -+ ¢y x™ 2 x| + cpx™ (16)

The mth item of DF can be computed by integrating over the interval 0 < 7 < /2, as:
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T T
4 (2 4 (2

v,,(4) = —f nlf (Asint)sintdt = —J ¢, (Asint)™sintdt
mAJ), ™ A J,

( mm-2)m-4-©3)
:{%%m+1Xm—1Xm—3)~M)

AML, m > 11is an odd integer, 17

4 mim-2)(m—4)--(2)

— Am 1 > 01 integer.
kan_(m_l_ 1)(m_ 1)(1’1’1— 3)(3) m 1S an even 1n eger

Thus, the DF is written as:

8 3 32 5
v(4) =c; +§C2A+ZC3A2+EC4A3+§CSA4+“'. (18)

The polynomial inversion method is composed by the following major steps: 1) Get the
approximate describing function by the polynomial fitting of DF values calculated; 2) Transform
the polynomial coefficients by Eq. (17) respectively and get the approximate nonlinear force
function (NLFa); 3) Plot the NLFa, make a guess of the type of nonlinearity and give an initial
value of its parameters from the graphic information (taking the saturation for example,
NLF = nlf (k, M), k is the gain of linear part and M is the saturation value).

In order to improve the accuracy of identification, the fm in search function of MATLAB is
used. Calculate the DF from the NLF we get in Step 3. Comparing this DF with the original DF
we can finally get the parameters’ values with accuracy through iterations. An illustrative example
is given in the next section.

3. An illustrative example

A four DOFs system with two nonlinear elements in the same DOF is studied here.

Fig. 1. 4 DOFs nonlinear system used in case

System parameters:

M =11,0,0,0;0,2,0,0;0,0,3,0;0,0,0, 5];

¢ =[10,-5,0,0; -5, 10,-5, 0; 0, -5, 10, -5; 0, 0, -5, 10];

K = [1000, 500, 0, 0; —500, 1000, —500, 0; 0, —500, 1000, —500; 0, 0, =500, 1000].

The nonlinear elements between m1 and ground are ‘cubic stiffness’, nlf; and ‘gap with end
stiffness’ nlf,:

nlf; = 1.7e5xx;,3,
nif, = {0, lx,] < 0.008,
Z2 7 (2.3e2%(|x;| — 0.008) - sign(x;), |x;| = 0.008.

The sinusoidal excitation is applied at DOF1. The system is linear under small excitation, while
the nonlinearities appear when the excitation gets big enough.

The simulation tests are performed using harmonic force with frequency 2 Hz, Fig. 2. The
FRFs obtained from 0.1 N amplitude harmonic force are taken as linear FRFs of system. For the
nonlinear FRFs the force amplitude is stepped up tol0 N. The simulation is performed with
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functions in a nonlinear MATLAB toolbox [9].
" 103 Linear({excitation 0.1N)and nonlinear({excitation 10N) FRF of H11 nonlinear localization

01N
- 10N |

Receptance(m/N}
w
NLN value

1] o
0 1 2 3 4 5 6 7 8 ] 10 2 3 4
Frequency [Hz] DOF Number
Fig. 2. Linear and Nonlinear FRF H;4 Fig. 3. Sum of NLN of different DOFs

Describing function with polynomial fit Naonlinear function from describing function

90 = Calculated 1.8 = Theoretical
+ Polynomial it — = Polynomiai fited
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. .
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Displacement [m] Displacement [m]

Fig. 4. Comparison of calculated and fitted DF Fig. 5. Comparison of theoretical and fitted nlf

From Fig. 3 it is found that the nonlinearities only exist between DOF1 and ground. By using
measured FRF the describing function of system nonlinearities can be calculated by Eq. (9) and
is shown in Fig. 4 (black). By observing, a turning point can obviously be found at the
displacement 0.008 [m]. Polynomial fitting in interval [0, 0.008] and [0.008, 4+oo] is made with
degrees 3 and 5, respectively. The polynomial fitted DF curve is obtained and shown in Fig. 4
(red). For the convenience of display, all values of displacement are multiplied by le+3. The
polynomial coefficients, [c,, C,_1,**, ¢1], for each part are:

coefqr; = [—0.0001,0.1279,-0.0008,0.0003], 0 < A < 0.008,
coefqr, = 1.€3 [ —0.0000,0.0006, —0.0146,0.1695, —0.9586, 2.0955], A = 0.008.

Dividing coefyrq and coef,, by the corresponding transform coefficients from Eq. (17), the
polynomial coefficients for nonlinear force expressions are found. The comparison of fitted (red)
and theoretical (black) nonlinear force functions is shown in Fig. 5:

coefpr1 = [—0.0001,0.1706,—0.0009,0.0003], 0 < x < 0.008,
coefpr, = 1.3 % [—0.0000,0.0010,-0.0215,0.2260, —1.1293,2.0955], x > 0.008.

By observing Fig. 5, when 0 < x < 0.008, the expression of force should be in the form of
nlf (x) = azXx3 and the corresponding theoretical describing function, with parameter as, is

df (A) = a3x0.75%xA2. Setting the difference between DF with a; and DF calculated as the FUN
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in fm in search (FUN, a3) of MATLAB and giving a5 an initial value 1.706e5, we can get the
value of a; with accuracy, a; = 169687. The change of parameter a; with the number of
iterations is shown in Fig. 6. As it’s a pure cubic stiffness in the first interval, the nonlinearities
could be a combination of a cubic stiffness and a nonlinearity with gap. Compare the values of
fitted nlf in Fig. 5 and 169687xx3® (x = 0.008). The guess for the nonlinear force is
nlf(x) = 169687xx3 + k(x — 0.008). Similar to parameter a;, we do the parameter fitting
using fminsearch. Give an initial value 1e3-2.0955 and parameter k stays at the value
k = 228.0690 after iterations.

x10% Iteration of parameter a3 Iteration of parameter k

2000 -
1500 -
1000

500 -

Value of a3
Value of k

-500 - |

z i ; ; \ -1000 = il
0 10 20 30 40 50 0 10 20 30 40 50

Num. of lteration [times] Num. of Iteration [times]
Fig. 6. Iteration of parameter a; Fig. 7. Iteration of parameter k

4. Conclusions

Identification of nonlinear system is considered by the inversion of describing functions. The
method in this paper reduces the difficulty but improves the accuracy of nonlinear system
identification. Thanks to the broad applicability of polynomial fitting, the polynomial inversion
method should work out well for most situations in which the nonlinearities are in-dependent of
frequency. The result of the illustrative example shows that this method is capable to identify the
nonlinear systems with acceptable accuracy.
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