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Abstract. This paper presents a computational method for optimization of trajectory in redundant 
robot manipulators. For this purpose, all possible answers are acquired based on rigid conditions 
and redundancy of the robot. Using open loop optimal control method, the trajectory which 
minimizes the objective function will be obtained. The objective function is considered as an 
integral index that will be minimized in the entire trajectory. The objective function and 
constraints of optimization problem will be selected based on conditions of motion. Dynamic 
equations of the system are constraints of optimization problem in point-to-point motion. For 
motion conditions in the specified path, kinematic equations will be added. Also, unequal 
constraints are applied for limiting the velocity and torque. By selecting the state and control signal 
vectors which are obtained by assuming rigid motion of the robot, the objective function and 
constraints will be changed to standard form of an optimization problem. Pontryagin’s maximum 
principle is used to solve equations. So, the equations of classical form will be changed into 
two-point boundary value problem. Suggested method is applied to point-to-point motion and 
movement in the specified path. Results demonstrate accuracy and efficiency of suggested 
method. 
Keywords: optimization, robot, elastic vibration, redundancy. 

1. Introduction  

The use of light arms is necessary when the weight and volume of manipulator are the main 
factor in reducing energy consumption. The most important advantages of flexible manipulator 
are appropriate maneuver and the adaptability to changing conditions of product [1, 2]. But control 
of end-effector due to vibration in these conditions is a major challenge that has involved many 
researchers by itself. The extra DOF or redundancy can play a role for freedom of action of 
manipulator in facing with obstacles, moving smoothly and avoid destructive accelerations, 
minimizing departure time and reducing vibration in flexible manipulators [3]. In these conditions, 
the tasks assigned to the robot can be obtained in different paths in the joint spaces and therefore, 
the optimal path is selected based on the goals of designers. Springer et al. [4] determined 
minimum time trajectory in conditions of avoiding resonance of elastic vibrations using 
generalized forces. Wilson et al. [5] obtained control torque by converting time optimal control 
problem to discrete dynamic programming. Choi et al. [6] used a method based on exact 
equilibrium manifolds in optimal trajectory planning. Bahrami et al. [7] developed optimal control 
of flexible space robots by using direct collocation method. They converted optimal control 
problem into standard nonlinear programming by using this technique and could achieve the 
minimum traveling time and actuating torque in point-to-point motion. Korayem et al. [8] used 
dynamic programming in determining the optimal trajectory of rigid manipulators in both motions 
along a specified path and point-to-point motion. They increase convergence speed using a method 
based on sequential quadratic programming. Wu et al. [9] proposed the optimal trajectory planning 
by using fourth-order curves to reduce the vibration of the flexible space robot. A number of 
evolutionary algorithms such as genetic algorithm, imperialist competition on optimal trajectory 
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planning were used [10, 11]. In references [12, 13] developed indirect and sequential nonlinear 
programming methods in optimal path planning of flexible mobile manipulators. In references 
[14, 15] Pontryagin’s maximum principle was used for trajectory planning of flexible 
manipulators. Heidari et al. [14] investigated rest-to-rest motion of flexible manipulator. Almasi 
et al. [15] examined the movement of the mobile robot. 

2. Method 

Additional DOF allows the designers to consider the goals such as energy consumption or 
vibrations of robot tip and minimize them in addition to the assigned work to the robot. Most 
researchers consider the optimization of tracking error along with the vibrations of flexible 
components. On the other hand, the tip vibration hasn’t been separated of rigid motion. In this 
research, we are searching separation of elastic vibration of flexible components. This strategy 
looking for access to desired designing goals with considering of rigid motion of robot and 
minimizing the vibration as main preference. In suggested method, all possible answers will be 
obtained as rigid and redundancy conditions. Then, the trajectory which minimizes the global 
objective function will be resulted using open loop optimal control. The objective function and 
constraints of optimization problem will be selected based on conditions of point-to-point motion 
or the specified trajectory between. In each state, by suitably selecting the state and control signal, 
the objective function and constraints will be changed to standard form of an optimization  
problem. Primarily this method will be obtained for point-to-point motion and in continuing will 
be improved for movement on the specified path. Dynamic equations of the system are constraints 
of optimization problem in point-to-point motion. For condition of motion in the specified 
trajectory, kinematic equations are added to dynamic constraints. Dynamic equations will be made 
by computing kinetic energy and system’s potential and using Lagrange formulation and assumed 
mode method (AMM). Optimization could be employed to local and global optimization. 
Although global optimization has relatively complex calculations and more time consuming, but 
it is more efficient and accurate [16]. Global optimization is defined as an integral indicator during 
the entire path. As a result, a path among kinematic solutions will be selected that minimizes the 
special index. Global optimization will be used in this research. There are two direct and indirect 
methods for solving optimal control equations. In direct method, firstly control and state variables 
are discreted and the optimal control problem is converted to a nonlinear planning problem. Then, 
by considering auxiliary points in the specified path, time variable is removed from constraint 
equations [17]. Its advantage is that the differential equations are changed to algebraic equations 
and there is no need to solve boundary value problem [16]. These methods do not result in accurate 
answers and are often time consuming and aren’t efficient due to many parameters [5, 18]. Indirect 
methods change the optimization problem in to differential equations using optimality conditions 
and then solve them. In the direct methods are good selection when the DOF is high or different 
objectives are considered in optimization [19, 20]. Despite the computational complexities and 
the probability of non-convergence in indirect methods, these methods are relatively accurate and 
reliable. Hamilton-Jacobi-Bellman equation and Pontryagin’s maximum principle are two known 
methods in indirect methods which use calculus variation for conversion of optimization problem 
to a set of differential equations [8]. Because of the very high nonlinearities of system equations 
of flexible robot manipulator and too many parameters, a method based on Pontryagin’s maximum 
principle is used to solve the optimal control problem in this article. The first order differential 
equations are derived and ultimately lead to a TPBVP. Pontryagin’s maximum principle in 
comparison with other techniques doesn’t need to linearization of equations, differentiation of 
joint parameters and use of polynomials [12]. The rest of the paper is organized as follows. In 
Section 3, the dynamic equations of the manipulator will be introduced, while the formulation of 
optimization problem in point-to-point motion will be described in Section 4. In Section 5, we are 
going to explain the Pontryagin’s maximum principle. Section 6 is presented formulation of 
optimization for the specified trajectory. In Section 7, 3-link robot manipulator is simulated by 
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two examples. Finally, we will summarize our results and make some conclusions. 

3. Modeling of flexible manipulator  

Fig. 1 shows manipulator which includes ܰ arms and its end arm is flexible. ܯ௜, ߬௜ and ߠ௜ are 
the hub, torque of motors and relative angle of ݅th arm, respectively. In Fig. 1, ܱܻܺ is the inertial 
reference coordinate framework and ݔ௜ ௜ܱݕ௜ is relative coordinate for each flexible arm which its 
center is the hub of ݅th link. 

 
Fig. 1. Flexible manipulator 

Flexible beam is considered as Euler- Bernoulli beam which means that the effect of shear 
deformation and rotational inertia is ignored. According to unlimited the dimensions of system in 
to flexible components, discretization method is commonly used for solving this problem. 
Assumed that the mode method is used to estimate the elastic deformation of flexible beam. In 
this method, deformation is considered by modal series in terms of mode shapes and time-varying 
variables [21]: 

,ேݔ)ߜ (ݐ = ෍ ߰௝(ݔே)߶௝(ݐ)ெ
௝ୀଵ , (1)

where ߜ  is deformation, ݔே , a general point on flexible beam, ߰௝  admissible functions, ߶௝ 
time-dependent generalized coordinates and ܯ is number of modes. Reference [22] is represented 
calculating mode shapes and the natural frequencies. Kinetic energy of the manipulator is equal 
to the sum of kinetic energy of the arms, motors and load. We have: 

ܶ = 12 ෍ න ሶ܀௜ܣ௜ߩ ௜் ሶ܀ ௜݀ݔ௜௅೔଴
ே

௜ୀଵ + 12 ሶ܀ ݉ ௠்܀ሶ ௠ + 12 ෍൫݉ெ.௜܀ሶ ெ.௜் ሶ܀ ெ.௜ + ெ.௜߱ெ.௜ଶܫ ൯,ே
௜ୀଵ  (2)

where ܀ெ.௜ , ߱ெ.௜ , ݉ெ.௜  and ܫெ.௜  are position vector, angular velocity, mass and the moment of 
inertia of motors at joint ݅, respectively. ܀௜ and ܀௠ are the position vector on the ݅th arm and the 
payload to initial frame ܱܻܺ respectively. ݉ is load mass and ߩ௜, ܣ௜ are the density and the cross 
section of the arms at joint ݅, respectively. Potential energy is resulted from elastic deformation 
and gravity. This energy is achieved as follows: 

ܲ = 12 ேܫேܧ න ቈ߲ଶܷ(࣭, ଶ࣭߲(ݐ ቉ଶ ࣭݀௟ಿ଴ + ෍ න ௜௅೔଴ݔ௜݃݀ܣ௜ݕ௜ߩ
ே

௜ୀଵ , (3)
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where ܧே and ܫே are Young modulus and the moment of inertia of flexible beam, respectively, 
and ݃, is gravitational acceleration. By substituting Eq. (1) in Eq. (3) the potential energy is 
calculated. The virtual work due to the torque ߬௜  would equal to ௜ࣱ = ߬௜ߠߜ௜ , therefore the 
equations of motion can be calculated using Lagrange method: ݀݀ݐ ቆ ߲ℒ߲ߠሶ௜ቇ − ߲ℒ߲ߠ௜ = ߬௜ ,    ݅ = 1,2, … , ݐ݀݀(4) ,ܰ ቆ ߲ℒ߲߶ሶ௝ቇ − ߲ℒ߲߶௝ = 0,    ݆ = 1,2, … , (5) ,ܯ

where ℒ = ܶ − ܲ is Lagrangian and ߠ௜  and ߶௝  are the generalized coordinates. By calculating 
Lagrangian derivative with respect to the generalized coordinates and substituting in Eqs. (4) and 
(5), the equations of motion are extracted. By arranging the equations in matrix form, ݊ = ܰ + ݉ 
dynamic equations of motion will be as follows: 

ቈܤఏఏ(ી, ૖) ,ఏథ(ીܤ ૖)ܤఏథ் (ી, ૖) ,థథ(ીܤ ૖)቉ ൤ીሷ૖ሷ ൨ + ቈܐఏ൫ી, ૖, ીሶ , ૖ሶ ൯ܐథ൫ી, ૖, ીሶ , ૖ሶ ൯቉ = ቂૌ૙ቃ, (6)ܐ൫ી, ૖, ીሶ , ૖ሶ ൯ = ൤ܐఏܐథ൨ = ,ી)ܦ ૖) ൤ીሶ૖ሶ ൨ + ,ી)ܭ ૖) ൤ી૖൨ + ۴൫ી, ૖, ીሶ , ૖ሶ ൯, (7)

where ܤ is inertia symmetric matrix and consist of ܤఏఏ ∈ ℜே×ே ఏథܤ , ∈ ℜே×ெ థథܤ , ∈ ℜெ×ெ ܦ . ∈ ℜ௡×௡ is damping matrix, ܭ ∈ ℜ௡×௡ is stiffness matrix and ۴ ∈ ℜ௡ is sum of nonlinear force 
vectors such as coriolis, gravity and centrifugal. Also, ܐఏ and ܐథ are ܯ × 1 and ܰ × 1 vectors, 
respectively. ીሷ , ીሶ , ી ∈ ℜே×ଵ are angular position, velocity and acceleration vectors, respectively, 
and ૌ ∈ ℜே×ଵ is torque vector of motors. The superscript ܶ in ܤఏௐ்  denotes the transpose matrix. 

4. Formulation of trajectory optimization in point-to-point motion 

The motion of the manipulator is created point-to-point or moving in a pre-specified trajectory. 
This section, formulation of trajectory optimization in point-to-point motion is desired. Dynamic 
equations in Eq. (6) are system constraints in point-to-point motion. Because of the additional 
DOF in redundant flexible manipulator, a suitable indicator can be defined and minimized during 
the motion between two points. The method presented in this study is based on the separation 
elastic vibration of rigid motion. In fact, among the answers which exist for rigid motion of 
manipulator due to redundancy, we are looking for a response which minimizes vibrations of the 
system. In point-to-point motion, optimal trajectory of manipulators will be obtained by 
minimizing a value function comprehensively by considering dynamic constraints. So, the 
objective function is presented as follows: 

ܬ = න Ω൫ી, ીሶ , ૖, ૖ሶ , ૌ൯ ݀ݐ௧೑௧ೞ , (8)

where ݐ௦ and ݐ௙ are start time and end time of motion, respectively, and Ω, is function of designer 
goals. By rewriting the Eq. (6) dynamic constraints of system can be obtained as follows:  ܤఏఏ(ી, ૖)ીሷ + ,ఏథ(ીܤ ૖)૖ሷ + ,ఏ൫ીܐ ૖, ીሶ , ૖ሶ ൯ =  ૌ, (9)ܤఏௐ் (ી, ૖)ીሷ + ,థథ(ીܤ ૖)૖ሷ + ,థ൫ીܐ ૖, ીሶ , ૖ሶ ൯ = 0. (10)

Also, unequal constraints are applied for bounding the torque and angular velocity magnitudes 
and to avoid saturation of operators and damaging to the system: 
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߬௜ି < ߬௜ < ߬௜ା, (11)ߠሶ௜ି < ሶ௜ߠ < ሶ௜ା. (12)ߠ

Unequal constrains can be acceded with consideration of the terms of torques and velocities in 
the objective function. To convert Eqs. (8) to (12) a standard form of an optimal control problem, 
the equations should be as follows: 

ܬ = න Ω(܆, ௧೑௧ೞ,ݐ݀ (ܝ ሶ܆(13)  = ,܆)܎ ,ܝ (14) ,(ݐ

where ܝ is the control signal vector. To convert to a standard form, ܆ state vector is defined as 
follows: ܆ = ሾી் ૖் ીሶ ் ૖ሶ ்ሿ், (15)

Dimension of state vector ܝ is considered as follows: ܝ = ીሷ . (16)

By using Eqs. (10) and (16), ૖ሷ  is obtained as follows: ૖ሷ = థథିଵܤ− ൫ܤఏథ் ܝ + థ൯ܐ = ,܆)ଵ܀ ሶ܆(17) .(ܝ  is obtained by Eqs. (15), (16) and (17): 

ሶ܆ = ێێۏ
ીሶ૖ሶીሷ૖ሷۍ ۑۑے

ې = ൦ ીሶ૖ሶ܀ܝଵ(܆, ൪(ܝ = ,܆)܎ (18) .(ܝ

Also, vector ૌ is obtained using Eqs. (9) and (17) as a function of ܝ ,܆: ૌ = ܝఏఏܤ − థథିଵܤఏథܤ ൫ܤఏథ் ܝ + థ൯ܐ + ఏܐ = ,܆)ଶ܀ (19) .(ܝ

By substituting Eqs. (15) and (19) in (8) we have: Ω൫ી, ીሶ , ૖, ૖ሶ , ૌ൯ = Ω൫܆, ,܆)ଶ܀ ൯. (20)(ܝ

Consequently, Eqs. (8) to (12) are converted to standard form of the Eqs. (13) and (14). 

5. Solution method and boundary conditions 

Because of the large number of parameters in the equations of flexible manipulator, the indirect 
method is selected for optimal control problem. The main advantage of this method is its relatively 
accurate answers. Hamilton-Jacobi-Bellman equation and Pontryagin’s maximum principle are 
two known methods in indirect methods. The principles of two methods are based on the calculus 
of variations. In Pontryagin’s maximum principle, the optimization problem is converted to a 
series of first-order differential equations and boundary conditions for these equations are two 
points. This approach in comparison with other open loop optimal control techniques doesn’t have 
the need for equations linearization and differentiating with respect to joints parameters [23]. 
Pontryagin’s maximum principle states that if ݑ∗ as optimal control is applied to a dynamic system 



2606. SEPARATION OF MOTION TECHNIQUES FOR TRAJECTORY OPTIMIZATION IN FLEXIBLE REDUNDANT ROBOT MANIPULATORS.  
SEYED MOHAMMAD REZA FARITUS, MOHAMMAD HEIDARI, STANFORD SHATEYI 

4328 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716  

of Eq. (6) and meets the conditions of optimal control Eqs. (13) and (14), must satisfy Hamilton 
equations in optimal points. According to this principle, we have: 

− ߲ℋ߲ܝ ∗ૃ,∗ܝ,∗܆| = 0, (21)߲ℋૃ߲ ∗ૃ,∗ܝ,∗܆| = ሶ܆ ∗, (22)− ߲ℋ߲܆ ∗ૃ,∗ܝ,∗܆| = ૃ∗, (23)

where ૃ ∈ ℜ௡  is the vector of co-state variables. Hamiltonian, ℋ is defined as follows: ℋ = Ω + (24) .܎்ૃ

One method to solve Eqs. (21) to (23) is the extraction of components of the vector ܝ from  
Eq. (21) and substituting in Eqs. (22) and (23). By doing this, 2݊ variables will be remained that 
need the same number of boundary conditions. In Pontryagin’s approach with the help of the 
calculus of variations, boundary conditions can be obtained as follows [24]: ૃ் ܆ߜ = ݐ    ,0 = ,௦ݐ ௙. (25)ݐ

Eq. (25) expresses boundary conditions in two initial ݐ௦ and final ݐ௙ points. Also, the position 
of end effector is specific in the first and last moment. Therefore, if ܼ is the workspace dimensions 
of robot tip manipulator; we have 2ܼ boundary conditions in two path terminals. Also, according 
to Eq. (25), in times of ݐ௦ and ݐ௙, vector ૃ is perpendicular to set of constraint equations. In other 
words, vector ૃ should be in raw space of Jacobean matrix. So, lying vector ૃ in column space ்ߞ 
is equivalent to the presence of this vector in the null space of the matrix ܫே −  which can ⋕(்ߞ)்ߞ
be written using linear algebra [25]: ሾܫே − ሿૃߞ⋕ߞ = ݐ   ,0 = , ଴ݐ ௙. (26)ݐ

Jacobean matrix ߞ ∈ ℜ௓×ே of manipulator can be obtained as follows: 

௜௝ߞ = ௝, (27)ߠ௜߲ߪ߲

where ો is the vector which specifies the location of end effector in terms of joint space of 
manipulator and ߞ௜௝ is the arrays of Jacobean matrix. Eq. (26) has ݊-2ܼ boundary conditions on 
each ends. Consequently, total of boundary conditions will be 2݊ which is sufficient to solve the 
equations. 

6. The formulation of optimization problem for moving in a specified path 

To complete the discussion, some conditions are considered that the tip of manipulator moves 
between two points and in a specific path between them. In this case, the optimal space of joints 
will be changed by the presence of kinematic constraint. We consider the kinematic equation as 
follows: ો(ી) = ોௗ(ݐ). (28)

In this relation, ો(ી) is a vector of tip position of manipulator and ોௗ(ݐ) is a vector of desired 
path and a function of time.  
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Eq. (28) is a nonlinear algebraic equation and there are countless answers for joint angles 
because of redundancy. By differentiation of the Eq. (28) we have: ߞ(ી)ીሶ = ોሶ ௗ(ݐ), (29)

where, Jacobin matrix ߞ(ી) is obtained from Eq. (27). The null space ߞ  includes a variety of 
configurations of manipulator which result in a specific situation of the tip. Using this property, a 
state can be selected among different states which optimize a characteristic of the system. In this 
condition, the objective function of Eq. (8) and dynamic constraints of Eqs. (9) and (10) as well 
as kinematic constraint of Eq. (28) constitute the optimal control problem. To convert them into 
standard form equations, we differentiate by the Eq. (29): ߞ(ી)ીሷ = ોሷ ௗ(ݐ) − ሶ(ી)ીሶߞ ܝ :are defined as follows ܄ and ܝ(30) . = ሾીሷ ଵ ીሷ ଶ … ીሷ ௥ሿ், (31)܄ = ሾીሷ ௥ାଵ ીሷ ௥ାଶ … ીሷ ேሿ், (32)

where ݎ(= ݊ − ܼ) is the value of redundancy. Eq. (30) is rewritten with Eqs. (31) and (32): ሾߞଵ ଶሿߞ ቂ܄ܝቃ = ોሷ ௗ(ݐ) − ሶ(ી)ીሶߞ . (33)

So, angular acceleration vector ી can be written as follows: ીሷ = ൤ ଶିߞܝ ଵ൛ોሷ ௗ(ݐ) − ሶ(ી)ીሶߞ − ൟ൨ܝଵߞ = ,܆)ۿ ,ܝ ૖ሷ(34) .(ݐ ሶ܆ , , ૌ and ݃ will be similarly obtained from Eqs. (17) to (20). 

7. Simulation and results 

In this section, the performance and the efficiency of the proposed method are studied by 
performing simulation and the results are discussed. As an example, we consider a 3-link robot 
with a third flexible arm. We assume that all the arms have a rectangular cross section and they 
move in a horizontal plane. Therefore, the workspace dimension is 2 (ܼ = 2). The geometrical 
and mass properties are listed in Table 1. The arms are made of aluminum with the density and 
Young’s modulus of 2710 kg/m2 and 71 GPa, respectively. 

Table 1. The mass and dimension of the robot arms 
Arm Unit Quantity First Second Third 

300 300 800 mm Length 
10 10 20 mm Width 
15 15 2.5 mm Thickness 

122 122 108 gr Mass 

The mass, inertial moment and the gear ratio of the rotor are 0.2 kg, 0.02 kg.m2 and 1, 
respectively. The payload mass is 250 gr. Two first natural frequencies are 6.27 and 91.23, 
respectively. In continuing, two examples would be considered for point-to-point motion and 
moving in specified path. In the first example, we evaluate the motion of the tip in point-to-point 
motion. The start and end point are (1.4, 0) and (1.27, 0.1), respectively. The DOF and redundancy 
are ܰ = 3 (regardless flexibility) and ݎ = 1, respectively. By considering two vibration modes, 
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state and co-state vectors will be as follows: ܆ = ሶଷ߶ሶଵ߶ሶߠሶଶߠሶଵߠଷ߶ଵ߶ଶߠଶߠଵߠൣ ଶ൧, (35)ૃ = ሾߣଵߣଶ ଵ଴ሿ. (36)ߣ   …  

Vector ܝ is obtained according to redundancy and the Eq. (16): ݑ௜ = ݅    ,ሷ௜ߠ = 1, 2, 3. (37)

We consider unequal constraint for the torque as follows: −0.06 < ߬௜ < 0.06,   ݅ = 1,2,3, (38)

where, we have ߬௜ା =  0.06 N.m and ߬௜ି =  –0.06 N.m according to the relations Eq. (11). In 
applications, passing velocity from limit values causes damaging to the system. In these  
conditions, the joints velocity in the robot cannot exceed allowed values, and these velocities are 
bounded. Therefore, we consider the constraint for angular velocity as follows: −0.5 < ሶ௜ߠ < 0.5,    ݅ = 1,2,3, (39)

where, we have ߠሶ௜ା = 0.06 rads and ߠሶ௜ି = –0.06 rad/s according to relations Eq. (12) for limitation 
of joints velocity and torque of motors. According to the limitations of joints velocity and torque 
of motors, these factors are determined and should be considered in the objective function. The 
objective function is considered as a function of the squares of the joints velocity, elastic 
deformation of tip and energy consumption in the operators: 

Ω = ௟యଶߜథݓ + ෍ ఛ೔߬௜ଶଷݓ
௜ୀଵ + ෍ ሶ௜൯ଶଷߠ௩೔൫ݓ

௜ୀଵ . (40)

ఛ೔ݓ ,థݓ  and ݓ௩೔ , denotes penalty weights of elastic deformation, control signals and joints 
velocity respectively. Due to being the velocity and torque bounded, second and third terms are 
considered in Eq. (40). By substituting ݓ௩ = ௩భݓ = ௩మݓ = ఛݓ ௩య andݓ = ఛభݓ = ఛమݓ =  ఛయ intoݓ
Eq. (40) and using Eqs. (19), (24) and (35) result to the Hamiltonian function as: 

ℋ(܆, (ܝ = థ(߰ଵܺସݓ + ߰ଶܺହ)ଶ + ఛݓ ෍ ܴଶ௜ଶ ,܆) ଷ(ܝ
௜ୀଵ + ෍ ௜ߣ ௜ܺଵ଴

௜ୀଵ + ௩ݓ ෍ ௜ܺଶ଼
௜ୀ଺ . (41)

To study and appropriate conclusions, penalty factors are considered and compared in different 
situations. For this purpose, the following four cases are considered: 

థݓ .1 ≫  ,௩ݓ , ఛݓ
ఛݓ .2 ≫  ,௩ݓ , థݓ
௩ݓ .3 ≫  ,థݓ ,ఛݓ
ఛݓ .4 = థݓ ,1 = థݓ = 50. 
By solving two-point boundary value problem, angles and optimal control command are 

obtained. The BVP4C command in MATLAB is used to solve first degree equation of systems 
with its boundary conditions. Also, uniform time networking with 100 points of ݐ௜ ∈ ሾ0,3ሿ where ݅ = 1,…, 100 have been used in simulation. Here we have ݐ௦ = 0 and  ݐ௙ = 3 s. The initial guess 
for the first and second cases is 0.009 for angular positions, 0.7 for angular velocities and first and 
second five co-state variables are 0.0001 and 0.0002, respectively. The initial guess for the third 
and fourth cases is 0.2 for angular positions, first five co-state variables is 0.65, second five 
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co-state variables 0.4 and remaining variables are zero. In this simulation to produce the optimal 
trajectory in addition to minimizing the objective function with respect to penalty matrices, joint 
velocities and torques shouldn’t exceed the limit values. Penalty matrices in cases 1 to 3 are 
considered to estimate limit conditions of these matrices. Case 4, according to the conditions of 
the problem is proposed as one of acceptable answers. The condition ݓథ ≫  ௩ ignores torqueݓ ,ఛݓ
and velocity factors. Therefore, the only effective factor in the objective function is tip vibration. 
Torque and velocity are the only main factors for cases 2 and 3, respectively. Fig. 2 shows the 
trajectory of tip for cases 1 to 4. Fig. 2 shows that longer trajectory should be travelled to achieve 
the minimum vibration in the tip. In this case, the travelled trajectory is 33 cm which is twice the 
distance between two beginning and end points. Fig. 3 demonstrates the tip deflection for four 
cases. The maximum deformation for cases 1, 2 and 3 are 1.37, 4.31 and 4.91 mm, respectively, 
indicating that the tip vibration in the first case can reduce the maximum vibration up to three 
times in comparison with two other cases. In this condition, vibrating changes of tip between two 
initial and final peaks can be estimated by a line. Fig. 3 indicates this important point that peaks 
aren’t dependent on penalty matrices at the beginning and end of the path and occur at 0.09 and 
2.88 seconds. Although the maximum vibration in cases 2 and 3 are close to each other, but 
vibration behavior is different in them. In the case 2 where ݓఛ is the determinant factor in the 
objective function, tip vibration is in oscillatory mode.  

 
Fig. 2. Tip trajectory 

 
Fig. 3. Tip vibration 

 

 
Fig. 4. Angular velocity of joint 1 

 
Fig. 5. Angular velocity of joint 2 

Angular velocities of joints are presented in Fig. 4 to 6 and Fig. 7 to 9 show the torque of 
motors for cases. In the first case, velocity in the joints reaches its maximum. The absolute value 
of velocities in this condition in the joints 1 to 3 are 0.82, 1.60 and 0.79 rad/sec, respectively and 
is passed by allowed value 0.5. In conditions ݓఛ ≫  ௩, absolute value of angular velocity inݓ ,థݓ
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second and third joints in its maximum value is 0.56 and 0.52, respectively which is passed limit 
value 0.5. By looking at Figs. 7 to 9 it can be concluded that changes of control torque in three 
joints can be estimated by a line. In this condition, the amount of energy consumption in operators 
has reached its lowest level. Fig. 10 shows angular velocities of joints for case 3. Fig. 10 shows 
that besides that the velocities are significantly reduced, the velocity changes are constant and has 
no significant change over time. In the third case, angular velocities in joint 1, 2 and 3 are reached 
constant values of 0.14, –0.39 and 0.34, respectively. Figs. 11 to 13 show produced angular 
positions for joints 1 to 3 for cases 1 to 4. Figs. 11 to 13 state that the changes of angular positions 
will be lined by increasing ݓ௩. According to mentioned points and system responses in each case 
1, 2 and 3, some conditions should be proposed to be of appropriate vibration in the tip meanwhile 
obtaining equal and unequal constraints of the problem. So, the fourth case in which  ݓఛ థݓ ,1 = = థݓ = 50 is proposed. Penalty matrices are selected such that the behavior is close 
to the third case in velocity and second case in torque. Figs. 4 to 6 show that the angular velocities 
in the fourth case except at the beginning and end of the trajectory are close to the third case. For 
this condition, the maximum angular velocities (absolutely) are 0.15, 0.40 and 0.38 rad/sec for 
joint 1, 2 and 3, respectively. Also, Figs. 7 to 9 show that control torques except in path terminals 
are similar to the second case. The maximum absolute values of the torques in joints 1 to 3 are 
0.055, 0.020 and 0.046 N.m, respectively, which has met the conditions of not crossing the limit 
value 0.06. Also, in this condition, tip vibration at the beginning and end of the movement is with 
trivial oscillation and approaches the line in the middle of the trajectory which is similar to 
behavior of cases 1 and 3. Anyway, meeting optimal conditions for all factors isn’t simultaneously 
possible and penalty matrices can be selected to achieve the intended result depending on their 
importance. 

 
Fig. 6. Angular velocity of joint 3 

 
Fig. 7. Torque of motor 1 

 

 
Fig. 8. Torque of motor 2 

 
Fig. 9. Torque of motor 3 
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Fig. 10. Angular velocity in case 

 
Fig. 11. Angular position of joint 1 

 

 
Fig. 12. Angular position of joint 2 

 
Fig. 13. Angular position of joint 3 

In the second example, the motion of the robot tip in the specified path is considered. Initial 
and end points are similar to the first example. The path of tip is considered as a circle with a 
radius of 0.1 and center (1.3, 0) in ܱܻܺ plane. Unequal constraints are considered to limit the 
torque and tip error as follows: −0.06 < ߬௜ < 0.06,    ݅ = 1,2,3, (42)−0.016 < ݁ < 0.016,    ݅ = 1,2,3, (43)

where ݁ is error of tip motion and ߬௜ା = 0.06 N.m and ߬௜ି = –0.06 N.m. The objective function is 
selected as follows: 

Ω = ௟యଶߜథݓ + ෍ ఛ೔߬௜ଶଷݓ
௜ୀଵ + ௗݔ)௫ݓ − ௘)ଶݔ + ௗݕ)௬ݓ − ௘)ଶ. (44)ݕ

 ௘ are the coordinates ofݕ ,௘ݔ ௬ are the penalty weights for error of tip trajectory andݓ ௫ andݓ
tip position in ݔ and ݕ directions, respectively. In this example, the angular velocities of motors 
are not considered as a determining factor. State and co-state vectors are relations Eqs. (35) and 
(36). Vector ܝ is obtained by Eq. (31) as follows: ܝ = ሷଵ. (45)ߠ

To study the effect of the penalty weights, we compare the following cases: 
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௘ݓ .5 ≫   ,ఛݓ ,థݓ
థݓ .6 ≫   ,ఛݓ ,௘ݓ
ఛݓ .7 ≫  ,థݓ ,௘ݓ
ఛݓ .8 = ௘ݓ ,14 = థݓ ,40 = 1. 
Fig. 14 shows the tip trajectory in desired condition and for cases 5 to 8. Figs. 15 and 16 show 

tip trajectory error and tip vibration in four cases, respectively. Error of trajectory tracking in case 
5 has the least error.  

 
Fig. 14. Tip trajectory 

 
Fig. 15. Error of tip trajectory 

 

 
Fig. 16. Tip vibration 

 
Fig. 17. Torque of motor 1 

In this situation, the absolute value of the torque shouldn’t cross limit value 0.06 N.m.  
Figs. 17 to 19 show torques of motors in joints 1 to 3 for cases 5 to 8. In cases 6 and 7, penalty 
matrices of elastic bending and control commands are more in comparison with the remaining 
penalty matrices. Therefore, in case 6 the least deformation and in case 7 the least torque is seen. 
The maximum trajectory error is 12.7 mm in case 5 less than the bound of 16 mm. While Fig. 19 
indicates that the maximum torque in this case is 0.088 N.m and is exceeded bound ߬௜ା. Penalty 
matrices are selected in case 8 such that while not crossing control commands of limit value and 
the error does not exceed 16 mm. The objective function is obtained 1.29 for this condition.  
Fig. 16 shows that by increasing ݓథ towards penalty matrices of error and torque, deformation 
can be estimated by a line. Minimum and maximum vibration of tip for case 6 are  
–2.7 mm and 4.1 mm and its average absolute value is 1.44 mm. What ever ݓథ decreased and ݓఛ 
increases, the range of vibration reaches to 2.85 mm in the middle of movement. Fig. 16 shows 
the first overshoot is at 0.12 second for each of four cases. In these circumstances, the maximum 
elastic deformation is occurred in fifth case and its value is –12.46 mm. By increasing ݓఛ, in 
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comparison with penalty matrices of error and deformation, the torques approach straight line. 
Also, in positions 6 and 7 in which penalty matrices of ݓఛ and ݓథ are more in comparison with 
remaining penalty matrices, the torques are close to each other and a trivial difference is seen 
between them. Obtaining optimal conditions depends on selecting penalty matrices and will be 
determined according to the intended conditions and objectives. 

 
Fig. 18. Torque of motor 2 

 
Fig. 19. Torque of motor 3 

Important conclusions are briefly summarized as follows: 
The first and last overshoot in elastic deformation not depended on penalty matrices. When 

the penalty matrices of deformation, error (when moving in the specified path), torque and velocity 
are located as main priority in their maximum value compared to the rest of penalty matrices, the 
changes of these parameters can be estimated in linear form. Using unequal constraints, torque, 
velocity or error limitations are applied to the system. In these circumstances, in the event of 
selecting penalty matrices improperly, there is the possibility of damage to the system  
(for example, operators’ saturation). Obtaining optimal conditions aren’t possible for all indicators 
simultaneously and depending on the priorities considered, they can be adjusted to the desired 
result. For this work to predict the response of the system (relative to the penalty matrices), 
boundary conditions of these matrices considered similar to the conditions in cases 1 to 4  
(or 5 to 8) can be investigated. 

8. Conclusions 

In this paper, designing trajectory optimization of flexible manipulators with redundancy in 
point-to-point motion and moving in a specified path was presented. This research suggests new 
optimal control based on the separation of vibration motion in flexible components. The goal of 
this strategy is access to the desired objectives of design by considering rigid motion of the robot 
and minimizing the vibration as the main priority. In the proposed method, all possible solutions 
are obtained based on rigid conditions and redundancy of the manipulator. Then, the trajectory 
which minimizes the global objective function was obtained using the open loop optimal control. 
In this research, according to nonlinear model of manipulator which is under equal and unequal 
non constraints, open loop optimal control method has been used. The goals depending on the 
conditions of point-to-point motion or movement on a specific trajectory between two points are 
different. In both conditions, maximum decrease of elastic vibrations of flexible members is 
considered as one of the main objectives. In each one by selecting state vector of the system and 
control signal properly, the objective function and constraints are converted to a standard 
optimization problem. The constraint in point-to-point motion includes differential equations in 
the system and unequal constraints. Objective function in these conditions includes terms of 
energy consumption in operators, joint velocities and elastic deformation. In the conditions of 
moving in a specified path, kinematic constraint is added to the constraints. In addition to the 
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above constraints, unequal constraints are added to the problem to limit the torque and velocity in 
the joints. Due to the unlimited dimensions in flexible components, AMM was used for 
discretization and estimate of elastic deformation. Then by calculating kinetic and potential energy 
of the system and using Lagrange formulation, equations of motion were derived. To verify 
mathematical modeling and presented optimization method, simulation of three-link flexible 
manipulator was presented in two examples. The first example was conducted for point-to-point 
motion and the second one for moving in a specified path between two fixed points. In these 
circumstances, an additional DOF was used to minimize the objective function. Based on the 
desired objectives and unequal constraints for each example, objective function was defined 
associated with them. In point-to-point motion, objective function, including terms of elastic 
deformation of tip, energy consumption in operators and joint velocities were considered and 
trajectory error was replaced by velocities in moving in a specified path. System responses were 
analyzed in different conditions of penalty matrices. The results showed that there is no a unique 
solution that can satisfy all the goals. Therefore, appropriate trajectory can be selected to meet the 
desired goals by adjusting penalty matrices properly. Investigating the response of the system in 
different conditions and obtained results indicate the appropriate efficiency and accuracy in the 
proposed method. 
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