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Abstract. Aiming at achieving early fault diagnosis and tracking the degradation process of 
bearings, we propose a novel monitoring methodology using a spectrum searching strategy in this 
paper. Firstly, a vibration signal is collected with appropriate sampling frequency and length. 
Secondly, the structural information of spectrum (SIOS) on a predefined frequency grid is 
constructed through a searching algorithm after deriving the single-sided FFT spectrum. Finally, 
the two-dimensional (2-D) line plot of the frequency grid versus the average power in SIOS is 
employed to conduct fault detection and the sum of the largest six total-power (SLSTP) of the 
frequency grid in SIOS is calculated as a health indication to demonstrate the changes in the 
bearing’s health status. The performance of the proposed scheme is validated with both simulation 
and bearing data. Experimental results show that the monitoring algorithm could manifest 
satisfactory behaviors in early fault diagnosis and health assessment of bearings. 
Keywords: bearing, health assessment, fault detection, spectrum searching. 

1. Introduction 

As one of the foremost applied components, rolling element bearing plays a crucial role in the 
whole safety running process of rotating machinery. Their failures or abnormities could generally 
cause machine breakdowns and even catastrophic consequence during the production process  
[1, 2], which necessitates the continuous state monitoring in the whole life-cycle of bearings. 
Vibration analysis is a generally applied technique in bearing fault diagnosis owing to vibration 
signal carrying abundant information about failure mode and fault location. Recently 
vibration-based monitoring is becoming a vital measure in prognostic and health management 
(PHM), which devotes to collecting and presenting the health state information of a target machine 
component or an overall system [3, 4]. 

As is pointed out in [4], an effective PHM system should be dedicated to evaluating the health 
state of a monitored object using the measured data collected from normal condition to abnormal 
or failure case. Through employing such a system, the health state of the monitored system can be 
under control so that the scheduling of preventive maintenance and the inventory of spare parts 
can be reasonably adjusted or optimized. If so, the goal of cost and time savings can be achieved 
significantly. Health monitoring is a critical procedure in PHM activities of bearings and mainly 
consists of the early warning or detection of fault, the assessment of deterioration process and the 
guidance for prognosis of remaining useful life [5]. Some published literatures are focused on 
assessing the health state of bearings with features extracted through time-domain, 
frequency-domain and time-frequency domain methods [5-7]. And for fault diagnosis of bearings, 
it can commonly be divided into fault classification and fault detection. Fault classification 
contributes to identifying the health state of bearings with features derived from monitoring 
signals, and there mainly exists two categories: supervised and unsupervised methods. Supervised 
methods, such as artificial neural networks and support vector machine [8, 9], are devoted to fault 
classification only upon the labeled data. While unsupervised methods, such as self-organizing 
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map and cluster approaches [10, 11], are dedicated to fault classification only utilizing the 
unlabeled data. For instance, an optimized ݇-nearest neighbor (݇-NN) classifier was employed by 
Tabaszewski in [12] for the state classification of bearings, and Strączkiewicz et al. [13] performed 
bearing fault classification in different stage of its development using minimal distance, ݇-NN and ݇-mean-based clustering approaches, etc. Fault detection is applied to localize faults of bearing 
and its main challenge is how to eliminate or reduce the influence of noise and detect faults in 
incipient stage successfully. Aiming at these issues, some researchers have also investigated fault 
vibration responses and properties [14, 15] and signal pre-whitening techniques [16, 17] with 
regard to bearing fault detection. 

In failure stage, the bearing defects can be mainly categorized as local and distributed faults 
[18]. However, it has been noticed that the localized defects occur more frequently than others in 
bearing raceway [19]. When a localized fault occurs in a bearing such as the surface of inner-race 
or outer-race, there commonly generates an impact shock for every rotational period. And this 
impact shock can excite the resonance of the bearing system to cause a change of the structure of 
the single-sided amplitude spectrum for frequency-domain analysis, especially nearby the bearing 
characteristic frequencies (BCFs) and their harmonics. Since the BCFs are usually considered as 
a prominent indication [20], classical spectrum analysis techniques such as fast Fourier transform 
(FFT) analysis and envelope analysis are applied to perform the fault diagnosis of bearings  
[21, 22]. Furthermore, if all the harmonics of BCFs can be searched in the FFT spectrum, the 
impulse generated by bearing fault could be determined as well [23]. To the knowledge of the 
authors, the impulse signature presents so weak that the fault detection encounters a greater 
challenge on account of the presence of noise at the early fault stage. However, the harmonics of 
BCFs can be detected in the spectrum, but it is not possible to determine the BCFs through simply 
measuring the spacing of the harmonic series. Furthermore, with regard to the crack formation, 
growth and deterioration, the power magnitude of the BCFs as well as their harmonics generally 
served as an indicator could make a difference on the degraded degrees of bearing [24]. Therefore, 
focusing on constructing a novel feature to depict the bearing degradation, the authors propose a 
vibration-based methodology for health state assessment of bearings using the structural 
information of spectrum (SIOS) algorithm demonstrated in literature [25]. 

In this article, a novel health monitoring strategy is presented by deeply digging the context of 
the single-sided amplitude spectrum in frequency domain. First, vibration signals are acquired 
with appropriate sampling rate and length and then transformed into frequency domain to acquire 
the single-sided amplitude spectrum. Then, the SIOS algorithm is adopted to construct the 
projected spectrum on a predefined frequency grid. Finally, the two-dimensional (2-D) line plot 
of the frequency grid versus the average power in SIOS is employed to perform fault diagnosis 
and the sum of the largest six total-power (SLSTP) of the frequency grid in SIOS is regarded as a 
health indicator to capture the degradation trend. Simulation and experimental studies are 
presented to evaluate the performance of the proposed method in early fault diagnosis and state 
assessment of bearings. 

The remainder of this paper is organized as follows. Section 2 describes the health monitoring 
methodology detailly, including the construction of SIOS and health index. Sections 3 and 4 are 
dedicated to evaluating the proposed monitoring scheme with simulation and experimental data. 
Finally, some conclusions are drawn in Section 5. 

2. Health monitoring methodology 

In order to trace the evolutional process of the health state of bearings, we formulate a novel 
index focusing on the power variability of the spectrum derived in frequency domain. To begin 
with, the SIOS of the current analyzed signal is constructed with a simple searching and projection 
strategy. Then the average power and the so-called SLSTP in SIOS are exploited to conduct fault 
diagnosis and to capture the changing process of bearing health state, respectively. Next the 
proposed health monitoring scheme will be illustrated in detail. 
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2.1. The SIOS algorithm 

Conversely to other methods, the SIOS algorithm presented in [25] seems a promising strategy 
for bearing fault diagnosis just through simple searching and projection of the FFT spectrum. The 
main idea of the SIOS for bearing fault diagnosis is that the energy magnitude around the BCFs 
as well as their harmonic components will change when faults take place. Obviously, these 
changes also run through the entire life-cycle of the bearing’s degradation. Hence, we establish a 
health monitoring framework based on the SIOS algorithm, which is illustrated as follows. 

For clarity, some nomenclatures are appointed in advance. ܲ(݇)  is defined as the ݇ th  
single-side power amplitude of FFT spectrum; and ܨ(݇) is the corresponding frequency of ܲ(݇) 
in Hz. 

(1) Search local peaks of spectrum. First, the vibration signal collected with sampling rate ܨ௦ 
is converted into frequency domain through FFT algorithm to acquire the single-sided amplitude 
spectrum, whose resolution is denoted as ∆௦. Then local peaks of the spectrum are searched and 
labeled if inequality(1) is satisfied: 

۔ۖەۖ
(݇)ܲۓ > ܲ(݇ − 1),ܲ(݇) > ܲ(݇ + 1),ܲ(݇) > 12݈ + 1 ෍ ܲ(݅) + ௞ା௟,ߜ

௜ୀ௞ି௟
 (1)

where ݈ is a nonnegative integer and ߜ is a nonnegative constant. Having done these procedures, 
we can obtain ܯ local peaks from the FFT spectrum.  

(2) SIOS construction. In order to build the SIOS, a frequency grid must be assigned in advance 
and it is predefined as: ܩ = ,௟ܨ] ௟ܨ + ∆ீ, ௟ܨ + 2∆ீ, ௟ܨ + 3∆ீ, … , ௛], (2)ܨ

where ∆ீ represents the resolution of the frequency grid. Generally, ∆ீ is equal or less than ∆ௌ. 
Next, all the labeled local peaks are projected onto the frequency grid one by one. Finally, the 
total power of local peaks projected onto the every component of ܩ is utilized to represent the 
SIOS as follows: 

(݅)ܧ = ෍ ܲ(݇),ே(௜)
௞ୀଵ  (3)

where ܰ(݅)  represents the total number of peaks projected onto ܩ(݅),  and  ݅ = 1,2, … , ௛ܨ) − ீ∆/(௟ܨ + 1. 
Otherwise, to ensure all the labeled local peaks can be projected onto ܩ, there is a critical 

restriction to be emphasized that the resolution of the original spectrum must satisfy the following 
condition: ∆ௌ< ௌܨ௟ܨ௟ܨ2 . (4)

More detailed descriptions about the SIOS algorithm can be found in [25]. 

2.2. Health indicator construction based on SIOS 

In order to monitor the running state of bearings immediately, we propose a novel health 
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monitoring strategy with the SIOS obtained in previous subsection. And this monitoring index is 
called as “SLSTP” in our research. The main procedures of the proposed scheme can be 
summarized as follows. 

Step 1: With a preset sampling rate ܨௌ, vibration signal is collected from the monitored bearing 
with an appropriate length according to ∆ௌ< ௌܨ/௟ܨ௟ܨ2  to satisfy the frequency-resolution 
condition. 

Step 2: The vibration signal is then transformed into frequency-domain using FFT algorithm 
to acquire the single-sided amplitude spectrum. 

Step 3: Determine parameter ߜ and ݈, then search local peaks of the spectrum according to 
inequality (1). Finally, ܯ local peaks are found from the spectrum. 

Step 4: Project the ܯ local peaks onto the predefined frequency grid ܩ to construct the SIOS. 
Step 5: For each frequency grid ܩ(݅), compute the total number of the projected peaks, i.e. ܰ(݅), and the total energy, i.e. ܧ(݅), of the SIOS. 
Step 6: Create the 2-D line plot of ܩ(݅)  (frequency grid) versus ܯ)/(݅)ܧ − ܰ(݅))  

(called “average power” in this paper) for fault diagnosis and compute the SLSTP, i.e., the 
summation of the largest six amplitudes of ܧ, as the degradation index of bearings. 

Fig. 1 depicts the framework of the proposed health assessment methodology for bearings 
detailedly. 

 
Fig. 1. The framework of the proposed health assessment methodology 

3. Simulation analysis 

In this section, a simulation experiment is designed to validate the effectiveness of the 
proposed methodology for health monitoring. We simulate the vibration signals along the whole 
degradation process of the bearing. Herein, the flowing parameters are considered in the 
simulation: pitch diameter ݀௣ = 23 mm, roller diameter ݀௥ = 8 mm, pitch angle ߠ = 0° and the 
number of rollers ݊௥ = 9. The bearing has an outer-race defect, its shaft rotational frequency  ௥݂ = 30 Hz (i.e., the corresponding shaft rotational speed ݒ௥ = 1800 rpm) and the bearing-induced 
resonant frequency ௦݂ = 3500 Hz. Then the ball-pass frequency of the outer raceway can be 
calculated as: 

஻݂௉ிை = ݊௥ ௥݂2 ቆ1 − ݀௥݀௣ cos(ߠ)ቇ ≈ 88.04 Hz. (5)
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The sampling frequency ܨௌ = 12000 Hz, and each sample consists of 18000 data points, i.e. 
1.5 s, and the sampling is triggered every 10 minutes. To simulate the whole degeneration process 
of the bearing, vibration samples in normal stage are repeated 400 times and the vibration samples 
in failure stage are repeated 200 times with the increasing fault severity. That is to say, an incipient 
outer-race fault occurs in the 401st sample (about at the time of 2.4×105 second). And the vibration 
signal produced by the out-race fault in failure stage is generated according to the simulation 
model presented in [26]. The simulated vibration signals of the whole lifetime and the zoomed-in 
views of the normal and failure stage are shown in Fig. 2. 

 
Fig. 2. The simulated vibration signals of the whole lifetime 

In this simulation analysis, we predefined the frequency grid as ܩ = [70 Hz, 170 Hz). Then 
the resolution of the FFT spectrum must satisfy: ∆ௌ< ௌܨ௟ܨ௟ܨ2 = 2 × 70 × 7012000 ≈ 0.8167. 

Hence, the signal length can be set as 214 to carry out sampling due to the resolution ∆ௌ= 12000/214 = 0.7324, which satisfies the above limiting condition. Moreover, the resolution 
of the frequency grid is assigned as ∆ீ= 0.25 ∆ௌ. The SLSTP of the simulated signals is presented 
in Fig. 3. 

 
Fig. 3. The SLSTP evolution of the simulated vibration signals 

Examining the SLSTP process in Fig. 3, an explicit change is detected at the time of  
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2.4×105 second (the 401st data sample), which means that a bearing defect may occur in that 
monitoring sample. Therefore, the fault detection is triggered after monitoring an anomaly 
warning during runtime. The time waveform of the 401st simulated sample is shown in Fig. 4, 
where periodic characteristics cannot be observed directly due to the heavy noise. With the 
proposed method, the corresponding diagnostic spectrum is plotted in Fig. 5. 

 
Fig. 4. The time waveform of the 401st simulated sample 

 
Fig. 5. The spectrum of ܯ)/(݅)ܧ − ܰ(݅)) versus ܩ(݅) of the 401st simulated sample 

From the spectrum in Fig. 5, it can be seen that there exists a large-amplitude at 88.06 Hz, 
which corresponds to the ball-pass frequency of the outer raceway of the bearing thanks to 
utilizing the proposed fault detection approach. This illustrates that the proposed method can be 
applied to the bearing fault detection in weak defect stage. 

The simulation results show that the proposed strategy seems a very promising approach for 
the health monitoring of bearings. Next, bearing vibration data sets obtained from a run-to-failure 
test are employed to further evaluate the performance of our methodology. 

4. Experimental analysis 

4.1. Experimental setup 

To assess the capability of our proposed methodology, vibration data sets provided by the 
NSFI/UCR Center for Intelligent Maintenance Systems (IMS) [27], are applied to perform the 
experimental validation. As shown in Fig. 6, four testing bearings support one shaft which was 
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loaded with 6000 lbs in the radial direction. The rotation speed was set to 2000 rpm with assistance 
from an AC motor and all bearings were lubricated during the experiments. Vibration signals were 
acquired using acceleration transducers that installed on the bearing housings. In order to 
guarantee the safe running of the mechanical system, a magnetic plug mounted in the oil feedback 
pipe was utilized to collect metal debris produced by the bearing system so that the bearing  
run-to-failure tests could be stopped until the debris accumulated to a certain level. More detailed 
instructions on this test rig and can be found in [27]. 

 
Fig. 6. Accelerated degradation test bench of breaings 

In this research, two vibration data sets (testing 1 and testing 2) are applied for the validation 
of the proposed health monitoring strategy. Vibration data in testing 1 and 2 were collected every 
10 minutes with data-acquisition equipment. The sampling frequency was set to 20000 Hz and 
each signal with 20480 data points was sampled and stored in an ASCII file. At the end of testing 1, 
an inner race failure and a roller element failure occurred in bearing 3 and bearing 4  
respectively; and as for testing 2, an outer race failure was found in bearing 1 after the life test. 
Next the above-mentioned vibration data sets are applied to validate the performance of our 
proposed scheme. 

4.2. Health monitoring with the proposed methodology 

4.2.1. Degradation assessment based on the health indicator 

To investigate the capability of SLSTP in assessing degradation of bearings, the SLSTP in 
SIOS is calculated as an indicator using the collected vibration signals in our investigation. 
According to the data sets, the sampling rate ܨௌ = 20000 Hz. Moreover, the frequency grid is 
selected as ܩ = [200 Hz, 300 Hz), which covers the BCFs of common defects, however the 
resolution of the FFT spectrum must meet the following condition: ∆ௌ< ௌܨ௟ܨ௟ܨ2 = 2 × 200 × 20020000 = 4. 

Therefore, the sampling length is set as 214, and ∆ௌ= 20000/214 = 1.2207, which satisfies the 
above restriction. 

In addition, the resolution of the frequency grid is assigned as ∆ீ= 0.5 ∆ௌ. The SLSTP of 
bearing 3 and bearing 4 in testing 1 are computed and plotted in Fig. 7 and Fig. 8, respectively. 
Meanwhile, the SLSTP of bearing 1 in testing 2 is presented in Fig. 9. 

Intuitively, our proposed health monitoring indicator, SLSTP, shows a statistical 
monotonically increasing trend, which can track the degradation process of the bearing instantly. 
From Figs. 7-9, some remarks can be concluded that: (1) the proposed SLSTP can illustrate 
different health stage of bearings from health, early degradation, severe degradation to failure. 
Notably, the SLSTP increases as bearing performance degenerates continuously until failure; (2) a 
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relative stable period of SLSTP is consumed so that the buffer time is sufficient for  
condition-based maintenance, which is pretty significant in PHM activities; (3) the proposed 
SLSTP is capable of prognosticating the weak or early anomaly of bearing and it is sensitive to 
fault development. 

 
Fig. 7. The SLSTP evolution of bearing 3 in testing 1 

 
Fig. 8. The SLSTP evolution of bearing 4 in testing 1 

 
Fig. 9. The SLSTP evolution of bearing 1 in testing 2 

To depict the monotonic trend of the SLSTP and compare its performance, we draw a 
comparison between SLSTP and root mean square (RMS), and kurtosis in bearing health 
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assessment. First, brief mathematical descriptions on these two time-domain indexes are given as 
follows. For a discrete signal ݔ(݅) with ݊ points, the RMS is defined as: 

ܵܯܴ = ඨ∑ ଶ௡௜ୀଵ[(݅)ݔ] ݊ . 
And the kurtosis is defined as: 

ݏ݅ݏ݋ݐݎݑܭ = 12 ∑ (݅)ݔ] − ସ௡௜ୀଵቀ1݊[ݔ̅ (݅)ݔ] − ഥ[ݔ ଶቁଶ , 
where ̅ݔ denotes the mean value of the discrete series. 

Figs. 10-12 present the tracking curves of the aforementioned bearings by plotting RMS and 
kurtosis. Compared Figs. 10-12 with those derived previously, the SLSTP draws a better 
performance in tracing the changes of the health state of bearings, especially for the bearing 4 of 
testing 1 and the bearing 1 of testing 2. Therefore, the health indicator presented in this paper can 
highlight the bearing degradation behavior preferably and can be utilized for its health assessment. 

 
a) 

 
b) 

Fig. 10. Bearing 3 in testing 1: a) RMS curve; b) kurtosis curve 

 
a) 

 
b) 

Fig. 11. Bearing 4 in testing 1: a) RMS curve; b) kurtosis curve 
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a) 

 
b) 

Fig. 12. Bearing 1 in testing 2: a) RMS curve; b) kurtosis curve 

4.2.2. Fault assessment with the average power of SIOS 

In order to demonstrate the ability of the proposed health monitoring method in fault detection, 
the vibration signals of bearing 1 in testing 2 is applied to further test our method. Three 
different-stage statuses shown in Fig. 13 corresponding to serious defect, early defect and weak 
defect (statuses A, B and C), are taken into consideration for fault detection analysis. 

 
Fig. 13. Three degeneration stages of bearing 1 in testing 2 

Examining the SLSTP degenerative process, we can observe that the degradation trend begins 
to be emerged by about the 500th record. Next the performances of our method in three health 
states are presented separately. 

4.2.2.1. Bearing at serious defect stage (status A) 

From the change trend of the proposed health indicator, the vibration data at serious defect 
stage (the 923rd record) is employed to analyze. Fig. 14 shows the vibration measurements of 
status A which was collected nearby the end of the bearing test and the corresponding spectrum 
generated with the proposed method is presented in Fig. 15. From the spectrum in Fig. 15, an 
obvious local peak related to the ball pass frequency on bearing outer race (BPFO) at 230.7 Hz is 
highlighted and detected, which illustrates that a local fault has existed in the outer ring of the 
monitored bearing. It is clear that the fault of bearing is detected successfully when serious defect 
appears. 
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Fig. 14. The time waveform of the 923rd record at serious defect stage 

 
Fig. 15. The spectrum of ܯ)/(݅)ܧ − ܰ(݅)) versus ܩ(݅) of the 923rd record 

4.2.2.2. Bearing at early defect stage (status B) 

Fig. 16 displays the vibration signals of status B (the 616th record) sampled near two more 
days before status A. From Fig. 16, the periodical impulses generated by the early fault could not 
be observed from the time-domain waveform due to the heavy background noise, which leads to 
a low signal-to-noise ratio. To investigate its performance in early fault diagnosis, the proposed 
diagnostic scheme is utilized to process the measured signals and the corresponding diagnostic 
spectrum is depicted in Fig. 17. 

 
Fig. 16. The time waveform of the 616th record at early defect stage 
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Fig. 17. The spectrum of ܯ)/(݅)ܧ − ܰ(݅)) versus ܩ(݅) of the 616th record 

In spite of the low signal-to-noise ratio, a dominant peak at 230.7 Hz, which corresponds to 
BPFO, is also accentuated, thus bearing fault in this phase can be effectively diagnosed using our 
monitoring method as well. Therefore, the proposed monitoring methodology is suitable for 
bearing fault detection in early defect stage. 

4.2.2.3. Bearing at weak defect stage (status C) 

Here a more complicated monitoring time-point is considered, i.e. the weak defect stage. 
Examining the degradation curve shown in Fig. 13, the health index, SLSTP, begins into rising 
trend around 5000 minutes (namely about the 500th record). Hence, we take the 500th record as 
a representative at the weak defect stage. Compared with status A at the serious defect stage, the 
weak fault characteristics are almost totally inundated by the noise so that periodic characteristics 
cannot be intuitively observed in Fig. 18. After processing with the proposed method, we present 
the diagnostic result in Fig. 19. 

 
Fig. 18. The time waveform of the 500th record at weak defect stage 

Although a local component round 247 Hz dominates the spectrum, the outer race fault 
frequency of the bearing as another dominant component is found at 230.7 Hz thanks to utilizing 
the average power of the SIOS, which is of great importance for fault warning in practical 
applications. 

In this experimental case, vibration signals at three degeneration phases are employed to 
explain the effectiveness of the health monitoring scheme proposed in this study. All the presented 
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monitoring and diagnostic results prove that it cannot only detect the fault at an early deteriorated 
phase, but also track the degenerative process of bearings. 

 
Fig. 19. The spectrum of ܯ)/(݅)ܧ − ܰ(݅)) versus ܩ(݅) of the 500th record 

4.3. Results and discussion 

The health statuses of bearing are monitored or tracked with indicators generated with energy 
variation in SIOS on a frequency grid in this research. Though vibration signals at a serious stage 
(e.g. status A in Fig. 13) exhibit evident periodicity, it is of great significance to detect the incipient 
defect at the early phase and perform an advanced fault warning in due time so that sufficient 
buffer time can be available for equipment maintenance. The proposed monitoring indicator, 
SLSTP, can provide degeneration or failure warning in real applications. As demonstrated by the 
results presented earlier, the SLSTP could commendably capture the variation trend of the 
condition characteristics for the health assessment of bearings (see Fig. 8 and Fig. 9). However, it 
shows a relatively poor performance in the tracing progress of bearing 3 in testing 1 (see Fig. 7). 
Since bearing faults occurred in two bearings at the end of the life experiment, the poor 
presentation may be caused by the rolling element fault in bearing 4, which installed on the same 
shaft with bearing 3. Fortunately, the degradation trend of bearing 3 could still exploited in its life 
cycle. Furthermore, the SLSTP is superior to time-domain indicators such as RMS and kurtosis 
so that it is more applicable to the health monitoring of bearings. 

Moreover, in the early fault diagnosis, the outer-race fault of bearing can be detected after 
around 3.47 running days (the weak fault is diagnosed in the 500th data record) in bearing 1 of 
testing 2. By comparison, our health monitoring approach can highlight the fault signs earlier than 
the method demonstrated in [28], in which the fault detection is achieved after about 3.8 running 
days. 

In addition, there still exist some recommended suggestions when applying the proposed 
health monitoring methodology. One thing is about the determination of the frequency grid, which 
is a critical parameter of the SIOS. Considered the failures of bearing commonly occurring in 
inner-race, outer-race, roller and cage, the frequency grid of SIOS can be determined by the range 
of the BCFs if the geometrical parameters of bearing are given. Otherwise the frequency grid 
could be selected as that of the original spectrum. In this case, all harmonics in the whole range 
are taken into consideration while constructing the SIOS. Another thing is about ߜ defined in 
inequality (1). This controlling parameter is introduced to effectively restrain the effect of noise 
for the searching algorithm. Since the harmonics of BCFs usually have relatively larger amplitudes 
especially in the resonance frequency band, a recommendation about the selection of ߜ is given 
as: make sure 0.5 %-2.1 % of amplitudes are searched as local peaks, which is also declared  
in [25]. 
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5. Conclusions 

A novel health monitoring approach for rolling element bearings is presented in this paper. 
The purpose of this investigation is to put forward an approach for bearing fault diagnosis and its 
health assessment so as to provide advanced anomaly warning during runtime. Firstly, the SIOS 
is constructed using a searching algorithm based on the FFT spectrum of the original vibration 
signals. Then the 2-D line plot of the frequency grid versus the average power in SIOS is employed 
to perform fault detection. Finally, a health index is computed as the summation of the largest six 
total-power of the predefined frequency grid in SIOS to assess the degradation severity. 
Simulation data and bearing life-test data are applied to validate the performance of the proposed 
monitoring scheme. It is shown that the proposed method could exhibit strong behaviors in 
detecting the weak local defect and tracing the degeneration process of rolling bearings. 

Otherwise, the SLSTP seems a promising monitoring indicator for remaining useful life 
prediction of bearings, on which we will pay more attention in the future. 
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