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Abstract. A general vibration model of a flexible rotor system is established to investigate the 
influences of the damping characteristics on vibration behaviors. Based on the multi-scale method, 
the analytical solutions of steady-state and transient-state are derived under the positive and 
negative conditions of nonlinear damping. The physical significance of the coefficients and their 
influences on rotor behaviors are analyzed through theoretical analysis and numerical calculation. 
The experimental results elaborate the damping effect and verify the rationality of the model. 
Keywords: flexible rotor system, general vibration model, analytical solution, nonlinear damping, 
vibration mechanism. 

1. Introduction 

Rotating machinery is widely used in generators, gas turbines, aero engines and other 
important power systems. It is the key component and core technology in the national defense 
industry and energy field such as aerospace, ship engineering and distributed energy. In the 
development towards high efficiency and high performance, due to its complicated structure, 
precise design and rigorous assembly, a high-speed flexible rotor system often occurs various 
faults and shows strong nonlinear behavior characteristics in practical operations. Thus, the 
stability mechanism of nonlinear rotor system becomes vital to meet the higher requirements of 
theoretical researches and engineering applications. 

For a general rotor system, external damping is considered to be able to reduce the amplitude 
in the entire operating range and increase the system performance against interference. On the 
contrary, internal damping is considered to increase the amplitude in operating range, cause oil/gas 
film whirl, whip and other nonlinear phenomena, and even lead to system failure and halt. The 
internal damping is caused by the tangential force when stress center line and strain center line of 
rotor cross-section are no longer coincide. If external damping is insufficient to overcome the 
self-excited vibration caused by internal damping, the rotor system may become instable.  

Newkirk [1] first discovered this phenomenon. Kimball [2] considered the instability was 
caused by internal friction. Timoshenko [3] did the quantitative analysis and derived the 
constitutive relation between stress and strain. Gunter [4] and Ehrich [5] also studied the effects 
of internal friction/damping on the stability of the rotor system respectively. Due to the limitations 
of linear theory in the analysis of nonlinear phenomena, the accuracy of linearization cannot meet 
the engineering requirements, so the theory of oil film instability develops from the eigenvalue 
criterion stability theory based on linear assumption, to the nonlinear stability theory based on 
nonlinear simulation such as energy method, spectrum analysis method, pumping method [6] and 
circumferential average velocity ratio method [7]. Tasker [8] used moving-block technique and 
the sparse time domain method to estimate the equivalent nonlinear damping from transient 
response data. Chandra [9] used the envelope of free vibration signal extracted by continuous 
wavelet transform approach to identify nonlinear external and internal damping, and the 
approximate analytical solution was obtained by Krylov-Bogobliubov method. The nonlinear 
dynamic stability research has received more and more attention [10]. 

In this paper, by introducing nonlinear damping force and nonlinear stiffness force, a general 
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form of nonlinear vibration model is proposed for a high-speed flexible rotor system. The 
steady-state solution and transient-state solution are deduced respectively under positive and 
negative nonlinear damping conditions via multi-scale method. The effects of linear and nonlinear 
damping on rotor vibration characteristics are discussed through analytical analysis and numerical 
simulation, and are elaborated through experimental results. 

2. General model establishment 

Consider a general ideal single-span single-disc rotor of disc mass ݉, eccentricity ݎ, rotational 
frequency Ω, as shown in Fig. 1. Shaft mass is ignored, and counterclockwise is positive. Though 
the rotor structure is simple, it can fully reflect the linear and nonlinear dynamic behaviors of the 
rotor system. 

 
Fig. 1. Schematic of force analysis of a rotor system 

For general liquid or gas bearing, in this paper consider only the bearing support force, ignoring 
the tangential force. Based on Newton’s second law, equation of motion in the ݔ-axis direction 
can be described as: ݉ݔሷ௖ = ,ݔ)ܨ ሶݔ ), (1)

where: ݔ஼ = ݔ + (2) .ݐcosΩݎ

Generally, the rotor force can be divided into stiffness and damping force by the physical 
properties, and also can be divided into linear and nonlinear force by mathematical properties, 
namely: ݔ)ܨ, ሶݔ ) = ௞݂(ݔ) + ௖݂(ݔሶ ,ݔ)ܨ,( ሶݔ ) = ߦ ௟݂ + ߝ ௡݂ = )ߦ ௟݂ + Θ ௡݂), (3)

where ௞݂ is elastic force, ௖݂ is damping force, ௟݂ is linear force, ௡݂ is nonlinear force, ߦ is linear 
scale factor, ߝ is nonlinear scale factor, Θ = ߦ/ߝ  is mix ratio. The nonlinear terms have been 
discussed in detail in previous work [11, 12]. Considering the nonlinear Hooke’s law [13-15] and 
nonlinear damping force [16, 17], the ௞݂ and ௖݂ are given as: 

௞݂(ݔ) = − ݔܷ݀݀ = − ෍ ݇௡ݔଶ௡ାଵ௠
௡ୀ଴ ,     ௖݂(ݔሶ ) = − ෍ ܿ௡|ݔሶ |௡ିଵݔሶ௠

௡ୀଵ . (4)

In the formulae above, the first order approximation are the traditional linear force 
expressions ௞݂ = ݔ݇−  and ௖݂ = ሶݔܿ− . If ݊ = 0  for ௖݂ , then ௖݂  becomes dry friction which is 
irrelevant to velocity, so it is not considered. In this paper, the nonlinear forces are taken as the 
first two orders approximation: 

௞݂(ݔ) = ݔ݇− − ଷݔߟ = ݔ)௞ߦ− + Θ௞ݔଷ),    ௖݂(ݔሶ ) = ሶݔܿ− ∓ ሶݔߛ ଶ = ሶݔ)௖ߦ− ± Θ௖ݔሶ ଶ), (5)



2419. ANALYTICAL ANALYSIS ON DAMPING CHARACTERISTICS OF ROTOR SYSTEM.  
MIN WU, SHENGBO YANG, WEN BAO, JINFU YANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716 1699 

where ݇  is linear stiffness coefficient, ߟ  is nonlinear stiffness coefficient, ܿ  is linear damping 
coefficient, ߛ is nonlinear damping coefficient, ߦ௞ = ݇ is stiffness linear scale factor, ߦ௖ = ܿ is 
damping linear scale factor, Θ௞ = is stiffness mix ratio, Θ௖ ݇/ߟ = ܿ/ߛ

 
is damping mix ratio, the 

positive sign before Θ௖ is for positive nonlinear damping and negative sign for negative nonlinear 
damping. By taken Eq. (2), Eq. (3) and Eq. (5) into Eq. (1), the general form of nonlinear vibration 
model for a rotor system can be obtained: ݉ݔሷ + ሶݔ)௖ߦ ± Θ௖ݔሶ ଶ) + ݔ)௞ߦ + Θ௞ݔଷ) = ݉ΩଶݎcosΩ(6) .ݐ

For briefness and clarity, some substitutions are given as: 

߱଴ଶ = ݇݉ , ଴ଶߚߝ = ߟ݉ , ߤ = 2ܿ݉ , ଴ଶߙߝ = ߛ݉ , (7)

where ߱଴  is natural frequency, ߚ଴  is nonlinear stiffness amplification coefficient, ߤ  is 
nondimensional linear damping coefficient, ߙ଴ is nonlinear damping amplification coefficient. 
Thus ߦ௞ = ߱଴ଶ݉, Θ௞ = ௖ߦ ,଴ଶ/߱଴ଶߚߝ = 2 μm, Θ௖ = ሷݔ :and there are ,ߤ଴ଶ/2ߙߝ + ሶݔߤ2 ± ሶݔ଴ଶߙߝ ଶ + ߱଴ଶݔ + ଷݔ଴ଶߚߝ = ΩଶݎcosΩ(8) .ݐ

The equation is the nonlinear vibration model based on large deformation and large 
perturbation assumption for high-speed flexible rotor system. It is worth noting that, the positive 
sign before velocity square term indicates positive nonlinear damping, and the negative sign 
indicates negative nonlinear damping. 

3. Deduction and analytical solutions 

The quadratic approximate solution of Eq. (8) is deduced via multi-scale method: ݔ = )଴ݔ ଴ܶ, ଵܶ) + )ଵݔߝ ଴ܶ, ଵܶ),     ଴ܶ = ଵܶ     ,ݐ = (9) .ݐߝ

Take Eq. (9) into Eq. (8), according to the power orders of ߝ, and ܦ is a partial differential 
operator, there are: 

:଴ߝ ଴ݔ଴ଶܦ + ଴ݔ଴ܦߤ2 + ߱଴ଶݔ଴ = 12 Ωଶݎ(݁௝ஐ బ் + ݁ି௝ஐ బ்), (10)ߝଵ: ଵݔ଴ଶܦ + ଵݔ଴ܦߤ2 + ߱଴ଶݔଵ = ଴ݔଵܦ଴ܦ2− − ଴ݔଵܦߤ2 ∓ ଶ(଴ݔ଴ܦ)଴ଶߙ − ଴ଷ. (11)ݔ଴ଶߚ

The solution of Eq. (10) is: ݔ଴ = )ܥ ଵܶ)݁௥భ బ் + )ܥ̅ ଵܶ)݁௥̅భ బ் + ܳ݁௝ஐ బ் + തܳ݁ି௝ஐ బ்,ݎଵ = ߤ− + ݆ට߱଴ଶ − ܳ     ,ଶߤ = 12 Ωଶ߱ݎ଴ଶ − Ωଶ + Ωߤ2݆ ,  (12)

where ܥ is an unknown complex function, the overline represents the conjugate function. Take 
Eq. (12) into Eq. (11): ܦ଴ଶݔଵ + ଵݔ଴ܦߤ2 + ߱଴ଶݔଵ = −ሾ2ܦଵݎ)ܥଵ + (ߤ + ܳܥ଴ଶߚ6 തܳ + ଶఓି݁ܥଶ̅ܥ଴ଶߚ3 బ்ሿ݁௥భ బ்    ∓ߙ଴ଶܳ തܳΩଶ ∓ ଵ݁ିଶఓݎଵ̅ݎܥ̅ܥ଴ଶߙ బ் − ଴ଶܳଶߚ3 തܳ݁௝ஐ బ் ± ଴ଶܳଶΩଶ݁ଶ௝ஐߙ బ் − ଴ଶܳଷ݁ଷ௝ஐߚ బ்    ∓2݆ߙ଴ଶݎܥଵܳΩ݁௥భ బ்ା௝ஐ బ் ± ଵݎܥ଴ଶߙ2݆ തܳΩ݁௥భ బ்ି௝ஐ బ் − ଶఓି݁ܳܥ̅ܥ଴ଶߚ6 బ்ା௝ஐ బ்   − ଶܳ݁ଶ௥భܥ଴ଶߚ3 బ்ା௝ஐ బ் − ଶܥ଴ଶߚ3 തܳ݁ଶ௥భ బ்ି௝ஐ బ் − ଶ݁௥భܳܥ଴ଶߚ3 బ்ାଶ௝ஐ బ்    −3ߚ଴ଶܥ തܳଶ݁௥భ బ்ିଶ௝ஐ బ் ∓ ଵଶ݁ଶ௥భݎଶܥ଴ଶߙ బ் − ଷ݁ଷ௥భܥ଴ଶߚ బ் + ܿܿ,

 (13)
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where ܿܿ represents the conjugate functions of each term at the right side of the equal sign. The 
coefficient of first term ݁௥భ బ்  must be zero to avoid duration term. At any point without 
acceleration, ଴ܶ = 0, so ݁ିଶఓ బ் = 1. There is: 2ܦଵݎ)ܥଵ + (ߤ + ܳܥ଴ଶߚ6 തܳ + ܥଶ̅ܥ଴ଶߚ3 = 0. (14)

Assuming ܥ = ܽ݁௝ఝ/2, ܥ can be obtained: 

ܥ = 12 ܽ଴ exp ଶ(߱଴ଶݎ଴ଶΩସߚ6 ݆ۇۉ − Ωଶ)ଶ + ଶΩଶߤ4 + ଴ଶܽ଴ଶ8ඥ߱଴ଶߚ3 − ଶߤ ଵܶ + ݆߮଴(15) ,ۊی

where ܽ଴, ߮଴ are the integration constants which can be determined by initial conditions. Take  
Eq. (15) into Eq. (13) so ݔଵ can be solved, then the solution ݔ is: ݔ = ݐ଴cos(Ωܣ + (଴ߠ + ݐଵcos(Ωܣ + (ଵߠ ± ݐଶcos(2Ωܣ + (ଶߠ + ݐଷcos(3Ωܣ + (ଷߠ ± +  ସܣ ܽ଴݁ିఓ௧cos(߱ݐ + ߮଴) + ݐ଴ଵ݁ିଶఓ௧cosΩܣ ± ±  ସ଴݁ିଶఓ௧ܣ ߱)ଵଵ݁ିఓ௧cos൫ܣ + Ω)ݐ + ଵଵ൯ߠ ± ߱)ଵଵᇲ݁ିఓ௧cos൫ܣ − Ω)ݐ + +  ଵଵᇲ൯ߠ ଶଵ݁ିଶఓ௧cos൫(2߱ܣ + Ω)ݐ + ଶଵ൯ߠ + ଶଵᇲ݁ିଶఓ௧cos൫(2߱ܣ − Ω)ݐ + +  ଶଵᇲ൯ߠ ߱)ଵଶ݁ିఓ௧cos൫ܣ + 2Ω)ݐ + ଵଶ൯ߠ + ߱)ଵଶᇲ݁ିఓ௧cos൫ܣ − 2Ω)ݐ + ±  ଵଶᇲ൯ߠ ݐଶ଴݁ିଶఓ௧cos(2߱ܣ + (ଶ଴ߠ + ݐଷ଴݁ିଷఓ௧cos(3߱ܣ + ,(ଷ଴ߠ

 (16)

where: 

ߣ = ߱଴Ω ߜ    , = Ωߤ2 ,    ߱ = 12 Ωඥ4ߣଶ − ଶߜ + ଴ଶܣ଴ଶ(2ߚߝ3 + ܽ଴ଶ)4Ω√4ߣଶ − ଶߜ ଴ܣ   , = ଶߣ)ඥݎ − 1)ଶ +  ,ଶߜ
ଵܣ = − ݎ଴ଶ4Ωଶߚߝ3 ଶܣ    ,଴ସܣ = ଶߣ)଴ଶ2ඥߙߝ − 4)ଶ + ଶߜ4 ଷܣ    ,଴ଶܣ = − ଶߣ)଴ଶ4Ωଶඥߚߝ − 9)ଶ + ଶߜ9  ,଴ଷܣ
ସܣ = − ଶߣ଴ଶ2ߙߝ ଴ଵܣ    ,଴ଶܣ = − ݎ଴ଶܽ଴ଶ2Ωଶߚߝ3 ସ଴ܣ    ,଴ଶܣ = − 12 ଵଵܣ    ,଴ଶܽ଴ଶߙߝ = − ଶߣ4√ߣ଴ଶܽ଴ߙߝ − ଶߜ + 1 ଵଵᇲܣ     ,଴ܣ = − ଶߣ4√ߣ଴ଶܽ଴ߙߝ − ଶߜ − 1 ଶଵܣ       ,଴ܣ = ଶߣ଴ଶܽ଴ଶ4Ωଶට൫3ߚߝ3 + 1 − ଶߜ + ଶߣ4√2 − ଶ൯ଶߜ + ൫ߣ4√ߜଶ − ଶߜ + ൯ଶߜ  ,଴ܣ
ଶଵᇲܣ = ଶߣ଴ଶܽ଴ଶ4Ωଶට൫3ߚߝ3 + 1 − ଶߜ − ଶߣ4√2 − ଶ൯ଶߜ + ൫ߣ4√ߜଶ − ଶߜ − ൯ଶߜ  ,଴ܣ
ଵଶܣ = ଶߣ଴ଶܽ଴8Ωଶ൫√4ߚߝ3 − ଶߜ + 2൯ ଵଶᇲܣ    ,଴ଶܣ = ଶߣ଴ଶܽ଴8Ωଶ൫−√4ߚߝ3 − ଶߜ + 2൯  ,଴ଶܣ
ଶ଴ܣ = ଶߣ଴ଶܽ଴ଶඥ(−2ߙߝ + ଶ)ଶߜ + ଶߣଶ(4ߜ − ଶߣଶ)4ඥ(3ߜ − ଶ)ଶߜ + ଶߣଶ(4ߜ − (ଶߜ , 
ଷ଴ܣ = ଶߣ଴ଶܽ଴ଷ4Ωଶඥ(8ߚߝ − ଶ)ଶߜ3 + ଶߣଶ(4ߜ9 − ଴ߠ   ,(ଶߜ = −arctg ଶߣߜ − ଵߠ    ,1 = ଶߠ ,଴ߠ2 = −arctg ଶߣߜ2 − 4 + ଷߠ    ,଴ߠ2 = −arctg ଶߣߜ3 − 9 +  ,଴ߠ3

(17)
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ଵଵߠ = arctg ଶߣ4√ߜ − ଶߜ + ଴ߠ + ߮଴,    ߠଵଵᇱ = arctg ଶߣ4√ߜ − ଶߜ − ଴ߠ + ߮଴, ߠଶଵ = −arctg ଶߣ4√ߜ − ଶߜ + ଶߣ3ߜ + 1 − ଶߜ + ଶߣ4√2 − ଶߜ + ଴ߠ + 2߮଴, ߠଶଵᇲ = −arctg ଶߣ4√ߜ − ଶߜ − ଶߣ3ߜ + 1 − ଶߜ − ଶߣ4√2 − ଶߜ − ଴ߠ + 2߮଴, ߠଵଶ = ଴ߠ2 + ߮଴,    ߠଵଶᇱ = ଴ߠ2− + ߮଴, ߠଶ଴ = −arctg ଶߣ4√ߜ − ଶߣଶ−2ߜ + ଶߜ − arctg ଶߣ4√ߜ − ଶߣଶ3ߜ − ଶߜ + 2߮଴, ߠଷ଴ = −arctg ଶߣ4√ߜ3 − ଶߣଶ8ߜ − ଶߜ3 + 3߮଴, 
where ߣ is rotational speed ratio, ߜ is damping rotational speed ratio, ܣ௜ is amplitude, ߠ௜ is phase, ߱ is forced vibration frequency. Eq. (16) is the general solution response of the nonlinear vibration 
model, including steady-state solution and transient-state solution. The first five terms ܣ଴cos(Ωݐ + (଴ߠ + ݐଵcos(Ωܣ + (ଵߠ ± ݐଶcos(2Ωܣ + (ଶߠ + ݐଷcos(3Ωܣ + (ଷߠ ± ସܣ  are steady-
state solution, and the remaining terms are transient-state solution because they contain the 
attenuation term ݁ିఓ௧. For the ± sign of Eq. (16), the positive sign corresponds to the positive 
nonlinear damping, and the negative sign corresponds to the negative nonlinear damping. 

4. Analytical analysis and numerical calculation  

4.1. Analytical analysis 

The analysis of Eq. (17) can qualitatively elaborates the influences of the coefficients (such as 
linear stiffness ݇, linear damping ߤ, nonlinear stiffness ߚ଴, nonlinear damping ߙ଴) on responses. 
In Eq. (17), all the amplitudes ܣ௜, phases ߠ௜ and forced vibration frequency ߱ contain rotational 
speed ratio ߣ and damping rotational speed ratio ߜ ߣ defined as ,ߣ . = ߱଴/Ω = ඥ݇/݉/Ω, is a 
function of linear stiffness ݇ ߜ . , defined as ߜ = Ω/ߤ2 , is a function of linear damping ߤ . 
Amplitudes ܣ௜ contain nonlinear stiffness ߚ଴ and nonlinear damping ߙ଴, while phases ߠ௜ do not 
contain the both, and frequency ߱ contains only ߚ଴. It is indicated that both nonlinear coefficients 
have an impact on amplitudes but not phases, and only nonlinear stiffness has an impact on forced 
vibration frequency. The following will be a detailed analysis of coefficients’ effects on each 
parameter. 

1. Phases ߠ௜ only contain ߣ(݇) and (ߤ)ߜ, that is, phases only depend on linear stiffness ݇ and 
linear damping ߤ, irrelevant to nonlinear stiffness ߚ଴ and nonlinear damping ߙ଴. Nonlinear forces 
do not affect the phases change. 

2. Forced vibration frequency ߱ contains ߜ ,ߣ and ߚ଴. Compared with the natural frequency of 
free vibration ߱ = ඥ߱଴ଶ − ଶߤ + ଴ଶܽ଴ଶߚߝ3 8ඥ߱଴ଶ − ⁄ଶߤ  [11, 12], the natural frequency of forced 
vibration is: 

߱ = 12 Ωඥ4ߣଶ − ଶߜ + ଴ଶܣ଴ଶ(2ߚߝ3 + ܽ଴ଶ)4Ω√4ߣଶ − ଶߜ = ට߱଴ଶ − ଶߤ + ଴ଶܣ଴ଶߚߝ6 + ଴ଶܽ଴ଶ8ඥ߱଴ଶߚߝ3 − ଶߤ , 
where the additional term 6ߚߝ଴ଶܣ଴ଶ 8ඥ߱଴ଶ − ⁄ଶߤ  is the natural frequency correction term caused by 
the unbalance mass excitation of forced vibration, and this is the difference with that of free 
vibration model. It can be seen that, if the system adds external excitation, a corresponding 
correction term will be added into the natural frequency, such as the unbalanced mass excitation 
can cause a natural frequency correction term of nonlinear stiffness ߚ଴ and fundamental frequency 



2419. ANALYTICAL ANALYSIS ON DAMPING CHARACTERISTICS OF ROTOR SYSTEM.  
MIN WU, SHENGBO YANG, WEN BAO, JINFU YANG 

1702 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

amplitude ܣ଴. The nonlinear damping ߙ଴ has no effect on the natural frequency. 
3. Amplitudes ܣ௜ contain ߚ ,ߜ ,ߣ଴ and ߙ଴. It is indicated that linear and nonlinear force will 

affect amplitudes. The specific effects of linear damping (ߤ)ߜ and nonlinear damping ߙ଴ on the 
steady-state and transient-state amplitudes are analyzed in detail as follows. 

4. For linear damping (ߤ)ߜ , the ߜଶ  term appears in the denominators of the steady-state 
amplitudes ܣ଴ −  ;increases ߜ ସ, so the steady-state amplitudes decrease as the absolute value ofܣ
the ߜଶ term appears in the denominators of the transient-state amplitudes and also in the numerator 
of ܣଶ଴. 

If linear damping (ߤ)ߜ  is positive, the ݁ିఓ௧  is an attenuation term, so the transient-state 
amplitudes can be ignored for they are one magnitude smaller than that of steady-state. The 
vibration is dominated by steady-state, and the amplitudes decrease as the absolute value of ߜ 
increases. If (ߤ)ߜ  is negative, the ݁ିఓ௧  becomes a divergence term, so the transient-state 
amplitudes are much larger than that of steady-state. The vibration is dominated by transient-state, 
and the amplitudes increase as the absolute value of ߜ increases. That is, positive ߜ can restrain 
vibration, negative ߜ  can intensify vibration, and this is consistent with the phenomenon in 
engineering practice. 

Moreover, this is also consistent with the classical theory that negative damping can lead to 
system instability, and in this paper a more detailed mechanism analysis is given by using 
analytical expressions of steady-state and transient-state. If ߜ  is positive, it can restrain both 
steady-state and transient-state amplitudes, so the positive linear damping can restrain the 
vibration, which is unquestionable. If ߜ  is negative, though it can still restrain steady-state 
amplitudes, the restraint effect is much smaller than the divergence effect on transient-state 
amplitudes, so the total amplitudes increase rapidly and the negative linear damping can cause 
instability. Of course, this theoretical analysis still needs further experimental verification. 

5. For nonlinear damping ߙ଴, the ߙ଴ଶ term appears only in the numerators of the steady-state 
amplitudes ܣଶ, ସܣ  and the transient-state amplitudes ܣସ଴, ,ଵଵܣ  ,ଵଵᇲܣ  ,ଶ଴ܣ   so the amplitudes 
increase as the absolute value of ߙ଴ increases. Thus, nonlinear damping can intensify vibration. 
However, the amplitude change caused by nonlinear damping is smaller than that of linear 
damping. The quantitative comparisons of response curves are in the following Section 4.2. 

Apparently, by analyzing the parameter expressions Eq. (17), it can be seen that: (1) Phase 
modulation is related to linear stiffness ݇ and linear damping (2) .ߤ Frequency modulation is 
related to nonlinear stiffness ߚ଴, ݇, (3) .ߤ Amplitude modulation is related to nonlinear damping ߙ଴ ଴ߚ , , ݇ ߤ , . All the coefficients are constants, and the machanism analysis for damping on 
steady-state and transient-state solution needs to be further verified by experiments. 

4.2. Numerical calculation 

The theoretical calculation parameters are as follows: ݉ = 1 kg, ݇ = 1×104 N/m, ߤ = 12 rad/s, ߱଴ = 100 rad/s, ݎ = 1×10-5 m, ߟ = ଴ଶ݉ߚߝ = 2.5×1012 N/m3, ߛ = ଴ଶ݉ߙߝ = 9×104 Ns2/m2. Using 
MATLAB software, the influence of the coefficients on the amplitudes, phases and responses of 
the general solution are calculated and analyzed. 

Fig. 2 shows the total response of Fig. 2(a), steady-state response of Fig. 2(b) and transient-
state response of Fig. 2(c, d) under the conditions of positive nonlinear damping (left) and negative 
nonlinear damping (right), where ݔ௧௢௧௔௟, ݔ௦௧௘௔ௗ௬, ݔ௧௥௔௡௦௜௘௡௧ represent the general solution (i.e., the 
sum of steady-state and transient-state), steady-state solution and transient-state solution 
respectively, ௜݂ represents the response of corresponding term ܣ௜×cos( ) in which the subscript is 
the same. For the steady-state response, it is obviously that ଷ݂ is the smaller one in Fig. 2(b). For 
the transient-state response, ௔݂଴ , ଵ݂ଵ , ݂ଵଵᇲ , ݂ଵଶᇲ  are the larger ones in Fig. 2(c) while the rest 
smaller ones in Fig. 2(d). The transient-state response is about two orders of magnitude smaller 
than the steady-state response.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 2. a) The total, b) steady-state and c), d) transient-state response  
(left: positive nonlinear damping, right: negative nonlinear damping) 
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Compared the two responses under positive and negative nonlinear damping conditions, it can 
be seen that the response curves which are almost symmetrical about ݔ -axis also have the 
difference of positive and negative, while the positive and negative of the displacement responses 
are only represent the difference in vibration direction, and the trend of curves remains the same. 

Fig. 3 shows the amplitudes ܣ௜ and phases ߠ௜ of steady-state of Fig. 3(a) and transient-state of 
Fig. 3(b) under positive nonlinear damping condition. The curves under negative nonlinear 
damping condition have the same trend, so omitted. As can be seen from the figure, both 
amplitudes and phases change with rotational speed and have peak value at the critical speed  
(Ω = ߱଴ = 100 rad/s), indicating that at critical point the amplitudes will reach extremum and the 
phases change are the integer multiple of 90 deg. The phases ߠଶ, ߠଷ of steady-state have peak 
value at 1/2, 1/3 of speed range additionally, which is caused by the second and third harmonic 
generations. 

Fig. 4 shows the influence of positive value and negative value change of the linear damping 
coefficient of Fig. 4(a) and nonlinear damping coefficient of Fig. 4(b) on responses, where the 
nonlinear damping coefficient is written in the form of ߛ =  .଴ଶ݉ for calculation convenienceߙߝ
Note that only negative linear damping coefficient ߤ corresponds to the steady-state response, 
while others correspond to the total response (i.e., the sum of steady-state and transient-state). It 
can be seen from Fig. 4 that the vibration decreases as the absolute value of linear damping 
increases (only steady-state vibration decreases as ߤ is negative), and the vibration increases as 
the absolute value of nonlinear damping increases. If the damping is doubled, the vibration change 
is less than twice caused by nonlinear damping, and about one order of magnitude caused by linear 
damping, so nonlinear damping’s impact is less than linear damping’s. If ߤ is negative, the total 
response is given in Fig. 5. It is obvious that the magnitude of transient-state response increases 
rapidly as the attenuation term becomes divergence term, and the steady-state response is 
negligible. 

 
a) 

 
b) 

Fig. 3. a) Steady-state and b) transient-state 
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a) 

 
b) 

Fig. 4. a) Responses of linear and b) nonlinear damping coefficient (Only negative linear damping’s 
response is steady-state response, others are total responses.) 

 

 
Fig. 5. Transient-state response is much larger than steady-state for negative linear damping 

Therefore, it can be indicated that: (1) Positive linear damping can restrain vibration. 
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(2) Negative linear damping’s restraint effect on steady-state is far less than the exponential 
divergence effect on transient-state, so it can intensify vibration. (3) Nonlinear damping can 
intensify vibration, but its influence is less than that of linear damping. 

4.3. Experiment results 

Set up a single-disc principle rotor test bed for verification, as shown in Fig. 6. Rotor material 
with ߮235 steel, disc mass 0.5 kg, disc radius 0.039 m, shaft radius 0.005 m, elastic modulus  
200 GPa, Poisson ratio 0.3, bearing span 0.4335 m, disc distance from the left bearing of 
0.13005 m. Displacement and phase signals are input to the DASP software for real-time 
monitoring and analysis [18, 19]. The experiment on the effect of the oil film force of sliding 
bearing is carried out to verify the damping effect on the vibration behaviors in the nonlinear 
vibration model proposed in this paper. 

Fig. 7 shows the time-amplitude-frequency spectrum of Fig. 7(a), and the bifurcation diagram 
of speed-up process of Fig. 7(b). In Fig. 7(a), the rotor is first speed-up then speed-down, the 
maximum speed of 10237 rpm, where Res is resonance area, Sub1 is oil whirl area, Sub2 is oil 
whip area and Sub3 is double subharmonic area. In Fig. 7(b), typical shaft orbits are selected for 
each bifurcation section, namely, period-1 (5110 rpm), bifurcation (6878 rpm) and chaos  
(9739 rpm), which is shown in detail in Fig. 8. 

 
Fig. 6. Single-disc principle rotor test bed 

 
a) 

 
b) 

Fig. 7. a) Time-amplitude-frequency spectrum and b) bifurcation diagram of speed-up process 

   
Fig. 8. Shaft orbits 

For the vibration behaviors such as rotation and whirl in the experiment, the oil film force 
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model of reference [20] is used to analyze the damping effect, which is also corresponding to the 
linear damping term 2ݔߤሶ  of Eq. (8). The oil film force model [20] is ܨగ = ଵ݂߱଴ − ଶ݂Ω + ଷ݂ߝሶ, 
where ௜݂ is positive coefficients, ߱଴, Ω, ߝሶ is rotational frequency, whirl frequency and squeezing 
rate respectively. As can be seen from Fig. 8, the amplitude of shaft orbit increases from period-1 
(5110 rpm) to bifurcation (6878 rpm) due to the negative linear damping effect which can reduce 
the loading capacity of the oil film. It is consistent with the theoretical analysis in this paper. 

When the rotational speed is above 9000 rpm, the development path of chaos can be seen 
clearly from the figure, and the amplitude of shaft orbit increases gradually, such as 9739 rpm. It 
is because under the combined effects of negative linear damping and nonlinear damping, the 
subharmonic frequency of self-excited vibration generated by shaft and oil film is close to the 
natural frequency of the rotor system, which causes the frequency locking resonance, namely the 
oil film whip phenomenon. When the rotational speed increases in the whip area, the rotational 
frequency increases, so the positive linear damping increases, which lead to the amplitude 
decrease; the whirl frequency increases, so the negative linear damping increases, which lead to 
the amplitude increase. Therefore, the oil film whirl and whip characteristics of the experiment 
shows that the positive linear damping can restrain vibration, while the negative linear damping 
and the nonlinear damping can intensify vibration. 

5. Conclusions 

In this paper, by introducing linear and nonlinear force, a nonlinear vibration model is 
established for high-speed flexible rotor system, and the analytical solutions are deduced and 
analyzed. The conclusions are as follows. 

1. The general form of nonlinear vibration model is constructed, and the analytical solutions 
of steady-state and transient-state are derived under the conditions of positive and negative 
nonlinear damping coefficient. 

2. The influence and physical significance of the coefficients on parameters are analyzed. The 
phase modulation is related to linear stiffness ݇ and linear damping ߤ. The frequency modulation 
is related to nonlinear stiffness ߚ଴, ݇, ߤ. The amplitude modulation is related to nonlinear damping ߙ଴, ߚ଴, ݇, ߤ. 

3. Positive linear damping can restrain vibration, while negative linear damping and nonlinear 
damping can intensify vibration. Nonlinear damping has less influence on vibration than linear 
damping. The experimental results verify the damping effect and the rationality of the nonlinear 
vibration model. 
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