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Abstract. Most complex engineering structures are three-dimensional in practice. The process of 
one-dimensional extending to three-dimensional is a challenge that must be conquered by 
Operational Modal Analysis (OMA) methods when these methods are applied to complex 
engineering applications supported by scientific researches. This study put forward a new 
three-dimensional structure OMA method based on Second-Order Blind Identification (SOBI) and 
general reversion of least square. Firstly, modal coordinates decomposition of one-dimensional 
structural vibration response signal with SOBI. Secondly, the reasons that modal parameters 
identified by SOBI including energy uncertainty, order uncertainty and modal missing are 
explained in theory. Thirdly, the SOBI algorithm is used to decompose the response signals of 
displacement of a direction whose vibration response is the largest, then the other two directions 
are calculated by using the least square generalized inverse algorithm, and the modal parameters 
of three-dimensional structures are identified by the matrix assembly method. Numerical 
simulation results in a cylindrical shell demonstrated that this novel method is practical and 
effective by applied to practice in OMA of three-dimensional structures, and robustness to Gauss 
measurement noise disturbances. 
Keywords: operational modal analysis, three-dimensional structures, second-order blind 
identification, least square generalized inverse, matrix assembly. 

1. Introduction 

Unlike experimental modal analysis, Operational Modal Analysis (OMA) extracts modal 
parameters (including mode shapes, natural frequencies and damping ratios) only from vibration 
response signals when the structures are working condition [1]. There are some distinct advantages 
to adopt this approach: 1) The structure bears ambient excitation not artificial excitation; 2) The 
identified modal parameters, which can truly reflect on the dynamic characteristics of working 
structures, conforms to the real work and boundary condition. Therefore, OMA is more suitable 
for practical engineering applications and has great significance in areas of quality control, health 
monitoring and damage diagnosis [2-5]. 

A variety of methods about OMA are developed all over the world. Considering both 
categories: the domain of frequency and the domain of time [6], the blind source separation 
technique belongs to the latter [7, 8]. What is more, it is demonstrated that there is a one-to-one 
correspondence between the vibration modes and the mixing matrix in free and random vibrations 
of weakly damped systems [9]. Second-Order Blind Identification (SOBI) is a way of the blind 
source separation technique [10-11], and it has been applied to the field of OMA [12-14] since 
2007. However, the research on three-dimensional structures of output-only modal analysis with 
the blind source separation technique is quite rare [15].  

As three-dimensional structures are more complex, the process of modal analysis of three-
dimensional structure is a challenge and will be conquered by OMA methods, when the methods 
are applied to engineering applications supported by scientific researches. Thus, this study 
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proposes a new OMA method based on SOBI of three-dimensional structures. Firstly, this new 
method takes advantages of the SOBI algorithm to decompose the response signals of 
displacement of the largest one direction. Secondly, the other two directions are calculated by 
using the general reversion of least square algorithm, and finally the modal parameters of 
three-dimensional structures are identified by the matrix assembly method. 

The remainder of this study is structured as follows: Section 2 describes the principle of SOBI, 
and applies SOBI to OMA of three-dimensional structure in Section 3. The identification results 
of a cylindrical shell and analysis are focus in Section 4. Finally, the conclusions and outlooks are 
outlined in Section 5. 

2. SOBI for OMA of one-dimensional structures 

2.1. The model of blind source separation  

Supposing that observed signals (ݐ)܆ = ,(ݐ)Ԧଵݔ] ,(ݐ)Ԧଶݔ ⋯ , ்[(ݐ)Ԧ௡ݔ ∈ ℝ௡×்  mixed by several 
unobserved signals (ݐ)܁ = ,(ݐ)Ԧଵݏ] ,(ݐ)Ԧଶݏ ⋯ , ்[(ݐ)Ԧ௠ݏ ∈ ℝ௠×், the linear blind source separation 
model under the condition of non-noise is expressed as: (ݐ)܆ = ݐ     ,(ݐ)܁ۯ = 1, 2, … , ܶ, (1)

where, ۯ ∈ ℝ௡×௠  is a mixing matrix. In the present of measurement noises, the source 
identification model can be expressed as: (ݐ)܆ = (ݐ)܁ۯ + (2) .(ݐ)ۼ

In order to recover source signals (ݐ)܁ from observed mixing signals (ݐ)܆, it is necessary to 
find a separated matrix ܅ ∈ ℝ௠×௡ to meet the following equation: (ݐ)܇ = ݐ     ,(ݐ)܆܅ = 1, 2, … , ܶ, (3)

where, (ݐ)܇ is an estimation matrix of (ݐ)܁, Fig. 1 shows the principle of blind source separation. 

 
Fig. 1. The model of blind source separation 

2.2. Using SOBI to solve blind source separation model 

The main idea of the blind source separation is that recovering the unobserved source signals 
from multiple observed mixing signals without any prior information. SOBI is a blind source 
separation technique, which is different from independent component analysis [16]. By using joint 
diagonalization of a set of covariance matrices, SOBI can estimate the separated matrix  
effectively [10]. 

Second order blind identification mainly uses the joint diagonalization of a set of covariance 
matrices to estimate source signals accurately. There are two hypotheses: The mixing matrix is a 
column full rank matrix and the sources are not related to each other. 

According to the hypotheses, the whiten matrix ܄ ∈ ℝ௡×௡  is calculated by eigenvalue 
decomposition as below: 
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܄ = (4) ,்(ܖ܍܏۳ܑ)ଵଶି(܏܉۲ܑ)

where ۲ܑ܏܉ = diag(݀ଵ, ⋯ , ݀௡) ∈ ℝ௡×௡ is a diagonal matrix composed by eigenvalues ݀ଵ, ⋯ , ݀௡, ۳ܑܖ܍܏ ∈ ℝ௡×௡  is a eigenvector matrix of the covariance matrix ۱܆܆ = {(ݐ)்܆(ݐ)܆}ܧ ∈ ℝ௡×௡. 
Thus, the observed matrix (ݐ)܆ is preprocessed to (ݐ)܈ ∈ ℝ௡×்: (ݐ)܈ = (5) .(ݐ)܆܄

When the matrix ܄ is a whiten matrix, the covariance matrix of (ݐ)܈ is a unit matrix, and the 
second-order correlation between each component has been removed. 

The set of covariance matrices is estimated as follows: ܀(߬) = ݐ)܈]ܧ + [(ݐ)்܈(߬ = ்܃(߬)௦܀܃ ∈ ℝ௡×௡, (6)

where ߬ ∈ { ௝߬|݆ = 1, 2, ⋯ , ݇} is a fixed time delay. 
For all the ܀( ௝߬) ∈ ℝ௡×௡ , using joint diagonalization algorithm, the orthogonal matrix  ܃ ∈ ℝ௡×௠ is estimated: ܀்܃൫ ௝߬൯܃ ≈ Λ௝, (7)

where Λ௝ ∈ ℝ௠×௠ is a diagonal matrix. 
Therefore, the source signals can be estimated as (ݐ)܇ :(ݐ)܇ = (8) .(ݐ)܆܄்܃

And the separated matrix ܅ is: ܅ = (9) .܄்܃

An estimation matrix of mixing matrix ۯ is: ۯ෡ ≜ (10) .܃ଵି܄

2.3. Uncertainty factors in using SOBI to solve blind source separation model 

It is easy to find some inevitable ambiguity or uncertainty factors from Eq. (1), which are 
summarized as followings: 

a) The variance of the separated signal is uncertain.  
Suppose ۲ is a diagonal matrix, the linear instantaneous mixture modal can be expressed as: (ݐ)܆ = (ݐ)܁۲[۲ିଵۯ] ⇔ (ݐ)܆ = (11) .(ݐ)܁ۯ

So, the amplitude of separated signal is inconsistent with the amplitude of source signals. 
b) The order of the separated signal is uncertain. 
Suppose ۾  is a permutation matrix, the linear instantaneous mixture modal can be  

expressed as: (ݐ)܆ = (ݐ)܁۾[ଵି۾ۯ] ⇔ (ݐ)܆ = (12) ,(ݐ)܁ۯ

where (ݐ)܁۾ is a new source signals matrix after reordering and ି۾ۯଵ is a new mixing matrix. 
The reason is that it is impossible to determinate specific values of the mixing matrix ۯ and 

source signals (ݐ)܁ simultaneously without any prior knowledge. 
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c) The number of separated components is uncertain 
It is hard to identify and separate independent components, if the contribution of independent 

components is not sufficient. So, without any prior knowledge, to determine the number of 
separated components or sources by the SOBI algorithm is difficult. 

2.4. Modal coordinates decomposition of one-dimensional structural vibration response 
signal 

OMA extracts modal parameters (including mode shapes, natural frequencies and damping 
ratios) only from response signals when the structures at working condition. For ݊-degree of 
freedom time-invariant vibration systems, the kinetic equation is: ܆ۻሷ (ݐ) + ሶ܆۱ (ݐ) + (ݐ)܆۹ = (13) .(ݐ)۴

In Eq. (13), ۻ ∈ ℝ௡×௡, ۱ ∈ ℝ௡×௡, ۹ ∈ ℝ௡×௡ represent the mass matrix, the damping matrix 
and the stiffness matrix, respectively. ۴(ݐ) ∈ ℝ௡×்  is an external excitation, as well as  (ݐ)܆ ∈ ℝ௡×்  is a displacement matrix, ܆ሶ (ݐ)  and ܆ሷ (ݐ)  are the first derivative and the second 
derivative of (ݐ)܆ respectively. 

For proportional damped vibration systems under ambient excitation, it’s random vibration 
response that can be decomposed in modal coordinates: 

(ݐ)ௗ௔௠௣௘ௗ܆ ≈ ઴(ݐ)ۿ = ෍ ߶ሬԦ௜ݍԦ௜(ݐ).௡
௜ୀଵ  (14)

In Eq. (14), ઴ ∈ ܴ௡×௠ represents modal shape matrix making a series of mode shapes ߶ሬԦ௜ and (ܜ)ۿ ∈ ℝ௠×் is the vector matrix composed of each order modal response ݍԦ௜(ݐ). Through the 
modal response, the mode frequency ߱௜ and modal damping ratio ߦ௜ can be calculated. 

By the way, normalized modal shapes and the modal response matrix meet: ߶ሬԦ௜் ߶ሬԦ௝ = ൜1,     ݆ = ݅,0,     ݆ ≠ [(ݐ)்ۿ(ݐ)ۿ]ܧ(15) ,݅ = Λ௡×௡, (16)

where ܧ{⋅} represents expectation, and Λ௡×௡ is a diagonal matrix whose size is ݊×݊. 

2.5. OMA for one-dimensional structures by SOBI and its uncertainty factors 

According to the mode theory, it is well known that each of the modal coordinates vector is 
independent. Combining with the SOBI algorithm, the response of structures decomposes into 
mode coordinate vectors and a mode shape matrix. Modal coordinates vectors can be regarded as 
source signals, and responses of systems can be recognized as observed signals, as well as the 
modal shape matrix is the mixing matrix. Therefore, SOBI can identify the modal parameters, and 
the process of identifying as showed in Fig. 2.  

 
Fig. 2. The process of identifying modal parameters by SOBI 
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On account of three assumptions of the SOBI method, the identified modal parameters have 
the following characteristics. 

Every order of the modal shape has the different amplitude. In case of the SOBI method, the 
energy of separation matrix is not unique, and separated components also lose amplitude 
information. Unlike the principal component analysis method [17], the SOBI method cannot get 
the contribution ratio information of each modal. The modal shape is a relative quantity rather 
than an absolute value. So, in order to compare the modal shape with the real modal shape, the 
separation matrix and the modal shape identified by the SOBI method should be normalized. 

The order of modal parameter identified by SOBI is uncertain. Modals identified by the SOBI 
method are not in accordance with the order from small to large. In fact, the first separated output 
modal is the one whose independence is the strongest rather than the first order modal parameter. 
Therefore, in order to compare natural frequencies with real natural frequencies, modal parameters 
need to be reordered by modal frequencies. 

It is hard to identify and separate independent components, and to determine the numbers of 
modal parameters if the contribution of independent components is not sufficient. So, in the SOBI 
algorithm based output-only modal analysis, if the modal parameter is a small contribution to 
independence, the SOBI method may barely identify them and will cause modal parameters 
missing.  

3. SOBI for OMA of three-dimensional structures 

3.1. Problems and differences in OMA for one-dimensional to three-dimensional structures  

Actual engineering structures are three-dimensional. From one-dimensional to 
three-dimensional, it takes a big step from scientific researches to engineering applications of 
modal analysis based on a series of blind source separation methods. 

The matrix assembles: the vibration matrix of one-dimensional structures is a one-dimensional 
vector, the proportion of the value of each modal makes sense, but the amplitude of the modal 
does not make any sense. And the vibration matrix of the three-dimensional structure is combined 
by three directions ܺ, ܻ and ܼ. Each direction of the scale factor and the modulus ratio should stay 
the same, otherwise it becomes a one-dimensional vibration mode of three directions, rather than 
a three-dimensional vibration mode of structures. How to carry out this process is a big challenge. 

As the three-dimensional structures are more complex, it is inevitable that the errors of the 
identified modal parameters will be the greater than the identified modal parameters in 
one-dimensional structures. 

3.2. Modal coordinates decomposition of three-dimensional structural vibration response 
signals 

For complex three-dimensional continuous systems under ambient excitation, its random 
response in time domain can be decomposed in modal coordinates: 

ەۖۖۖ
۔ۖ
(ݐ)௧௛௥௘௘܆ۓۖۖ = Ψ۶(ݐ) = ෍ ሬ߰Ԧ௜ஶ

௜ୀ଴ ℎሬԦ௜(ݐ),
(ݐ)௧௛௥௘௘܇ = (ݐ)۶۽ = ෍ Ԧ௜ஶ݋

௜ୀ଴ ℎሬԦ௜(ݐ),
(ݐ)௧௛௥௘௘܈ = (ݐ)۰۶ = ෍ ሬܾԦ௜ஶ

௜ୀ଴ ℎሬԦ௜(ݐ),
 (17)
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where ሬ߰Ԧ௜ Ԧ௜݋ , , ሬܾԦ௜  are the ݅ th ( ݅ = 1, 2, … , ∞ ) mode shape vector of ܆௧௛௥௘௘ ௧௛௥௘௘܇, and ܈௧௛௥௘௘ 
direction. ℎሬԦ௜(ݐ) is the ݅th modal coordinate response which contains the information of the modal 
natural frequency.  

In finite element analysis and experimental analysis, the three-dimensional systems are 
discretized to ݀  test points, and the time is discretized to ܶ  number of sampling points, and ݐ = 1, 2, … , ܶ. Therefore, the vibration response in the domain of time can be approximated as: 

۔ۖەۖ
(ݐ)்×ௗ(௧௛௥௘௘܆)ۓ ≈ Ψௗ×௟۶௟×்(ݐ),(܇௧௛௥௘௘)ௗ×்(ݐ) ≈ (ݐ)்×ௗ(௧௛௥௘௘܈),(ݐ)்×ௗ×௟۶௟۽ ≈ ۰ௗ×௟۶௟×்(ݐ),  (18)

where ݈ is the number of modal truncation calculated by finite element analysis. ۶௟×்(ݐ) of three 
directions are the same, so the modal coordinate response just should be calculated only once. 

3.3. Right pseudo inverse and its general reversion the minimal norm solution of least square 

Modal coordinates responses ۶௟×்(ݐ) are the same in three directions. ܶ is the discretized 
number, and ݈ is the the number of modal truncation. So ܶ > ݈ and ݇݊ܽݎ(۶௟×்(ݐ)) = ݈, the matrix ۶௟×்(ݐ)۶்×௟் (ݐ) ∈ ℝ௟×௟is reversible. The right pseudo inverse matrix defined as [19]: ۶்×௟ା (ݐ) ≜ ۶்×௟் ௟்×۶்(ݐ)்×൫۶௟(ݐ) ൯ିଵ, (19)(ݐ)

where the right pseudo inverse matrix meets ۶௟×்(ݐ)۶்×௟ା (ݐ) = ۷௟×௟ , the right pseudo inverse 
matrix is uniquely determined and right pseudo inverse is associated with its general reversion the 
minimal norm solution of least square. 

After decomposing the response in one direction based on the SOBI modal analysis algorithm, 
this study requires to take use of the mode shape of the first direction, and calculates the modal 
parameters of the other two directions by the general reversion of least square algorithm. 

The least squares generalized inverse method is the unbiased optimal estimate of the sum of 
squares of errors and the minimum sense [19, 20]. Supposing the vibration response ܺ direction 
is the largest, the mode shape matrix શௗ×௟  and the modal coordinate response ۶௟×்(ݐ)  of ܺ 
direction is known, according to Eq. (18), the vibration response of ܻ direction: (܇௧௛௥௘௘)ௗ×்(ݐ) = (20) .(ݐ)்×ௗ×௟۶௟۽

Multiplied by ۶்×௟் ௟்×۶்(ݐ)்×ௗ(௧௛௥௘௘܇) :on both sides of Eq. (20) (ݐ) (ݐ) = ௟்×۶்(ݐ)்×ௗ×௟۶௟۽ (21) ,(ݐ)

So, the mode shape matrix ۽ௗ×௟ of ܻ direction can be expressed as: ۽ௗ×௟ = ௟்×۶்(ݐ)்×ௗ(௧௛௥௘௘܇) ௟்×۶்(ݐ)்×۶௟](ݐ) ଵ. (22)ି[(ݐ)

In the same way, the mode shape matrix of ܼ direction also can be got: ۰ௗ×௟ = ௟்×۶்(ݐ)்×ௗ(௧௛௥௘௘܈) ௟்×۶்(ݐ)்×۶௟](ݐ) ଵ. (23)ି[(ݐ)

3.4. OMA for three-dimensional structures by SOBI and general reversion of least square 

The select of a direction decomposed by the SOBI algorithm: in the first place, one direction 
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of three-dimensional structures is decomposed by SOBI, however if selecting the different 
directions to decompose, it will affect the final effect of modal parameters. So, which directions 
are decomposed needs to be explained theoretically and demonstrated by experiments. 

The modal response matrix returns into other two directions: since the modal response is the 
same in three directions, decomposing the response of one direction based on SOBI modal analysis 
algorithm which requires to return into the other two directions. The modal response is a matrix. 
How to return into the other directions? In practice, the response of other two directions is 
multiplied by the inverse of the modal response matrix. 

In order to identify operational modal parameters of three-dimensional structures, a strategy is 
adopted as below and the process of OMA for three-dimensional structures is shown in Fig. 3 
below (Supposing that vibration response of ܺ direction is largest). 

1) The purposed method takes advantages of SOBI algorithm to decompose a direction of the 
response signals of displacement which vibration response is the largest. Supposing the vibration 
response ܺ direction is the largest, we can get the mode shape matrix શௗ×௟ and modal coordinate 
response ۶௟×்(ݐ) of ܺ direction. 

2) The purposed method calculates the mode shape matrix of other two directions by using the 
general reversion of least square algorithm. The mode shape matrix ۽ௗ×௟ of ܻ direction can be 
calculated with Eq. (22) and the mode shape matrix ۰ௗ×௟ of ܼ direction can be calculated with  
Eq. (23). 

3) The modal parameters of three-dimensional structures are identified by the matrix assembly 
method. In other words, [ ሬ߰Ԧ௜, ,Ԧ௜݋ ሬܾԦ௜] is the ݅th mode shape of three-dimensional structures, and ℎሬԦ௜(ݐ) is the ݅th modal coordinates response. 

 
Fig. 3. Process of OMA for three-dimensional structure 

4. Operational modal identification Simulation verification of three-dimensional structures 

4.1. Simulation data generation of three-dimensional structures 

The simulation data mainly pays attention to the cylindrical shell. The parameters settings of 
cylindrical shell are listed as follows: the thickness is 0.005 m, the length is 0.37 m, the radius is 
0.1825 m, the elasticity modulus is 205 GPa, the poison’s ratio of materials is 0.3, the density of 
materials is 7850 kg/m3, mode damping ratios are 0.03 and 0.1 respectively.  

The cylindrical shell is a continuum structure, and it must be discretized in order to calculate 
the modal and vibration response of the structure by finite element method. The more the number 
of discretized units, the more accurate the calculated modal and vibration response. Along the 
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axial cylindrical shell distributes evenly 38 circles, each circle distributes evenly 115 observation 
spots which are shown in Fig. 4. Thus, the total of observation spots ݀ = 4370. The uniform white 
noises excitation is applied at each response point to generate the simulation data. In order to 
characterize the cylindrical shell structure of the complex three-dimensional mode shape with high 
accuracy, so many observation spots are chosen in the simulation. Operational modal parameter 
identification only requires that the number of response points is more than the number of the 
modal of the structure. So, for a real structure under normal working conditions, SOBI based 
three-dimensional operational modal parameter identification does not need so many sensors. The 
sensor points are more than or equal to the number of the modals in three directions of the  
structure. Of course, the more of the sensor points, the more accurate of the identification mode 
shapes. At the same time, the sampling frequency is placed at 5120 Hz, and the sampling time is 
set to 1 s, ܶ = 5120. The boundary conditions of the cylindrical shell are simply supported at both 
ends. At last, response signals of three directions are calculated by LMS Virtual.Lab [18] using 
finite element analysis (FEA). An observation spot is selected randomly, such as the 1118th spot 
whose response signals of three directions shown in Fig. 5. 

Response data are divided into two groups: data without measurement noises and data with 5 % 
Gauss measurement noises. 

 
Fig. 4. 3-D picture of the cylindrical shell 

 
a) Response of ܺ direction about the 1118th observation spot 

 
b) Response of ܻ direction about the 1118th observation spot 

 
c) Response of ܼ direction about the 1118th observation spot 

Fig. 5. The response signals of three directions 

4.2. Evaluation criteria 

In order to evaluate the effect of identification about the new method of three-dimensional 
structures, the mode shapes and natural frequencies are calculated by the finite element analysis 
(FEA) method as the real modal parameters to compare with the identified modal parameters. 
Modal assurance criterion (MAC) is an important criterion to reflect the effectiveness of the modal 
identification by the new method. The modal assurance criterion is defined as: 
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௝ܥܣܯ = (߶ሬԦ௝் ߶തሬԦ௝)ଶ(߶ሬԦ௝் ߶ሬԦ௝)(߶തሬԦ௝் ߶തሬԦ௝). (24)

In Eq. (24), ߶ሬԦ௝ is a theoretical value by the FEA method of the ݅th order mode shape and ߶തሬԦ௝ 
represents the identified value by the new method of ݅th order mode shape. It is worth noting that 
the value of MAC ranges from 0 to 1, and the value closer to 1 states the higher accuracy of the 
identified mode shape. 

4.3. Simulation verification results 

From Fig. 5, the vibration response of the ܺ direction and the ܻ direction is larger than the ܼ 
direction, so according to Fig. 3 about the process of OMA for three-dimensional structures. At 
first the ܺ direction is decomposed by SOBI method. Then with the aid of the general reversion 
of least square algorithm, the other two directions are calculated. At last, identify the modal 
parameters of three-dimensional structure are identified by matrix assembly method. At the same 
time, another method is introduced to assemble three directions directly and then identify the 
modal parameters of three-dimensional structures directly is compared with the proposed method. 

The modal vibration modes and natural frequencies by the FEA method are used as the real 
value, shown in Fig. 6. 

 
a) The 1th real modal shape 

 
b) The 2th real modal shape 

 
c) The 3th real modal shape 

 
d) The 4th real modal shape 

 
e) The 5th real modal shape 

 
f) The 7th real modal shape 

Fig. 6. Real mode shapes calculated by FEA 

When the damping ratio of the cylindrical shell is 0.03, the mode frequency identified by the 
purposed algorithm is shown in Fig. 7. Table 1 and Table 2 are the identified frequency by the 
purposed algorithm comparison of the real frequency by FEA and the MAC of mode shapes 
respectively.  

According to the identified modal shapes by the SOBI method, Table 3 shows the MAC values 
between each identified modal shape. Each modal shape of its self MAC value is 1, and one modal 
shape of MAC with other modal shapes are small and almost close to 0. 

When the damping ratio of the cylindrical shell is 0.03 and with 5 % measurement noises, the 
mode frequency is identified by the purposed algorithm that is shown in Fig. 8 below. Table 4 and 
Table 5 are the identified frequency by the purposed algorithm comparison of real frequency by 
the FEA method and the MAC of mode shapes respectively. 
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a) FFT of the 1th separated 

component 

 
b) FFT of the 2th separated 

component 

 
c) FFT of the 3th separated 

component 

 
d) FFT of the 4th separated 

component 

 
e) FFT of the 5th separated 

component 

 
f) FFT of the 6th separated 

component 
Fig. 7. The identified mode frequencies when the damping ratio is 0.03 

Table 1. Comparison of natural frequencies with different methods 
FEA method The proposed method  Three directions assemble directly 

Orders Frequency 
(Hz) Orders Frequency 

(Hz) 
relative 

error Orders Frequency 
(Hz) 

Relative 
error 

1 1054.9 5 1059 0.389 % 5 1059 0.389 % 
2 1145.7 6 1146 0.026 % 6 1151 0.463 % 
3 1239.6 4 1237 –0.210 % 4 1237 –0.210 % 
4 1441.9 3 1443 0.076 % 3 1439 –0.201 % 
5 1740.0 1 1738 –0.115 % 1 1738 –0.115 % 
7 1871.7 2 1873 0.069 % 2 1874 0.122 % 

Table 2. MAC of modal shapes when the damping ratio is 0.03 
FEA method The proposed method Three directions assemble directly 

Order of real modal 
shape 

Order of identified modal 
shape MAC Order of identified modal 

shape MAC 

1 5 0.8772 5 0.6532 
2 6 0.6865 6 0.6179 
3 4 0.5726 4 0.7937 
4 3 0.5357 3 0.5365 
5 1 0.5910 1 0.6220 
7 2 0.9191 2 0.9194 

Table 3. MAC of modal shapes when the damping ratio is 0.03 
Order 1 (1059 Hz) 2 (1146 Hz) 3 (1237 Hz) 4 (1443 Hz) 5 (1738 Hz) 7 (1873 Hz) 

1 (1059 Hz) 1 0.0037 3.2338×10-4 2.1494×10-4 0.0894 5.4216×10-4 
2 (1146 Hz) 0.0037 1 0.0320 8.4117×10-4 1.9370×10-5 9.3939×10-4 
3 (1237 Hz) 3.2338×10-4 0.0320 1 1.2094×10-7 0.042 3.4047×10-5 
4 (1443 Hz) 2.1494×10-4 8.4117×10-4 1.2094×10-7 1 0.0479 8.0666×10-4 
5 (1738 Hz) 0.0894 1.9370×10-5 0.042 0.0479 1 0.0080 
7 (1873 Hz) 5.4216×10-4 9.3939×10-4 3.4047×10-5 8.0666×10-4 0.0080 1 
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a) FFT of the 1th separated 

component 

 
b) FFT of the 2th separated 

component 

 
c) FFT of the 3th separated 

component 

 
d) FFT of the 4th separated 

component 

 
e) FFT of the 5th separated 

component 

 
f) FFT of the 6th separated 

component 
Fig. 8. The identified mode frequencies when the damping ratio is 0.03 and with 5 % measurement noises 

Table 4. Comparison of natural frequencies with different method with 5 % measurement noises  
FEA method The proposed method  Three directions assemble directly 

Orders Frequency 
(Hz) Orders Frequency 

(Hz) 
Relative 

error Orders Frequency 
(Hz) 

Relative 
error 

1 1054.9 5 1059 0.389 % 5 1059 0.389 % 
2 1145.7 6 1146 0.026 % 6 1147 0.113 % 
3 1239.6 4 1237 –0.210 % 4 1237 –0.210 % 
4 1441.9 3 1443 0.076 % 3 1443 0.076 % 
5 1740.0 1 1738 –0.115 % 1 1738 –0.115 % 
7 1871.7 2 1873 0.069 % 2 1873 0.069 % 

Table 5. MAC of modal shapes when the damping ratio is 0.03 and with 5 % measurement noises 
FEA method The proposed method Three directions assemble directly 

Order of modal 
shape 

Order of identified modal 
shape MAC Order of identified modal 

shape MAC 

1 5 0.5806 5 0.4938 
2 6 0.4214 6 0.4113 
3 4 0.4299 4 0.5184 
4 3 0.3567 3 0.3572 
5 1 0.2111 1 0.2741 
7 2 0.6086 2 0.6102 

When the damping ratio of the cylindrical shell is 0.03, Table 6 shows the mode shapes 
identified by finite element analysis, the purposed algorithm without noises and the purposed 
algorithm with 5 % measurement noises. 

When the damping ratio of the cylindrical shell is 0.1, the mode frequency identified by the 
purposed algorithm is shown in Fig. 9. Table 7 and Table 8 is the identified frequency by the 
purposed algorithm comparison of real frequency by FEA and the MAC of mode shapes 
respectively. And “–” represents that the mode parameters are not identified. 
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Table 6. Mode shapes when the damping ratio is 0.03 
Metho

d 
Mode shapes 

1th order 2th order 3th order 4th order 5th order 7th order 

FEA 

   

This 
method 

   

This 
method 

(5 % 
noise) 

   

 

 
a) FFT of the 1th separated 

component 
b) FFT of the 2th separated 

component 
c) FFT of the 3th separated 

component 

d) FFT of the 4th separated 
component 

 
e) FFT of the 5th separated 

component 

 
f) FFT of the 6th separated 

component 
Fig. 9. The identified mode frequencies when the damping ratio is 0.1 

Table 7. Comparison of natural frequencies with different method when the damping ratio is 0.1 
FEA method The proposed method  Three directions assemble directly 

Orders Frequency 
(Hz) Orders Frequency 

(Hz) 
Relative 

error Orders Frequency 
(Hz) 

Relative 
error 

1 1054.9 5 1073 1.716 % 6 1044 –1.033 % 
2 1145.7 6 1143 –0.236 % 4 1163 1.510 % 
3 1239.6 4 1187 –0.424 % – -- – 
4 1441.9 2 1434 –0.548 % 3 1434 –0.548 % 
5 1740.0 1 1768 1.609 % 1 1764 1.379 % 
7 1871.7 3 1868 –0.198 % 2 1868 –0.198 % 

When the damping ratio of the cylindrical shell is 0.1 and with 5 % measurement noises, the 
mode frequency identified by the purposed algorithm is shown in Fig. 10. Table 9 and  
Table 10 are the identified frequency by the purposed algorithm comparison of real frequency by 
FEA and the MAC of mode shapes respectively. 
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a) FFT of the 1th separated 
component 

b) FFT of the 2th separated 
component 

 
c) FFT of the 3th separated 

component 

 
d) FFT of the 4th separated 

component 

 
e) FFT of the 5th separated 

component 
f) FFT of the 6th separated 

component 
Fig. 10. The identified mode frequencies when the damping ratio is 0.1 with 5 % measurement noises 

Table 8. MAC of modal shapes when the damping ratio is 0.1 
FEA method  The proposed method Three directions assemble directly 

Order of modal 
shape 

Order of identified modal 
shape MAC Order of identified modal 

shape MAC 

1 5 0.7774 6 0.5255 
2 6 0.4939 4 0.9204 
3 4 0.3062 – – 
4 – – 3 0.5108 
5 1 0.0565 1 0.1407 
7 – – 2 0.9033 

Table 9. Comparison of natural frequencies with different method with 5 % measurement noises 
FEA method The proposed method  Three directions assemble directly 

Orders Frequency 
(Hz) Orders Frequency 

(Hz) 
Relative 

error Orders Frequency 
(Hz) 

Relative 
error 

1 1054.9 5 1073 1.716 % 6 1044 –1.033 % 
2 1145.7 6 1141 –0.410 % 4 1163 1.510 % 
3 1239.6 4 1187 –4.243 % – – – 
4 1441.9 2 1430 –0.825 % 2 1430 –0.825 % 
5 1740.0 – – – 1 1752 0.690 % 
7 1871.7 3 1868 –0.198 % 3 1868 –0.198 % 

Table 10. MAC of modal shapes when the damping ratio is 0.1 with 5 % measurement noises 
FEA method The proposed method Three directions assemble directly 

Order of real modal 
shape 

Order of identified modal 
shape MAC Order of identified modal 

shape MAC 

1 5 0.5175 6 0.4096 
2 6 0.2984 4 0.6367 
3 4 0.2364 – – 
4 – – 2 0.3448 
5 – – – – 
7 – – 3 0.6120 

0 1000 2000 3000
0

50

100

150

200

250

300

（ ）Frequency Hz

A
m

pl
itu

de

0 1000 2000 3000
0

50

100

150

200

250

X: 1430
Y: 232.3

（ ）Frequency Hz

A
m

pl
itu

de

0 1000 2000 3000
0

50

100

150

200

250

X: 1868
Y: 210.7

（ ）Frequency Hz

A
m

pl
itu

de

0 1000 2000 3000
0

50

100

150

200

250

300

X: 1187
Y: 284.3

（ ）Frequency Hz

A
m

pl
itu

de

0 1000 2000 3000
0

50

100

150

200

250

300

350

X: 1073
Y: 310.6

（ ）Frequency Hz

A
m

pl
itu

de

0 1000 2000 3000
0

50

100

150

200
X: 1141
Y: 194.6

（ ）Frequency Hz

A
m

pl
itu

de



2503. OPERATIONAL MODAL ANALYSIS OF THREE-DIMENSIONAL STRUCTURES BY SECOND-ORDER BLIND IDENTIFICATION AND LEAST SQUARE 
GENERALIZED INVERSE. JIANYING WANG, CHENG WANG, YIWEN ZHANG 

2870 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716  

When the damping ratio of the cylindrical shell is 0.1, Table 11 shows the mode shapes 
identified by finite element method, the purposed algorithm without noises and the purposed 
algorithm with 5 % measurement noises. 

Table 11. mode shapes when the damping ratio is 0.1  

Method Mode shapes 
1th order 2th order 3th order 4th order 5th order 7th order 

FEA 

     

This method

   

– 

This method
(5 % noise) 

  

– – – 

4.4. Results analysis 

1) From the result identified by the purposed method, Fig. 7 and Fig. 9 show the identified 
modal frequencies with different damping ratios, by comparing with the frequencies calculated by 
the FEA method in Table 1 and Table 7. The modal frequencies identification precision changes 
when damping ratios increases. However, the relative errors are under 5 %. Table 6 and Table 11 
show the mode shapes under different methods. 

2) From Table 1, Table 4, Table 7 and Table 9, the order of identified modal frequencies and 
real modal frequencies are not one-to-one correspondence. The reason is that the order of the mode 
coordinate vector is uncertainty according to Eq. (14). 

3) From all the results, the 6th order modal parameters are not identified because of its small 
modal contribution in dynamic response measurement signals. 

4) With the increasing of damping ratio, the identified mode shapes are becoming deformed. 
It is more difficult to identify the modal parameters because the larger of damping ratio, the 
smaller of response of the structure.  

5) Contrasting Fig. 7 with Fig. 8, and from Table 4 and Table 9. In conclusion, this method is 
robustness to Gauss measurement noises disturbances. Because second order statistics rather than 
higher-order statistics method is used in SOBI method.  

5. Conclusions 

In this paper, we proposed an OMA method about SOBI of three-dimensional structures. This 
new method takes advantages of the SOBI algorithm and the general reversion of least square 
algorithm to identify the modal parameters of three-dimensional structures. Modal parameters of 
three-dimensional structures are more difficult than that of one-dimensional, especially in mode 
shape.  

With the increasing of modal damping, the mode shape of structures will gradually into the 
complex mode field with the increasing error of three directions. How to identify the vibration 
response in small contribution model and keep the better identified results when damping ratios 
increases needs more researches in the future. 
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