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Abstract. Firstly, this paper computed the static and dynamic characteristics of common boring 
bars and constrained damping boring bars respectively, and the correctness of the computational 
model in time-frequency domain was also validated by experiments. Modal frequencies of 
constrained damping boring bars were obviously more than those of common boring bars, which 
could effectively avoid structural resonance in low frequency and had an obvious advantage in 
improving anti-vibration performance of boring bars. The absolute value of the maximum 
vibration acceleration of common boring bars was 13.1 m/s2, while the absolute value of the 
maximum vibration acceleration of constrained damping boring bars was 9.1 m/s2. The maximum 
vibration acceleration decreased by 30.5 %. The maximum vibration displacement of common 
boring bars was 5.2 mm and corresponding frequency was 201 Hz. The maximum vibration 
displacement of constrained damping boring bars was 2.3 mm and corresponding frequency was 
235 Hz. When the analyzed frequency was lower than the frequency with the maximum vibration 
displacement, the displacement spectrum of common boring bars had more peak values. Thus, it 
was clear that constrained damping boring bars had an obvious advantage in improving vibration 
characteristics. The impact of cutting speed, feed rate and back cutting depth on vibration 
characteristics was studied respectively. Results showed that the vibration of constrained damping 
boring bars gradually decreased with the increase of cutting speed and gradually increased with 
the increase of feed rate and back cutting depth. In addition, the amplitude and frequency of 
vibration displacement spectrum of boring bars were basically unchanged no matter how cutting 
parameters changed. In order to quickly predict the vibration characteristic, BP neural network 
and PSO-BP neural network were respectively used to predict the cutting process of boring bars. 
When the iteration number of BP neural network was 300, iterative error was 0.00015 which was 
far more than the set target error. When the iteration number of PSO-BP neural network was 215, 
iterative error was converged to the set target error. Therefore, PSO-BP neural network had an 
obvious advantage in predicting the cutting process of boring bars. In addition, the predicted result 
of PSO-BP neural network was consistent with the experimental result, which showed that the 
neural network model in this paper was effective.  
Keywords: common boring bar, constrained damping boring bar, vibration acceleration, vibration 
displacement, PSO-BP neural network. 

1. Introduction 

Deep-hole with high-speed boring is a difficult problem of machining. Boring bars is in a 
semi-enclosed space. With limited structure and dimensions, boring bar generally has a long, thin 
and cantilevered structure. In particular, large overhanging length will cause relatively small 
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stiffness and unstable cutting process will cause vibration marks on the work-piece surface, 
quicken tool abrasion and generate large noises [1], which will reduce processing quality and 
precision. For the vibration suppression of deep-hole machining, a lot of scholars have conducted 
relevant studies based on the design and development of high-performance damping boring bars. 
The adopted method can be divided into active control and passive control from the perspective 
of vibration control [2]. 

Active control mainly applies the principle of feedback control to large boring bars with low 
frequency. Liu [3] used the positive and negative piezoelectric effect of piezoelectric ceramics; 
reversely magnified the electrical signals obtained by perceived piezoelectric patches, added them 
to executive piezoelectric patches and suppressed cutting vibration. Kong [4] proposed a kind of 
intelligent boring bars based on magnetorheological fluid, established a dynamical model for the 
cutting system of boring bar according to the characteristics of deep-hole cutting vibration and 
combined with the model to analyze the stability of cutting system. In reference [5], a robust 
analog controller, based on a lead-lag compensator, with simple adjustable gain and phase, 
suitable for the industry application, has been proposed. Also, the basic principle of an active 
boring bar with embedded actuator is addressed. The performance and robustness of the developed 
controller has been investigated and compared with an adaptive digital controller based on the 
feedback filtered-x algorithm. However, the inherent delay in a controller may result in tool failure 
when the load applied by the work-piece on the tool changes abruptly, e.g. in the engagement 
phase of the cutting edge. In addition, active control had a higher requirement on design and cost 
and was difficult to maintain. Therefore, the passive control for the vibration reduction of boring 
bar is proposed and widely applied. Passive control mainly converts vibration energy to other 
forms of energy including thermal energy through dynamical structure, impact structure and 
damping structure in order to achieve the damping effect. Hahn [6] placed a high-density mass 
block in the cavity of the boring bar and injected heavy oil into the cavity to improve the dynamic 
stiffness of boring bars. This method has been used to design damping boring bars with a large 
length-diameter ratio. Ema [7] used mass block and interstitial structure to design an impact 
damper and install it at the back of boring bars, which effectively reduced the radial vibration of 
boring bars. Yan [8] discussed the principle of frictional energy-dissipation boring bars, 
established a mechanical model for the link of nonlinear Coulomb dry friction, took friction 
parameters as the variable and inspected the vibration absorption effect of the model through 
adopting the method of numerical analysis. In the meanwhile, Yan developed a new-type boring 
bar based on friction, combined the mechanism of vibration with the theory of cutting stability, 
and analyzed the vibration suppression effect of boring bars under different friction conditions. 
Hwang [9] used epoxy composite materials with high stiffness and carbon fiber to make a boring 
bar with damping structure and found no obvious vibration after applying it under the condition 
of large overhanging. Featured with the strong ability of vibration loss and simple structure, 
damping structure has been widely applied to engineering structures, especially the field of 
aviation [10]. 

Based on the above analysis, current studies on damping boring bars mainly achieve the 
damping effect through improving the stiffness and damping capacity of boring bars [11-13]. The 
stiffness and damping capacity of boring bars are seldom combined for analysis and research. In 
fact, it is necessary to comprehensively improve the static stiffness and damping capacity of boring 
bars, especially the high-speed boring holes in order to improve the stability of boring bars. 
Structural optimization and the selection of high-quality materials for constrained damping boring 
bars can solve the problem of stiffness loss in the case of increasing the damping capacity of 
boring bars, comprehensively improve the stiffness and damping capacity of boring bars and 
obtain a damping boring bar with high vibration damping performance and cutting stability. As a 
result, this paper adopted the method of combining finite element with neural network to design 
constrained damping boring bars and effectively avoid the problem of high cost and low efficiency 
brought by experimental design. 
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2. Finite element model and experimental verification 

2.1. Common boring bars 

The model of boring bars studied in this paper was shown in Fig. 1(a) and mainly made up of 
three parts including head, middle parts and fixed end. The middle part of boring bars was 250 mm 
long with a diameter of 32 mm. The model was imported into finite element software to set 
material properties. Made of 40Cr alloy steel, common boring bars had density 7800 kg/m3, 
elasticity modulus 211 GPa and Poisson’s ratio 0.30. To ensure the precision of analysis and 
simulate the integrity of geometrical characteristics of model, this paper used hexahedral elements 
to generate the meshes of boring bars and constrained fixed end of boring bars and adopted locally 
fine technique for the head part. Finally, the finite element model of the boring bar contained 
30,256 elements and 39,806 nodes, as shown in Fig. 1(b). 

 
a) Geometric model 

 
b) Finite element model 

Fig. 1. Geometric and finite element model of boring bars 

 
a) 200.93 Hz 

 
b) 2997.89 Hz 

 
c) 3005.18 Hz 

 
d) 3853.51 Hz 

Fig. 2. Constrained modes of boring bars on top 4 orders 

No mechanical loads will be applied in modal analysis in general. Loads will be considered 
only in the case of computing the impact of stress. Modal analysis does not forbid the motion of 
rigid body. Therefore, the correct setting of boundary conditions is very important to modal 
analysis because it can have an influence on the vibration mode and natural frequency of the whole 
structure. To simulate the boring bar under the actual working condition, the boundary conditions 
of boring bars were: The surface of constrained fixed end was fully constrained and the tail section 
of boring bars restricted axial motion. Finally, the constrained modes of boring bars on top 4 orders 
could be obtained, as shown in Fig. 2. As shown from Fig. 2, the constrained modes of boring bars 
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had higher frequency and constrained modes on the second and third orders showed obvious 
flexural vibration. Vibration was serious mainly at the head part. 

2.2. Constrained damping boring bars 

The boring bar studied in Section 2.1 was only a common model. It would cause large vibration 
in the process of work and affect cutting quality. Therefore, it was necessary to redesign the 
structure of boring bars in order to restrain vibration. According to the actual working condition 
of boring bars, the interaction between head and work-piece needed high stiffness. Fixed end 
mainly played the role of clamping. It did not make much sense to redesign their structures. Only 
the middle part of boring bars had a large overhanging length and played a role in connecting the 
head with fixed end. It could be redesigned. Damping structure could effectively dissipate the 
energy of vibration. Thus, the position of the middle part was considered to be set as damping 
structure. Damping structure was mainly divided into two forms: free damping structure and 
constrained damping structure, as shown in Fig. 3. Free damping structure was composed of basic 
layer and damping layer which were combined together through glue or other methods. In 
constrained damping structure, damping layer was placed between two layers of elastic materials, 
namely between basic layer and constraint layer. Free damping structure depended on the 
thickness of damping layer to display its damping effect while constrained damping structure used 
a thin damping layer to obtain high structural loss factors. Compared with free damping structure, 
constrained damping structure could dissipate more vibration energy and had better damping 
effect [14, 15]. Therefore, constrained damping structure was applied to the boring bar to form a 
constrained damping boring bar, as shown in Fig. 4. Basic layer, damping layer and constraint 
layer of the boring bar had an outer diameter of ܦଵ = 16 mm, ܦଶ = 25 mm and ܦଷ = 32 mm 
respectively. Basic layer was still made of 40Cr alloy steel. Damping layer was made of foamed 
aluminum alloy and had density 650 kg/m3, elasticity modulus 12 GPa and Poisson’s ratio 0.33. 
Constraint layer was made of YG20C hard alloy steel and had density 13400 kg/m3, elasticity 
modulus 400 GPa and Poisson’s ratio 0.30. 

 
a) Free damping structure 

 
b) Constrained damping structure 

Fig. 3. Two forms of damping structures 

The shape dimension of constrained damping boring bars was consistent with that of common 
boring bars. Its structure was mainly composed of three parts: basic layer, damping layer and 
constraint layer. In the cutting process, vibration energy generated at the head of constrained 
damping boring bars was delivered to basic layer. Flexure caused by vibration drove the stretch 
of damping layer. The extension of constraint layer was much less than that of damping layer, 
which prevented the extension of damping layer. When damping layer compressed, constraint 
layer prevented the compression of damping layer. The extension and compression of damping 
layer were restricted by constraint layer. Therefore, damping layer bored the alternate loads of 
extension and compression and vibration energy was greatly dissipated at damping layer, which 
could realize the goal of suppressing cutting vibration and improving the stability of cutting 
process [16, 17]. According to the modal computation method of common boring bars, modals of 
constrained damping boring bars on top 4 orders were re-computed. The result was shown in 
Table 1. As shown from Table 1, modal frequencies of constrained damping boring bars on top 4 
orders were obviously more than those of common boring bars. Large modal frequencies could 
effectively avoid structural resonance and had an obvious advantage in improving the 
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anti-vibration performance of boring bars. 

 
Fig. 4. Constrained damping boring bars 

Table 1. Comparison of modals for two forms of boring bars 
Order Original structure / Hz Improved structure / Hz Absolute error / Hz 

1 200.93 235.11 34.18 
2 2997.89 3125.70 127.81 
3 3005.18 3131.02 125.84 
4 3853.51 4064.10 210.59 

Modal frequency only reflected the static characteristics of boring bars. To verify the 
advantage of dynamic characteristics of constrained damping boring bars in the cutting process, 
excitation force was applied to the head of two kinds of boring bars and the time-domain 
acceleration spectrum of boring bars was extracted and transformed into frequency spectrum to 
make a comparison, as shown in Fig. 5. Fig. 5(a) showed that the vibration acceleration of 
constrained damping boring bars was obviously less than that of common boring bars. The 
absolute value of the maximum vibration acceleration of common boring bars was 13.1 m/s2. 
However, the absolute value of the maximum vibration acceleration of constrained damping 
boring bars was 9.1 m/s2. The maximum vibration acceleration decreased by 30.5 %. In addition, 
the vibration acceleration of constrained damping boring bars had small peak values. Fig. 5(b) 
showed a comparison of vibration displacement spectrums of two kinds of boring bars. It could 
be seen that the maximum vibration displacement of common boring bars was 5.2 mm and its 
corresponding frequency was 201 Hz; the maximum vibration displacement of constrained 
damping boring bars was 2.3 mm and its corresponding frequency was 235 Hz.  

 
a) Vibration acceleration 

 
b) Vibration displacement 

Fig. 5. Comparison of dynamic characteristics of two forms of boring bars 

According to the modal frequency in Table 1, the maximum vibration displacement of boring 
bars resulted from the resonance caused by the natural frequency of structures. When the analyzed 
frequency was lower than the frequency of the maximum vibration displacement, the frequency 
spectrum of common boring bars showed many peak values. Thus, it was clear that constrained 
damping boring bars had an obvious advantage in improving vibration characteristics. The strain 
of constrained damping boring bars under different frequencies was extracted, as shown in Fig. 6. 
As shown from Fig. 6, the maximum strain of constrained damping boring bars was mainly in the 
position of the head. The head of boring bars touched work-piece in the cutting process and the 
head received the reactive force of work-piece, causing large strain. 
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a) 100 Hz 

 
b) 200 Hz 

 
c) 300 Hz 

 
d) 400 Hz 

Fig. 6. Strain of constrained damping boring bars under different frequencies 

2.3. Experimental verification of computational model 

The model of constrained damping boring bars was relatively complex. Therefore, the 
correctness of computational result needed to be verified through experiments. As shown in Fig. 7, 
constrained damping boring bars were clamped in fixed equipment. Feed rate was 0.4 mm/r; 
cutting speed was 80 m/min; back cutting depth was 0.3 mm. An acceleration sensor was arranged 
at the boring bar to measure the vibration acceleration and displacement of boring bars in the 
cutting process and compare with numerical simulation results, as shown in Fig. 8. Fig. 8(a) 
displayed a comparison of time-domain vibration accelerations. It could be seen that experiment 
and simulation were basically the same in change trend and only peak frequencies were different. 
Fig. 8(b) displayed a comparison of vibration displacement spectrums of boring bars. The 
amplitude and corresponding frequency of experiment and numerical simulation were the same. 
It proved that the numerical computation model for the machining of boring bars in this paper was 
effective in time-frequency domains. 

 
Fig. 7. Experimental cutting process of constrained damping boring bars 

3. Impact of cutting parameters on vibration characteristics 

In the process of machining, the cutting parameters including cutting speed, feed rate and back 
cutting depth of boring bars had a great impact on vibration characteristics and machining quality. 
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Based on the verified computation model of boring bars, the vibration characteristics of boring 
bars under different cutting parameters were studied. 

 
a) Vibration acceleration 

 
b) Vibration displacement 

Fig. 8. Comparison of dynamic characteristics of boring bars between experiment and simulation 

3.1. Cutting speed 

Feed rate 0.4 mm/r and back cutting depth 0.3 mm were unchanged. Cutting speed was 
changed from 70 m/min to 100 m/min. Step size was 10 m/min. The vibration characteristics of 
boring bars in time-frequency domains at every cutting speed were computed, as shown in Fig. 9. 
Only from the time domain, it could be seen that the absolute values of the maximum vibration 
accelerations of boring bars at the cutting speed of 70 m/min, 80 m/min, 90 m/min and 100 m/min 
were 9.1 m/s2, 9.6 m/s2, 7.6 m/s2 and 7.8 m/s2 respectively. It was unable to identify the impact 
rule of cutting speed on the vibration characteristics of boring bars only from the maximum 
vibration amplitude in time-domain accelerations. However, the vibration acceleration of boring 
bars at the cutting speed of 70 m/min and 90 m/min had more peak values and vibration energy 
was distributed more intensively. From vibration results in the frequency domain, it could be 
found that the maximum vibration displacements were 3.2 mm, 2.3 mm, 1.5 mm and 0.34 mm 
respectively at the cutting speed of 70 m/min, 80 m/min, 90 m/min and 100 m/min. In addition, 
the maximum vibration amplitude and frequency of boring bars in the frequency domain at 
different cutting speeds were the same because cutting speed would not change the natural 
frequency of boring bars. Within the analyzed frequency of 500 Hz, the natural frequency of 
boring bars was only 235.11 Hz. Therefore, boring bars would present a large vibration 
displacement at this frequency point under various cutting speeds. Thus, it could be noticed that 
the vibration of boring bars gradually decreased with the increase of cutting speed. High-precision 
machining could choose a large cutting speed. 

3.2. Feed rate 

Cutting speed 90 m/min and back cutting depth 0.3 mm were unchanged. Feed rate was 
changed from 0.4 mm/r to 0.7 mm/r. Step size was 0.1 mm/r. Vibration characteristics of boring 
bars in time-frequency domains at every feed rate were computed, as shown in Fig. 10. Only from 
the time domain, the absolute values of the maximum vibration accelerations of boring bars were 
7.6 m/s2, 9.1 m/s2, 11.1 m/s2 and 18.0 m/s2 respectively at the feed rate of 0.4 mm/r, 0.5 mm/r, 
0.6 mm/r and 0.7 mm/r. Different from cutting speed, it could be seen that the vibration of boring 
bars gradually increased with the increase of feed rate and showed obvious changes only from 
time-domain vibration acceleration. From vibration results in the frequency domain, the maximum 
vibration displacements of boring bars were 1.5 mm, 2.6 mm, 3.7 mm and 6.3 mm respectively at 
the feed rate of 0.4 mm/r, 0.5 mm/r, 0.6 mm/r and 0.7 mm/r. Additionally, the maximum vibration 
amplitude and frequency of boring bars in the frequency domain were the same at different feed 
rates because feed rate would not change the natural frequency of boring bars. Within the analyzed 
frequency of 500 Hz, the natural frequency of boring bars was only 235.11 Hz. Therefore, boring 
bars presented a large vibration displacement at this frequency point at various feed rates. Thus, 



2361. ANALYSIS AND PREDICTION ON THE CUTTING PROCESS OF CONSTRAINED DAMPING BORING BARS BASED ON PSO-BP NEURAL NETWORK 
MODEL. XIANMING CHEN, TIELIU WANG, MINGMING DING, JING WANG, JIANQING CHEN, JUN XIA YAN 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2017, VOL. 19, ISSUE 2. ISSN 1392-8716 885 

it was clear that the vibration of boring bars gradually increased with the increase of feed rate 
because the increase of feed rate would increase the interaction between the head of boring bars 
and work-piece. A small feed rate could be chosen for high-precision machining. 

 
a) 70 m/min 

 
b) 80 m/min 

 
c) 90 m/min 

 
d) 100 m/min 

Fig. 9. Vibration characteristics of boring bars at different cutting speeds 

3.3. Back cutting depth 

Cutting speed 90 m/min and feed rate 0.5 mm/r were unchanged. Back cutting depth was 
changed from 0.3 mm to 0.6 mm. Step size was 0.1 mm. Vibration characteristics of boring bars 
in time-frequency domains at every back cutting depth were computed, as shown in Fig. 11. Only 
from the time domain, the absolute values of the maximum vibration accelerations of boring bars 
were 9.1 m/s2, 9.2 m/s2, 10.3 m/s2 and 13.0 m/s2 respectively at the back cutting depth of 0.3 mm, 
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0.4 mm, 0.5 mm and 0.6 mm. Different cutting speed, it could be seen that the vibration of boring 
bars gradually increased with the increase of back cutting depth and showed no obvious changes 
only from time-domain vibration acceleration. From vibration results in the frequency domain, 
the maximum vibration displacements of boring bars were 2.6 mm, 3.6 mm, 4.3 mm and 4.8 mm 
respectively at the back cutting depth of 0.3 mm, 0.4 mm, 0.5 mm and 0.6 mm. In addition, the 
maximum vibration amplitude and frequency of boring bars at different back cutting depths were 
the same because back cutting depth would not change the natural frequency of boring bars. 
Within the analyzed frequency of 500 Hz, the natural frequency of boring bars was only  
235.11 Hz.  

 
a) 0.4 mm/r 

 
b) 0.5 mm/r 

 
c) 0.6 mm/r 

d) 0.7 mm/r 
Fig. 10. Vibration characteristics of boring bars at different feed rates 

Therefore, boring bars showed a large vibration displacement at this frequency point at various 
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back cutting depths. Thus, it was clear that the vibration of boring bars gradually increased with 
the increase of back cutting depth. Back cutting depth represented the vertical distance between 
the surfaces of machined work-piece and to-be-machined work-piece. In the case of consistency 
in cutting speed and feed rate, a large back cutting depth called for large radial contact force 
between boring bars and work-piece and thus caused larger vibration. For the high-precision 
machining of mechanical equipment, a relatively small back cutting depth could be selected to 
reduce the radial acting force between boring bars and work-piece. 

 
a) 0.3 mm/r 

 
b) 0.4 mm/r 

 
c) 0.5 mm/r 

 
d) 0.6 mm/r 

Fig. 11. Vibration characteristics of boring bars at different back cutting depths 

4. Prediction based on PSO-BP neural network 

Finite element method was used to study the cutting process and parameters of boring bars. 
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However, computational efficiency would not be very high using the finite element method if the 
computational model was very complex and computational time under every working condition 
was relatively long. Therefore, neural network model was used to study the cutting process of 
boring bars in order to improve computational efficiency and avoid generating the meshes of the 
model and applying large finite element software. As an emerging information processing 
technique, artificial neural network [18] has good fault tolerance and adaptability. Many scholars 
adopted neural network to solve the problem of performance prediction and optimization and 
achieved satisfactory results [19-21]. In neural network, BP neural network is the most widely 
used algorithm which is proposed in order to solve the weight coefficient of multi-layer 
feed-forward neural network [22, 23]. This system adopted the four-layer model structure of BP 
neural network, namely input layer, double hidden layers and output layer, as shown in Fig. 12. 
From the analysis of cutting parameters in the third section, it could be seen that cutting speed, 
feed rate and back cutting depth had an obvious impact on the vibration characteristics of boring 
bars. Therefore, 3 neurons were set in input layer and 1 neuron was set in output layer. BP neural 
network adopted the gradient correction method to learn weight and threshold values. When BP 
neural network structure was basically determined, two important factors affected the learning 
quality of BP neural network, namely the number of hidden nodes and the size of learning rate 
factors. An increase in the number of hidden nodes could speed up the decline of error. However, 
computational amount was increased and the learning time of system would also become long, 
which reduced the real-time of system. The following formula was adopted to estimate the number 
of neurons in hidden layers: ݊ଵ = ඥ݊଴ + ݊ଶ + ܽ଴, (1)

wherein, ݊଴ represented the number of neurons in input layer; ݊ଵ stood for the number of neurons 
in hidden layers; ݊ଶ  referred to the number of neurons in output layer; ܽ  meant an arbitrary 
constant between 0 and 10. High learning rate could speed up the decline of error at the initial 
stage of learning process. However, learning process could not converge and meet the 
requirements of system with the deepening of learning process. 

 
Fig. 12. Topology structure of BP neural network 

However, BP neural network easily gets into local minimum and affects global optimization. 
Research shows that genetic algorithm is equipped with strong macro search capability and good 
global optimization performance. The problem of local minimum can be avoided through 
combining genetic algorithm with BP neural network and applying genetic algorithm to optimize 
the weights of neural network. However, the training speed of neural network is very slow due to 
the complex genetic operation such as selection, crossover and mutation of genetic algorithm. 
Therefore, some scholars proposed to use the quick convergence of particle swarm optimization 
algorithm to optimize BP neural network [24-26], which could not only obtain the high precision 
accuracy of optimizing neural network by means of genetic algorithm, but also be quicker than 
the convergence of optimizing neural network through genetic algorithm. As an evolutionary 
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computation technique, PSO is similar to genetic algorithm, is an optimization tool based on 
iteration and simulates the herd behavior of creatures like birds and shoal of fish. These creatures 
search for food by means of cooperation in the process of survival. Every member in the group 
constantly changes its search mode through learning the experience of itself and other members. 

Suppose that ܯ particles constituted a particle swarm in D-dimensional search space, the main 
computation and derivation formula of PSO algorithm was as follows: 

௜߭ௗ(௧ାଵ) = ݑ × ௜߭ௗ(௧) + ܿଵݎଵ൫݌௜ௗ − ௜ௗ(௧)൯ݔ + ܿଶݎଶ൫݌௚ௗ − ௜ௗ(௜ାଵ)ݔ௜ௗ(௧)൯, (2)ݔ = ௜ௗ(௧)ݔ + ௜ௗ(௧ାଵ), (3)ݔ

wherein, ௜ܸ = (߭௜ଵ, ߭௜ଶ, … , ߭௜஽) referred to the flight speed of the ݅th  particle;  ௜ܺ = ,௜ଵݔ) ,௜ଶݔ … , (௜஽ݔ  stood for the position of particle in space; ௜ܲ = ,௜ଵ݌) ,௜ଶ݌ … ,  (௜஽݌
represented the historical optimum position of the ݅th particle in space; ௚ܲ = ,௚ଵ݌) ,௚ଶ݌ … ,  (௚஽݌
meant the historical optimum position of the whole swarm in space; ܿଵ  and ܿଶ  stood for 
acceleration coefficients and usually took 2.0 as their value; ݎଵ and ݎଶ were a random number 
between [0, 1]; ݑ was inertia weight. 

 
Fig. 13. Process of PSO-BP neural network 

Aimed at the deficiencies of standard BP network, this paper used PSO algorithm to optimize 
BP neural network, took the weight and threshold values of BP neural network as particles, and 
completed systematic training process through the mutual learning of particles. The change of 
weight value was: 
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Δ ௜ܹ௝ = ܿଵݎଵ൫ ௜ܹ௝(݌) − ௜ܹ௝൯ + ܿଶݎଶ൫ ௜ܹ௝(݃) − ௜ܹ௝൯, (4)

wherein, ௜ܹ௝(݌)  stood for the individual optimal value of corresponding particles; ௜ܹ௝(݃) 
represented the global optimum value of the whole network. Below was the training process of 
network: 

(1) Initialize the parameters of PSO algorithm: Determine the initial weight ݑ௦௧௔௥௧ and end 
weight ݑ௘௡ௗ , learning acceleration coefficients ܿଵ and ܿଶ as well as the initial position of the 
particle swarm according to the characteristics of BP neural network. 

(2) PSO algorithm is corresponding to BP network: Establish a D-dimensional vector which 
represents a particle in PSO algorithm and contains the weight and threshold values of hidden 
layers and output layer in BP network. 

(3) Compute the fitness of particles: Establish fitness function to measure whether the position 
of particles is good and use error function in BP network as fitness function. 

(4) Update individual optimal value and global optimum value: Compare the fitness function 
values of every particle at the time of ݐ − 1 and ݐ and upgrade the individual optimal value of 
corresponding particles if the fitness of particles at the time of ݐ is better, similarly compare the 
fitness function values of the swarm at the time of ݐ − 1 and ݐ and upgrade the global optimum 
value of the swarm if the fitness of the swarm at the time of ݐ is better. 

(5) Update the position and speed of particles: Compute the position and speed of swarms 
according to Eq. (2) to Eq. (4) and update weight and threshold values of all layers. 

 
Fig. 14. Iteration processes of two kinds of neural networks 

a) Training process b) Prediction results 
Fig. 15. Training and prediction results of PSO-BP neural network 

Aimed at the description of PSO-BP neural network, the process of algorithm could be 
obtained, as shown in Fig. 13. The data of time-domain vibration acceleration of boring bars 
cutting was classified into two parts, including training data and verification. Traditional BP neural 
network and PSO-BP neural network were used to predict the cutting process of boring bars. The 
result was shown in Fig. 14. Target error was set as 0.00002. When the iteration number of BP 
neural network was 300, the target error could not be converged. The iterative error was 0.00015 
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which was far more than target error. When the iteration number of PSO-BP neural network was 
215, iterative error was converged to the set target error. Therefore, predicting the cutting process 
of boring bars based on PSO-BP neural network had an obvious advantage. Fig. 15 presented the 
training and prediction results of PSO-BP neural network in predicting the cutting process of 
boring bars. It could be seen that training and prediction results were basically consistent with 
experimental results. It indicated that the prediction model in this paper was effective. 

This paper is written by Xianming Chen, the idea is from Tieliu Wang, translation is completed 
by Mingming Ding, experiment is conducted by Jing Wang and Jianqing Chen, and language 
polish and paper submission are completed by Junxia Yan. 

5. Conclusions 

This paper studied the impact of cutting parameters of boring bars on cutting process based on 
finite element and PSO-BP neural network model and obtained the following conclusions: 

1) Boring bars had high constrained modal frequencies. Modal frequencies of the second and 
third orders presented obvious flexural vibration. Vibration was very serious at the head of boring 
bars. Modal frequencies of constrained damping boring bars were obviously more than those of 
common boring bars. Large modal frequencies could effectively avoid structural resonance in 
low-frequency and had an obvious advantage in improving anti-vibration performance of boring 
bars. 

2) The time-domain vibration acceleration of constrained damping boring bars was obviously 
less than that of common boring bars. The absolute value of the maximum vibration acceleration 
of common boring bars was 13.1 m/s2. The absolute value of the maximum vibration acceleration 
of constrained damping boring bars was 9.1 m/s2. The maximum vibration acceleration decreased 
by 30.5 %. In addition, the vibration acceleration of constrained damping boring bars had small 
peak values. The maximum vibration displacement of common boring bars was 5.2 mm and 
corresponding frequency was 201 Hz. The maximum vibration displacement of constrained 
damping boring bars was 2.3 mm and corresponding frequency was 235 Hz. The maximum 
vibration displacement of boring bars resulted from the resonance caused by the natural frequency 
of structure. When the analyzed frequency was lower than the frequency of the maximum 
vibration displacement, the displacement spectrum of common boring bars had more peak values. 
Thus, it was clear that constrained damping boring bars had an obvious advantage in improving 
vibration characteristics. 

3) Experiment and numerical simulation were basically the same in change trend in the aspect 
of time-domain vibration acceleration and only peak frequencies were different. The amplitude 
and corresponding frequency of experiment and numerical simulation were the same in 
frequency-domain vibration displacement. It showed that the numerical computation model for 
the machining of boring bars was effective in time-frequency domains. 

4) The impact of cutting speed, feed rate and back cutting depth on vibration characteristics 
was studied respectively. Results showed that the vibration of boring bars gradually decreased 
with the increase of cutting speed and gradually increased with the increase of feed rate and back 
cutting depth. In addition, the amplitude and frequency of vibration displacement spectrum of 
boring bars was basically unchanged no matter how cutting parameters changed. 

5) Traditional BP neural network and PSO-BP neural network were respectively used to 
predict the cutting process of boring bars. When the iteration number of BP neural network was 
300, iterative error was 0.00015 which was far more than the set target error. When the iteration 
number of PSO-BP neural network was 215, iterative error was converged to the set target error. 
Therefore, PSO-BP neural network had an obvious advantage in predicting the cutting process of 
boring bars. In addition, the prediction and experimental results of PSO-BP neural network were 
basically the same, which showed that the neural network model in this paper was effective. 
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