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Abstract. In order to improve the computational efficiency of the large-scale structures with 
uncertainty parameters, this paper present a methodological approach for interval uncertainty 
treatment based on an improved free interface Component Mode Synthesis (CMS) method. 
Firstly, the structure is divided into substructures and the perturbation method is employed for the 
eigenvalue analysis of substructures with the interval non-deterministic characteristics. To reduce 
the mode truncation error, the residual flexibility matrix is considered by constructing a set of 
weighted orthogonal modal vectors with low-order system modal vectors and system matrices. 
Different from the previous studies, this method proposed in this paper avoids calculating directly 
inverse of the stiffness matrix, which makes it easier to get the residual flexibility matrix. Then 
the synthesis equations including parameters perturbation can be deduced in terms of the interface 
compatibility conditions. Finally, two examples including with a numerical example as well as an 
experiment example are given to demonstrate the effectiveness and the efficiency of the proposed 
method. 
Keywords: uncertainty, free Interface, component mode synthesis, perturbation method, Monte 
Carlo method. 

1. Introduction 

During the last decades, the FEM has been applied widely in the dynamic analysis of the 
deterministic models. But every manufacturing process naturally introduces some product 
variability, which is inevitable, such as manufacturing tolerances, material deviation, and so on. 
And the presence of uncertainties can affect significantly the dynamical behavior of the model. 
Therefore, a deterministic model is not sufficient to analyze structure dynamics. What's more, due 
to the growing demands imposed on new products the influence of all relevant uncertainties in 
properties has begun to be paid more and more attention in the static and/or dynamic analysis of 
structures. 

According to previous works, one can distinguish probabilistic and non-probabilistic 
approaches as two main categories. The non-probabilistic approach is retained in this paper. In 
non-probabilistic approaches, the interval methods are based upon the interval concept for the 
presentation of uncertainty model properties, and so far, has been reported in some literatures  
[1, 2]. 

With the development of industry technology, a very large number of degrees of freedom are 
usually required for complex FE model. The calculation cost of the interval finite element method 
can be prohibitively expensive. Component mode synthesis (CMS) technique is a favored solution 
method, which can significantly reduce the model size. CMS was introduced firstly in the 1960s 
by Hurty [3], which focused on undamped linear vibration system. In following decades，CMS 
methods have been extensively developed [4-6]. Moreover, CMS currently plays an important 
role in the dynamic analysis of the sophisticated structures. In Ref. [7, 8], the fixed interface CMS 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.17974&domain=pdf&date_stamp=2017-06-30


2502. AN IMPROVED COMPONENT MODE SYNTHESIS METHOD FOR INTERVAL UNCERTAINTY ANALYSIS.  
HUAN HE, TAO WANG, WEI-MIN CHEN, CHENG HE 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716 2845 

methods was employed to analysis of the elastic multibody systems, it was shown that the 
numerical costs can be reduced efficiently. He Huan et al. [9] proposed a hybrid coordinates CMS 
approach for a localized nonlinear system. Kawamura and Naito [10] presented a method for the 
analysis of nonlinear forced vibration of a multi-degree-of-freedom system. As a result, it was 
shown that the approach proposed in this paper is effective in the case with rigid modes in 
components. Klaus-Jürgen Bathe and Jian Dong [11] utilized subspace iteration method to 
improve the component mode synthesis solutions. Zhe Ding et al. [12] presented a free interface 
CMS method for viscoelastic ally damped systems. In this paper, two residual attachment modes 
of viscoelastic ally damped systems are proposed to reduce the mode truncation error. Two new 
CMS methods were proposed in Ref. [13] for generally damped systems. In order to reduce the 
time consumption in re-analyses of large-order models, Costas Papadimitriou [14] applied 
Craig-Bampton CMS method to finite element model updating.  

In general, the individual components are analyzed individually and subsequently they are 
assembled to produce a reduced model of the whole structure. The benefits concerning the 
quantification and propagation of uncertainty arise from that fact that each component can be 
treated independently. When one or more components involve uncertainties in properties, only the 
components which are uncertain need to be reanalyzed. Furthermore, the uncertain data can be 
naturally introduced at the component level. Quang Hung Tran et al. [15] proposed an alternative 
CMS method for damped vibroacoustic problems. In this paper, the robust bases were constructed 
to solve the problem of uncertainties propagation. The results show that the proposed method 
results in significant time reduction. D. Sarsri et al. [16] utilized the CMS method to reduce the 
size of large FE systems with linear and nonlinear stochastic parameters, and they investigated the 
frequency transfer functions of the stochastic systems. Hilde De Gersem et al. [17] combined the 
CMS method with the interval and fuzzy finite element method to analyze the eigenvalue and 
frequency response function of structures with uncertain parameters. L. Hinke et al. [18] applied 
the fixed-interface CMS method to the analysis of structures with uncertainty. In this paper, 
Quantification and propagation of uncertainty in properties was discussed. S. A. Chentouf et al. 
[19] proposed a hybrid method for modelling parametric and non-parametric uncertainties. 
Craig-Bampton CMS method was adapted to approximate reanalysis process. Oliviero Giannini 
and Michael Hanss [20] proposed a component mode transformation method, which couples the 
capabilities of the standard transformation with the computational advantages of the CMS 
approach, for mechanical systems with uncertain parameters. 

Above methods which apply the constraint interface CMS to the analysis of structures with 
non-deterministic properties can reduce efficiently the time consuming. The realistic 
quantification of the non-deterministic behavior of components is usually obtained through 
experiments, and then the uncertainties of the components in properties can be propagated to the 
whole system. Nevertheless, the major limitation of the methods utilizing constraint modes is the 
inability to easily obtain the experiment data. An improved free interface CMS combined with 
interval methods was proposed in order to reduce the computation time of interval dynamic 
analyses. In this paper, the whole dynamic system is separated into several substructures, and only 
these substructures which involve non-deterministic properties are analyzed by the small 
parameter perturbation method. The synthesis equations can be deduced by assembling all of the 
equations of components in terms of the interface compatibility conditions. The interval dynamic 
analysis of a bridge structure is given to illustrate the application of the method proposed in this 
paper and a Monte Carlo simulation is then used as a reference. Modal tests have been conducted 
to the structure with different combination of pieces, comparison between experimental results 
and the analytical results are also given to demonstrate the validation of the presented method. 

2. Perturbation analysis of components with parametric uncertainties 

In general, the system can be divided into several components. The undamped vibration 
equation of the motion of arbitrary components can be expressed as: 
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પܝሷ + ܝ۹ = (1) ,܎

where પ and ۹ ∈ ℝ௡×௡ are the mass and stiffness matrices of the component, respectively. ܝ and ܎ ∈ ℝ௡×ଵ are, respectively, the generalized displacement and external force vectors. ݊ is the DOF 
of the component. Denote Φ௟ ∈ ℝ௡×௟ as the first ݈ order normal modes retained, which can be 
obtained by solving the eigenvalue problem. 

According to interval finite element method the uncertain structural parameters can be written 
into ܽ = [ܽ തܽ]. Where ܽ and തܽ are, respectively, the infimum and supremum of variables. ܽ can be also written in the perturbed formulation: ܽ = ܽ௖ + |ܽߜ|      ,ܽߜ   ≤ Δܽ, (2)

where ܽߜ = ܽ௖݁୼, ܽ௖ = ଵଶ ൫ܽ + ܽ൯, ∆ܽ = ଵଶ ൫ܽ − ܽ൯, ݁∆ ∈ [−1.1]. 
With the variables perturbation, the mass matrices, stiffness matrices, eigenvalues and 

eigenvectors of the component according to Eq. (2) can be expressed as follows: ۻ = ௖ۻ + ۹,ۻߜ = ۹௖ + ௜ߣ,۹ߜ = ௜௖ߣ + ௜,઴௜ߣߜ = ઴௜௖ + ઴௜. (3)ߜ

Assume that there exists a matrix ૖ ∈ ℝ௡×(௡ି௟) can be expressed as: ૖ = Φ௟ܟ + ߶෨, (4)

where ܟ is a matrix to be solved and ૖෩  is composed of ݊ − ݈ linear independent vectors which 
can be written as: ૖෩ = [૖෩ଵ ૖෩ ଶ ⋯ ૖෩ ௡ି௟]. (5)

We consider the weighted-orthogonal relationship: ઴௟ఁۻ૖ = ૙. (6)

Substituting Eq. (4) into Eq. (6) will give: ઴௟ఁۻ൫઴௟ܟ + ૖෩൯ = ૙. (7)

Eq. (7) can be also written as: ܟ = −(઴௟ఁۻΦ௟)ିଵ઴௟ఁۻ૖෩. (8)

Substitution of Eq. (8) into Eq. (5) will lead to: ૖ = ૖෩ − ઴௟ ቀ઴௟ఁۻ઴௟ቁିଵ ઴௟ఁۻ૖෩. (9)

We consider that the retained lower order mode matrix Φ௟ is normalized with respect to mass 
matrix, Eq. (9) can be simplified as: ૖ = ቀ۷ − ઴௟઴௟ఁۻቁ ૖෩. (10)
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Substitution of Eq. (3) into Eq. (10) and then neglect the higher-order terms will give: ૖ = ቀΙ − ઴௟௖઴௟௖ఁપ௖ቁ ૖෩ − ቀ઴௟௖઴௟௖ఁߜપ + ઴௟௖ߜ઴௟௖ఁપ௖  + ઴௟௖઴௟௖ఁપ௖ቁ ߜ ૖෩= ૖௖ + ૖. (11)ߜ

It is not difficult to prove that Φ௟ఁ۹߶ = ૙. 
We can define the equivalent full modes matrix as Φ = [Φ௟ ૖] = [Φ௟௖ + Φ௟  ૖௖ߜ +  ,[૖ߜ

and the physical coordination of the component can be written by: ܝ = ઴઺, (12)

where: ઺ = ൜ߚ௟ߚ௛ൠ. (13)

By splitting ઺  between ߚ௟  and ߚ௛  according to the retained lower-order modes and  
higher-order modes, where subscripts ݈ and ℎ denote the number of retained lower-order modes 
and higher-order modes to be respectively reduced, we can rewrite Eq. (12) as: ܝ = [઴௟ ૖] ൜ߚ௟ߚ௛ൠ. (14)

Substitution of Eq. (14) into Eq. (1) and pre-multiplication of the resulting equation by Φ் 
will give: 

൤઴௟்ۻ઴௟ ૙૙ ૖ఁۻ૖൨ ቊߚሷ௟ߚሷ௛ቋ + ൤઴௟்۹઴௟ ૙૙ ૖ఁ۹૖൨ ൜ߚ௟ߚ௛ൠ = ቊ઴௟ఁ܎૖ఁ܎ ቋ. (15)

Denote: ۻ௛ = ૖ఁۻ૖, (16)۹௛ = ૖ఁ۹૖. (17)

The second line of Eq. (15) can be written as: ۻ௛ߚሷ௛ + ۹௛ߚ௛ = ૖ఁ(18) .܎

By Laplace transformation of above equation can give: ̅ߚ௛ = ௛ۻଶݏ) + ۹௛)ିଵ૖ఁ(19) ̅.܎

Retaining only the first item of the Taylor expansion of Eq. (19), and the inverse Laplace 
transform on the resulting equation lead to: ߚ௛ = ۹௛ିଵ૖ఁ(20) .܎

Substituting Eq. (20) into Eq. (14) will give: ܝ = ઴௟ߚ௟ + (21) ,܎۵

where ۵ ∈ ℝ௡×௡ is the residual flexibility attachment matrix and can be written in the following 
form as: 



2502. AN IMPROVED COMPONENT MODE SYNTHESIS METHOD FOR INTERVAL UNCERTAINTY ANALYSIS.  
HUAN HE, TAO WANG, WEI-MIN CHEN, CHENG HE 

2848 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716  

۵ = ߶۹௛ିଵ૖ఁ. (22)

The stiffness matrix of the system is singular when there are rigid modes in the component, so 
the residual flexibility attachment matrix cannot be acquired by inversing the stiffness matrix 
directly. Quite different from the previous papers, the residual flexibility matrix presented in this 
paper can be obtained by computing the inverse of equivalent higher order stiffness matrix ۹௛ 
instead of ۹. And since the equivalent higher order stiffness matrix ۹௛, which is just related to 
the equivalent higher modes, is a nonsingular matrix, it is easier to calculate the residual flexibility 
matrix by Eq. (22). 

Substitution of Eq. (11) into Eq. (17), we can acquire the perturbation expression ۹௛, and one 
order approximation for the matrix inversion of ۹௛ can be expressed as: (۹௛)ିଵ = [(૖௖ఁ + ૖ఁ)(۹௖ߜ + ૖௖)(۹ߜ + ૖)]ିଵߜ = (૖௖ఁ۹௖૖௖)ିଵ       −[(૖௖ఁ۹௖૖௖)ିଵߜ૖ఁ۹௖૖௖ + (૖௖ఁ۹௖૖௖)ିଵ૖௖ఁ۹ߜ૖௖       +(૖௖ఁ۹௖૖௖)ିଵ૖௖஋۹௖ߜ૖)](૖௖ఁ۹௖૖௖)ିଵ = (۹௛௖ )ିଵ + ଵ. (23)ି(۹௛)ߜ

In the same way, we can acquire: ۵ = ૖௖(۹௛௖ )ିଵ૖௖ఁ + ૖(۹௛௖ߜ )ିଵ૖௖ఁ − ૖௖ߜ(۹௛)ିଵ૖ୡఁ + ૖௖(۹௛௖ )ିଵߜ૖ఁ = ۵௖ + (24) ,۵ߜ

where: ۵௖ = ૖௖(۹௛௖ )ିଵ૖௖ఁ, (25)۵ߜ = ૖(۹௛௖ߜ )ିଵ૖௖ఁ − ૖௖ߜ(۹௛)ିଵ૖௖ఁ + ૖௖(۹௛௖ )ିଵߜ૖ఁ. (26)

The physical DOFs can be portioned into a set of interior DOFs ܝ௜ and a set of interface DOFs ܝ௝. Eq. (12) can be rewritten in the form: 

ቄܝ௜ܝ௝ቅ = ቈ઴௜௟௖ + ઴௜௟઴௝௟௖ߜ + ઴௝௟቉ߜ ௟ߚ + ቈ۵௜௜௖ + ۵௜௜ߜ ۵௜௝௖ + ۵௜௝۵௝௜௖ߜ + ۵௝௜ߜ ۵௝௝௖ + ۵௝௝቉ߜ ൜܎௜܎௝ൠ, (27)

where ܎௝ is the force vector at the junctions and ܎௜ is external force vector. 
The interface displacement ܝ௝ can be expressed by partition of Eq. (27): ܝ௝ = ൫઴௝௟௖ + ௟ߚ઴௝௟൯ߜ + ൫۵௝௜௖ + ௜܎۵௝௜൯ߜ + ൫۵௝௝௖ + ௝. (28)܎۵௝௝൯ߜ

3. Components synthesis equations 

For convenience, consider the synthesis of components ܽ and ܾ. According to Eq. (28) the 
displacement of interface of the two components can be written as: ܝ௝௔ = ൫઴௝௟ೌ௖ + ઴௝௟ೌߜ ൯ߚ௟௔ + ቀ۵௝௜௔௖ + ۵௝௜௔ቁߜ ௜௔܎ + ቀ۵௝௝௔௖ + ۵௝௝௔ቁߜ ௝௕ܝ௝௔, (29)܎ = ൫઴௝௟್௖ + ઴௝௟್ߜ ൯ߚ௟௕ + ቀ۵௝௜௕௖ + ۵௝௜௕ቁߜ ௜௕܎ + ቀ۵௝௝௕௖ + ۵௝௝௕ቁߜ ௝௕. (30)܎

The physical displacement continuity and force continuity at the conjunction region are 
employed to assemble the components. These conditions can be expressed as follows: ܝ௝௔ = ௝௔܎௝௕, (31)ܝ + ௝௕܎ = ૙. (32)

Substituting Eq. (29) an Eq. (30) into Eq. (31), and Eq. (32) is introduced together to give:  
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௝௔܎ = ۹௝ൣ൫઴௝௕௟௖ + ઴௝௕௟ߜ ൯ߚ௟௕ − ൫઴௝௔௟௖ + ઴௝௔௟ߜ ൯ߚ௟௔ + ൫۵௝௜௕௖ + ௜௕܎۵௝௜௕ ൯ߜ − ൫۵௝௜௔௖ + =௜௔൧܎۵௝௜௔ ൯ߜ ௝௕, (33)܎−

where: ۹௝ = ቀ۵௝௝௔ + ۵௝௝௕ቁିଵ. (34)

Substitution of Eq. (24) into Eq. (34) will lead to: ۹௝ = (۵௝௝௔௖ + ۵௝௝௕௖ )ିଵ − (۵௝௝௔௖ + ۵௝௝௕௖ )ିଵ(۵ߜ௝௝௔ + ۵௝௝௕)(۵௝௝௔௖ߜ + ۵௝௝௕௖ )ିଵ = ۹௝௖ + ۹௝, (35)ߜ

where: ۹௝௖ = (۵௝௝௔௖ + ۵௝௝௕௖ )ିଵ, (36)۹ߜ௝ = −(۵ ೕೕೌ௖ + ۵ ೕೕ್௖ )ିଵ(۵ߜ௝௝௔ + ۵௝௝௕)(۵ ೕೕೌ௖ߜ + ۵ ೕೕ್௖ )ିଵ. (37)

According to Eq. (33), we can obtain: ઴௔௟்ۻ௔઴௔௟ ሷ௟௔ߚ + ઴௔௟்۹௔઴௔௟ ௟௔ߚ = ઴௝௔௟்܎௝௔ + ઴௜௔௟்܎௜௔, (38)઴௕௟்ۻ௕઴௕௟ ሷ௟௕ߚ + ઴௕௟்۹௕઴௕௟ ௟௕ߚ = ઴௝௕௟்܎௝௕ + ઴௜௕௟்܎௜௕. (39)

Don’t consider the external force, substituting Eq. (33) into Eq. (38) and Eq. (39) will give: ۻഥ + ሷ௟ߚ ۹ഥߚ௟ = ૙, (40)

where: 

ഥۻ = ൤ۻഥ ௔௔ ૙૙ ഥۻ ௕௕൨,   ۹ഥ = ൤۹ഥ ௔௔ ۹ഥ ௔௕۹ഥ ௕௔ ۹ഥ ௕௕൨,   ߚ௟ = ൜ߚ௟௔ߚ௟௕ൠ, (41)ۻഥ ௔௔ = ઴௔௟௖ఁۻ௔௖ ઴௔௟௖ + ௔௖ۻ઴௔௟ఁߜ ઴௔௟௖ + ઴௔௟௖ఁۻߜ௔઴௔௟௖ + ઴௔௟௖ఁۻ௔௖ ઴௔௟ߜ ഥۻ(42) , ௕௕ = ઴௕௟௖ఁۻ௕௖ ઴௕௟௖ + ௕௖ۻ઴௕௟ఁߜ ઴௕௟௖ + ઴௕௟௖ఁۻߜ௕઴௕௟௖ + ઴௕௟௖ఁۻ௕௖ ઴௕௟ߜ , (43)۹ഥ ௔௔ = ቀ઴௔௟௖ఁ۹௔௖ ઴௔௟ + ઴௝௔௟௖ఁ۹ ೕ௖ ઴௝௟௖ቁ + ઴௔௟ఁ۹௔௖ߜ ઴௔௟ + ઴௔௟௖ఁ۹ߜ௔઴௔௟ + ઴௔௟௖ఁ۹௔௖ ઴௝௔௟ఁ۹ ೕ௖ߜ+      ઴௔௟ߜ ઴௝௔௟௖ + ઴௝௔௟௖ఁ۹ߜ௝઴௝௟௖ + ઴௝௔௟௖ఁ۹ ೕ௖ ,઴௝௟ߜ  (44)۹ഥ ௔௕ = ൫−઴௝௔௟௖ఁ۹௝௖઴௝௕௟௖൯ + ൫−ߜ઴௝௔௟ఁ۹௝௖઴௝௕௟௖ + ઴௝௔௟௖۹ߜ௝઴௝௕௟௖ + ઴௝௔௟௖ఁ۹௝௖ߜ઴௝௕௟ ൯, (45)۹ഥ ௕௔ = ൫−઴௝௕௟௖ఁ۹௝௖઴௝௔௟௖൯ + ൫−ߜ઴௝௕௟ఁ۹௝௖઴௝௔௟௖ + ઴௝௕௟௖۹ߜ௝઴௝௔௟௖ + ઴௝௕௟௖ఁ۹௝௖ߜ઴௝௔௟ ൯, (46)۹ഥ ௕௕ = (઴௕௟௖ఁ۹௕௖ ઴௕௟ + ઴௝௕௟௖ఁ۹௝௖઴௝௟௖) + ઴௕௟ఁ۹௕௖ߜ ઴௕௟ + ઴௕௟௖ఁ۹ߜ௕઴௕௟ + ઴௕௟௖ఁ۹௕௖ ઴௝௕௟ఁ۹௝௖઴௝௕௟௖ߜ+      ઴௕௟ߜ + ઴௝௕௟௖ఁ۹ߜ௝઴௝௟௖ + ઴௝௕௟௖ఁ۹௝௖ߜ઴௝௟.  (47)

We can also rewrite Eq. (40) as: 

ቊቈۻഥ ௔௔௖ ૙૙ Μഥ ௕௕௖ ቉ + ൤ۻߜഥ ௔௔ ૙૙ ഥۻߜ ௕௕൨ቋ ቊߚሷ௟௔ߚሷ௟௕ቋ + ቊቈ۹ഥ ௔௔௖ ۹ഥ ௔௕௖۹ഥ ௕௔௖ ۹ഥ ௕௕௖ ቉ + ൤۹ߜഥ ௔௔ ۹ഥߜ ௔௕۹ߜഥ ௕௔ ۹ഥߜ ௕௕൨ቋ ൜ߚ௟௔ߚ௟௕ൠ = ૙. (48)

4. Interval eigenvalue analysis of synthesis model 

The first order perturbation item of the eigenvalues of the reduced model can be expressed as: 
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௜ߣߜ = ઴ഥ ௜்൫۹ߜഥ − ഥۻߜ  ௜ߣ̅ ൯Φഥ ௜Φഥ ௜்ۻഥ Φഥ ௜ , (49)

where ̅ߣ௜  and Φഥ ௜  are the eigenvalues and the eigenvectors of the reduced model, respectively, 
which are obtained from the deterministic model. 

We consider that the mode matrix Φഥ  is normalized with respect to mass matrix ۻഥ , denote ۹ߜഥ 
and ۻߜഥ  as ∑ ߲۹ഥ߲݆ߙ ⋅ 1=ݎ݆݆ߙߜ  and ∑ ݆ߙഥ߲ۻ߲ ⋅ 1=ݎ݆݆ߙߜ , the interval function of ߣߜ௜ can be written as: 

௜ூߣߜ = ෍ ቤ઴ഥ ௜் ቆ߲۹ഥ߲ ௝ܽ − ௜ߣ̅ ഥ߲ۻ߲   ௝ܽቇ ઴ഥ ௜ቤ Δߙ௝݁୼௥
௝ୀଵ . (50)

The interval of ߣ̅ߜ ,ߣ̅ߜ ⁄௖ߣ̅  can be obtained via interval method, then according to Eq. (50) we 
can acquire the interval of the eigenvalues of the system and the influencing degree of the 
non-deterministic factor to the natural frequencies. 

5. Examples 

5.1. Numerical example 

5.1.1. Model description 

For demonstration purposes, a bridge is considered. The length of the bridge is 108 m, the 
width of it is 11.2 m. As shown as in Fig. 2 and Fig. 3, the bridge is separated into two physical 
components. The component ܽ  contains 126 two-node beam elements, 50 nodes each has  
6 DOFs, 300 DOFs in total. The component ܾ has 111 two-node beam elements, 40 nodes each 
has 6 DOFs, 240 DOFs in total. The beam element is circular hollow in cross-section. And the 
Parameters used in the model of the bridge are listed in Table 1. 

 
Fig. 1. The bridge structure 

 
Fig. 2. The component ܽ 

 
Fig. 3. The component ܾ 

Table 1. Parameters used in the model of the bridge 
Young’s modulus / GPa 210 
Poisson ratio 0.3 
Density / kg/m3 7800 
Internal diameter/external diameter of the red group / m 0.88/1.04 
Internal diameter/external diameter of the green group / m 0.76/0.8 
Internal diameter/external diameter of the yellow group / m 0.28/0.32 
Internal diameter/external diameter of the blue group / m 0.26/0.30 
Internal diameter/external diameter of the black group / m 1.2/1.4 
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5.1.2. Natural frequency analysis of deterministic model 

The natural frequencies are calculated using the proposed synthesis method, and compared 
with those obtained using the full FE model in Table 2, where ݈ indicates the number of the lower 
retained modes of each component to formulate the synthesis equations (See Eq. (48)). 

Table 2. Comparison of the eigenvalues from the presented method and the full FEM (Unit: Hz) 
Mode order ݈ = 10 ݈ = 15 ݈ = 20 ݈ = 25 Full FEM 

1 2.8798 2.8797 2.8797 2.8797 2.8717 
2 2.8899 2.8898 2.8898 2.8898 2.8818 
3 5.1982 5.1954 5.1953 5.1950 5.1936 
4 5.2580 5.2513 5.2511 5.2507 5.2491 
5 6.0000 5.9975 5.9961 5.9960 5.9945 
6 6.0274 6.0223 6.0200 6.0198 6.0182 
7 7.9113 7.9092 7.9065 7.9061 7.9039 
8 7.9826 7.9813 7.9801 7.9799 7.9778 
9 8.9783 8.9578 8.9319 8.9286 8.9261 
10 9.6052 9.5749 9.5468 9.5449 9.5429 
11 10.2119 10.2026 10.2020 10.2006 10.198 
12 10.3199 10.2419 10.2410 10.2391 10.237 

We can define the error measure for the natural frequency as ߝ = ห߱௦ − ߱௙ห ห߱௙หൗ × 100 %, 
where ߱௦ refer to the natural frequency acquired from the synthesis model, and ߱௙ refer to the 
natural frequency acquired from the full FE model. The comparison of error measure for natural 
frequencies is shown in Fig. 4. It is observed that the errors reduce for higher modes and the 
maximum error is less than 0.3 % when more than 20 modes are comprised in the synthesis model. 

 
Fig. 4. Comparison of error measure for natural frequencies 

The CPU time of natural frequency analysis spent on the reduced model and the full FE model 
is listed in Table 3. The CPU time ratio is defined by ݐ௦ ⁄௙ݐ ×100 %, where ݐ௦ is the CPU time 
spent on the reduced model, ݐ௙  is the CPU time spent on the full model. Obviously, it can 
significantly increase the calculation efficiency by using the CMS method presented in this paper. 

Table 3. Comparison of the CPU time spent on the synthesis models and full FE model 
 Synthesis models Full FE model ݈ = 10 ݈ = 15 ݈ = 20 ݈ = 25 

CPU time / s 20.2 44.6 52.6 69.7 2247.0 
CPU time ratio 0.9 % 2.0 % 2.3 % 3.1 %  
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5.1.3. Interval eigenvalue analysis 

We consider that Young’s Modulus of component ܽ and ܾ is modeled by an interval quantity 
which can be expressed as: ܧ௜ூ = ௖ܧ] − ,௖ܧߚ ௖ܧ + ݅    ,[௖ܧߚ = ܽ, ܾ, 
where ܧ௖ = 210 GPa, ߚ = 5 %.  

Monte Carlo method is widely used to predict the response of the systems with significant 
uncertainties or the system exhibited probabilistic characteristics. It is well known that the 
accuracy of the Monte Carlo approach is dominated by the number of samples of the uncertainties. 
The Larger number of the samples always means the higher accuracy of the result obtained by 
using the Monte Carlo method. However, with the increasing number of samples, the 
computational costs become expensive and extremely time consuming, especially for the dynamic 
analysis of the complex FE model with numerous number of DOFs. Since the Monte Carlo method 
can lead to highly accurate result for predicting response of the system with uncertainties, we take 
the results obtained from the Monte Carlo approach as the standard values to evaluate the accuracy 
of the results obtained by using the proposed method. The intervals of natural frequencies obtained 
from the method proposed in this paper and those obtained from Monte Carlo method with 100 
runs due to an uncertainty on the Young’s modulus are listed in Table. 4. It shows that the synthesis 
method gives very close bounds to the Monte Carlo method. 

Table 4. Intervals obtained from presented method and Monte Carlo method when ߚ = 5 % 
Mode order The presented method The Monte Carlo method 

1 [2.8060, 2.9534] [2.8138, 2.9436] 
2 [2.8154, 2.9642] [2.8226, 2.9540] 
3 [5.0613, 5.3279] [5.0698, 5.3214] 
4 [5.1175, 5.3827] [5.1229, 5.3783] 
5 [5.8425, 6.1481] [5.8493, 6.1423] 
6 [5.8672, 6.1706] [5.8713, 6.1665] 
7 [7.7026, 8.1072] [7.7142, 8.0976] 
8 [7.7758, 8.1824] [7.7898, 8.1744] 
9 [8.6856, 9.1612] [8.7001, 9.1467] 
10 [9.2806, 9.7976] [9.2986, 9.7736] 
11 [9.9374, 10.4592] [9.9462, 10.4504] 
12 [9.9688, 10.5042] [9.9833, 10.4897] 

 
Fig. 5. The envelopes of change rate of natural frequencies when ߚ = 5 % 

The change rate of natural frequencies can be defined as ̅ߝ = ఠഥ ିఠ೎ఠ೎ × 100 % and ߝ = ఠିఠ೎ఠ೎ ×100 %, where ߱௖ is the natural frequency obtained from the deterministic model, ഥ߱ 
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and ߱ are, respectively, the upper and lower bounds correspond to the natural frequency. As 
shown as in Fig. 5, the upper and lower change rate bound computed by CMS gives a narrow 
envelop of the results using Monte Carlo method. The reduced model induces hardly any loss of 
accuracy as the interval results of Monte Carlo method. In addition, it needs to take around  
100 minutes by using the Monte Carlo method, while it just needs to take around 2 minutes by 
using the synthesis method. Obviously, the method presented in this paper can greatly reduce the 
time consumption. 

Fig. 6 shows the envelopes of the first six natural frequencies for the case with different ߚ. The 
natural frequency intervals increase with the increase of ߚ . And the upper and lower bound 
obtained from the approach presented in this paper also gives a narrow envelop of the Monte Carlo 
results. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 6. The envelopes of lower six natural frequencies with increasing of ߚ 

5.2. Experiment demonstration 

The bolted plate is a kind of typical connecting structure, whose dynamics characteristics is 
generally influenced significantly by the uncertainties of material and connection stiffness. Two 
plates and two bolts are randomly selected from the test pieces shown in the Fig. 7 and the setup 
for modal testing of the connecting structure is shown in Fig. 8.  

 
Fig. 7. Photograph of test pieces 

 
Fig. 8. Photograph of modal testing system 

Fig. 9(a) shows the FE model of the bolted plates. As shown as in the Fig. 9(b) and Fig. 9(c), 
the connection structure is separated into component ܽ and component ܾ, and they are connected 
by using two bolts. The plates are modeled by shell elements. The bolts which are the connection 
between substructure ܽ and ܾ are modeled by beam elements. 
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The diameter of each bolt and the Young’s modulus of each plate are determined in advance. 
The interval of the diameters of those bolts is [5.94 mm, 6.04 mm], while the interval of the 
Young’s modulus of those plates is [66.2 GPa, 70.3 GPa].  

 
a) FE model of bolted plate 

 
b) Component ܽ 

 
c) Component ܾ 

Fig. 9. FE model of bolted plate and components ܽ and ܾ 

Table 5. Intervals obtained from the synthesis models and experimental model (Unit: Hz) 

Mode order Synthesis models Experiments ݎ ݎ 10 = ݎ 15 = = 20 
1 [54.304, 56.139] [54.297, 56.130] [54.296, 56.129] [53.63, 56.00] 
2 [151.63, 156.16] [151.63, 156.15] [151.63, 156.16] [153.7, 155.1] 
3 [289.67, 299.93] [289.40, 299.63] [289.38, 299.61] [288.3, 298.8] 
4 [536.78, 552.94] [536.78, 552.93] [536.78, 552.93] [543.3, 552.6] 

The intervals of natural frequencies of the bending modes obtained from the synthesis models 
and those obtained from experiments are listed in Table 5, where ݎ indicates the number of the 
lower retained modes of each component to formulate the synthesis equations. It is obviously that 
the natural frequencies obtained by using the synthesis model can have good agreement with those 
obtained by the experiments. Since there only a few retained modes are needed to achieve the 
highly accurate results, the computational cost will be greatly reduced. This is very valuable to the 
actual works. 

Fig. 10(a) and Fig. 10(b) show the error measure for lower bounds and upper bounds of natural 
frequencies respectively. From Fig. 10(a) and Fig. 10(b), we can see that the maximum error is 
less than 1.4 %. In other words, the bounds of the natural frequencies obtained by using the 
presented method match those obtained by experiments well.  

 
a) For lower bounds  

 
b) For upper bounds  

Fig. 10. Error measure for lower and upper bounds of natural frequencies 

6. Conclusions 

1) An improved free interface CMS is proposed, which is easier to deal with the case with rigid 
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body modes in component by constructing a set of weighted orthogonal modal vectors.  
2) This paper provides a method for estimating the eigen solutions of the complicated system 

with uncertain properties at very little computational cost. In the first example, compared with the 
Monte Carlo method, the case study of a bridge structure proves that the component mode 
synthesis technique makes the process of non-deterministic analysis more efficiently without 
compromising the accuracy of the interval eigenvalue results. In the second example, the results 
obtained from the proposed method agree very well with the experimental results in natural 
frequencies. This shows the superior accuracy of the proposed method as well. 
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