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Abstract. This paper presents a free vibration analysis of functionally graded Reissner-Mindlin
circular plates with various supported boundaries in thermal environments. A FGM consisting of
metal and ceramic was considered in the study. Based on the geometric equation, physical
equation and equilibrium equation of thick plate, taking into account the transverse shearing
deformation, the free vibration equation of the axisymmetric FGM moderately thick circular plates
was derived in terms of the middle surface angles of rotation and lateral displacement. The
material properties of the plate were assumed to vary continuously in the thickness direction
according a power law. By using shooting method to solve the coupled ordinary differential
equations with different boundary conditions, the natural frequencies of FGM thick circular plates
were obtained numerically. The effects of material gradient property, thickness ratio and boundary
conditions on the natural frequencies were discussed in detail.

Keywords: functionally graded materials, moderately thick plate, free vibration, frequency,
thermal environment.

1. Introduction

Functionally graded materials(FGMs), a novel generation of microscopically composites in
which the mechanical properties vary smoothly and continuously from one surface to another,
proposed in the early 1980s [1, 2]. Structures made from these materials can effectively reduce
thermal stress concentration so that they can be used in the high-temperature environments such
as aerospace, optics, nuclear and civil engineering. So, the studies of the mechanical behaviors of
FGM structures under the mechanical and thermal loadings have being attracted more and more
attentions of scientists and also have become a new research field of solid mechanics.

Comprehensive studies on the vibration responses of FGM plates are available in the
literatures, but most of which have been limited to analysis of beams and thin circular plates. For
example, Xiang and Yang [3] carried out the free and forced vibration analysis of a laminated
FGM Timoshenko beam with variable thickness under heat conduction. Li and Fan [4] proposed
natural frequencies solutions for the free vibration of a FGM beam with a through-width
delamination based on the Timoshenko beam theory. Leissa and Narita [5] investigated natural
frequencies of a simply supported circular plate using Classical plate theory with ordinary and
modified Bessel functions of the first kind. Kermani at al. [6] studied the free vibration analysis
of multi-directional FGM circular and annular plates. Dong studied [7] three-dimensional free
vibration of FGM annular plates based on Chebyshev-Ritz method. Wang at al. [8] investigated
the axisymmetric free vibration of FGM thin circular plates based on the three-dimensional theory.
Malekzadeh at al. [9] derived governing equations and boundary conditions by Hamilton principle
of FGM circular arches with temperature-dependent properties in thermal environment and then
gave the in-plane free vibration solutions. Iman at al. [10] provided an analytic solution for the
free vibration of multi-directional FGM circular and annular plates. They used state-space
differential quadrature method to find the semi-analytical or numerical solutions based on the
three-dimensional theory of elasticity. Lee at al. [11] provided a semi-analytical solution for the
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free vibration analysis of circular plate with multiple holes by using the indirect boundary integral
method. Ramesh and Mohan Rao [12] presented the natural frequencies of vibration of a rotating
pre-twisted functionally graded cantilever beam. Ying et al. [13] presented solutions for bending
and free vibration of FGM beams resting on a Winkler-Pasternak elastic foundation. By using
classical beam theory, Aydogdu and Taskin [14] investigated the free vibration behavior of a
simply supported FGM beam. Pradhan and Chakraverty [15] carried out the free vibration analysis
of FGM thin elliptic plates with various edge supports.

Compared with the free vibration analysis of FGM beams and thin circular plates, the free
vibration analysis of FGM thick plates is rare. Chen at al. [16] investigated the thermal behavior
of a thick transversely isotropic FGM rectangular plate based on the three-dimensional elasticity
theory. Kim and Lee [17] developed the geometrically nonlinear isogeometric analysis of FGM
plates based on physical neutral surface and first-order shear deformation theory. Foroughi Hamid
and Azhari Mojtaba [18] analyzed the mechanical buckling and free vibration of thick FGM plates
resting on elastic foundation using the higher order B-spline finite strip method. Jha at al. [19]
presented deformation and stress analyses of functionally graded thick plates based on the
two-dimensional theory. Liu and Lee [20] provided a vibrations analysis of thick circular and
annular plates based on three-dimensional theory with finite element method.

To the author’s best knowledge, in the previous works only the mechanical vibrations of FGM
circular plates are investigated and there have been few researches dealing with the free vibration
behavior of moderately thick circular plates, especially the effects of thermal environment are not
considered. The few researches are Malekzadeh [21], who studied the free vibration characteristic
of tapered Mindlin plates using DQM. Malekzadeh et al. [22] presented the vibration analysis of
FGM thick annular plates subjected to thermal environment based on 3D elasticity theory.
Considering the thermal environment effects and using Hamilton's principle, differential
quadrature method is adopted to solve the equations of motion and the frequency parameters are
obtained. Furthermore, Malekzadeh et al. [23] extended their work to the free vibration of FGM
elastically supported FGM annular plates in thermal environment. Shen and Wang [24] reported
a free vibration analysis of FGM rectangular plates resting on elastic foundations in thermal
environments based on Voigt model and Mori-Tanaka model respectively.

Shooting method is found to be a simple and efficient numerical technique for solving
non-linear governing equations. Some works have successfully used shooting method to analyze
post-buckling, bending and vibration analysis. For example, Li and Zhou [25] carried out the
non-linear vibration and thermal buckling of heated orthotropic circular plates by shooting
method. Ma and Lee [26] investigated the nonlinear mechanical behaviors in-plane thermal
loading of a beam made of FGM. Sun and Li [27] presented the thermal post-buckling of FGM
circular plates subjected to transverse poing-space constraints, but they cannot consider the effect
of thermal loading.

Therefore, in the present study, free vibration of a FGM moderately thick circular plate in
thermal environment is presented by employing the numerical shooting technique. The material
properties are thus assumed temperature-dependent and graded in the thickness direction. The
equations of motion are derived using the Hamilton’s principle based on the first order shear
deformation theory and three different boundary conditions are considered. After that, we employ
the shooting method to solve the equations of motion with the related boundary conditions. The
effects of uniform and non-uniform temperature rise parameters, gradients of materials properties,
thickness ratio and boundary conditions on the natural frequencies are analyzed in detail.

2. Problem formulation

Consider a FGM moderately thick circular plate on Winkler foundation with radius R and
uniform thickness h, which is made from a mixture of ceramic and metals. A cylindrical
coordinate system (7, 8, z) with its origin at the center of the mid-plane of the plate is defined,
where r, 8 and z represent coordinates in the radial, circumferential and thickness directions,
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respectively. The coordinate system is illustrated in Fig. 1.
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Fig. 1. Geometry and coordinates of an FGM circular plate

2.1. Temperature field

Since functionally graded materials are most commonly used in high temperature environment,
it is essential to take into consideration this temperature-dependency. Thus, the effective material
properties P of the metal and ceramic, such as elasticity modulus, E, thermal expansion
coefficient, a, thermal conductivity, K, Poisson’s ratio, v, may be expressed as a nonlinear
function of temperature:

P=P0(P_1T_1+1+P1T+P2T2+P3T3). (1)

In which T =Ty + AT and T, = 300 K (room temperature), the temperature-dependence
coefficients P_,, Py, P;, P, and P; are unique to the constituents.

In this section, we assume that the temperature variation is uniform or occurs in the thickness
only. Therefore, the temperature distribution along the thickness direction can be obtained by
solving a steady-state one-dimensional heat transfer equation:

4= o

This equation is solved by imposing boundary condition of T (— —) T, T ( ) T,:
iXp+1

T() =T, +—Z( )l(lxp-}-lir;l)(l (%+fl) . 3)

In which AT =T, — T,,, C = X2, (K. — K,)!/(i X p + 1)K,,", where K, and K,, denotes
the ceramic and metal thermal conductivity.

2.2. Effective material properties of FGMs
According to Voigt rule, the effective material properties P of FGMs may be written as:
P=PV.+ B, V,, 4

where the subscripts ¢ and m denote the ceramic and metallic constituents, respectively, V. and
V,, denotes the ceramic and metal volume fractions of and they can be expressed by V, + V;,, = 1,
the volume fraction V, defined a simple power low by:

e i) 5
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where p is the gradient index of FGM. Fig. 2 shows the variations of volume fraction of ceramic
phase through the thickness of plate for various values of p calculated from Eq. (5).
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Fig. 2. Variations of the volume fraction of ceramic phase versus the dimensionless thickness
of the FGM circular plate for different values of p

For simplicity, the Poisson’s ratio v is assumed to be a constant for functionally graded
materials. The effective material properties follow the distribution law of Egs. (4) and (5), namely:

E(zT) = E,(T) ( . %)p + B, (T) [1 - (% + %)p] (6a)
z z\P

a(z,T) = a,(T) (2 E) +a,(T) [1 -(5 E) ] (6b)

K(z,T) = K,(T) (2 %) + K, (T) [1 - % %)p] (6¢)

v(z) =v, ) ) (6d)

I

2.3. Governing equations

According to one-order shear plate theory, it can be assumed that the axisymmetric
displacement field are:

U‘r (T, z, t) = Zl/)(T, t), (73)
Ug(r,z,t) =0, (7b)
U,(r,z,t) = w(r,t). (7¢)

In which U,., Ug and U, are total displacement components along the coordinates 7, 8 and z,
respectively, u and w are the displacements in the mid-plane of the plate along the coordinates r
and z, respectively, and Y denotes the slope at z = 0 of the deformed line that was straight in the
undeformed plate, t is the time variable.

The strains can be expressed as follow:

au,
& = gr, (8a)
ge = Tr' (8b)
Jau, au,
= 8
Vrz 7 + 39" (8¢)

Considering nonlinear strain-displacement relationships, one then obtains:
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1/0wm\> oy
N i b 9a
& 2<6r> +Zar' ©a)
89=Z£, (9b)
" d
w
Vrz=¢+gi (9¢)

where &, and &y are the normal strains and y,., is the shear strain.
Based on Hooke’s law, the stress-strain relations are expressed by following formulations:

o, = —i(f;) (g, +veg) — —E(Z' z‘)_af/z, ) T(2), (10)
oy =%(59 +veﬂ—%ﬂz), (11)

_ E(@zT) o
Trz = myrz- ( )

The stress can then be determined in terms of the mid-plane displacement through
Egs. (92)-(9¢), they can be calculated as:

2
o SEDRE alb ] LD
_E(zT)|v ow z P oy E(z,Ta(z,T)
%=1 3(3r) +Z<7+V§>]‘71_v r@. (19
B E(z,T) ow
Trz—m( ) (15)

The membrane forces, the bending moments and the shear resultant force can be deduced from
thickness integration of Egs. (13), (14) and Eq. (15) respectively:

0.5h

1 70w\> Y
M= | wd=anz(Gr) +Ba G vy) - (1)
-0.5h
0.5h Sun? " o
v (0w
—0.5h
oo 1 /0w\* /)
M, = f arzdz=811§<a> + Dy (E—H}?)_MT' (16¢)
—0.5h
0.5h Sun? " oy
v (0w
—0.5h
0.5h
S ow
Q, = j T,,dz = K—S(z,b + E) (16e)
—0.5h

Here K, is the shear correction factor, for Mindlin plate x, = 12 /72, Reissner plate k, = 6/5.
Aq1, B11, D11 and S are the stretching, bending-stretching coupling, bending and shear rigidity
coefficient respectively; and the thermal membrane force N and thermal bending moment My
can be calculated by following expressions:
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0.5h
B E(zT) "2 E(2)
(All’Bll’ D11) = _O£h 1— (1 Z, Zz)d S = fh/zmdz, (17)
0.5h
(Np,Mp) = J- WT(Z)(L z)dz. (18)
-0.5h

Substitution of Eq. (6a) and Eq. (3) into Eq. (17) and Eq. (18) gives following statements:

c( ) 2 3 _ E(D)
(A11,B11,D11) = (hfph fo,R3f3), S = 20+ ) ————hf;,
A
(8, M) =% j (Fufi + 5 fs) (L)

—0.5h

Note thatE, = E,,/E., a, =an/a., K =Kn/K., f; (i=1,2,3,4,5) are coefficients
determined as follows:

_E 4
fi= Bt
f_ p(l_Er)
=

20+ D +2)
_E (@*+p+2)A-E)
fa= 12 4(p+1D@p@+2)(p+3)

fo= [Er+(1—Er)<%+%>p] [ar+(1—ar) S+7 ]

- oo oo [ St

2.4. Motion equations

iXp+1

The kinetic energy T and the elastic potential V, of the FGM plate may be written as:

oU,\>
o

1
Ve = E J-(O-rer + 0ggp + Trzyrz) aq, (20)
Q

where p = p(z,T) is the mass density of the FGM plate, and (0denotes domain of the FGM plate.

The load-displacement relationship of the foundation is assumed to be q = k,w — kgVZW
where q is the force per unit area, and V is Laplace differential operator; k,, is the Winkler
foundation stiffness and k is a constant showing the effect of the shear interactions of the vertical

elements.
The elastic foundation energy having shear deformable layers V}, of the plate is expressed as
follows:

Jf [ ww? av:)z] da @)
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2.5. Hamilton’s principle

The free vibration equations of motion will be derived according Hamilton’s principle, which
has the following form:

3

ST = f ST =V, — V)t (22)

t1

where t; and t, are the beginning and end of motion time, respectively, in which the virtual kinetic
energy is:

ow oY oy
5T=ff10§ —dA+ J- 12—5—dA (23)
A
The virtual elastic potential and elastic foundation energy may be expressed as follows:

oV, = J-(O'T(SST + 090&g + T,,0Y,,) AQL

ﬂ aw aw oY ow 24)
—+M 66—+—6¢+Qr&p+Qr6—)d .
8V, = ﬂ [k wéw — k (10“’ 0w >6w]dA 25)
k= or ' or?
In which:
n

(lo, I2) = fﬁp(z)(l,zz)dz = pc(hfs, R°f7),

where:

pr, @+p+2)(A-py) b = Pm
12 4p+DE+2)@+3) 7T p

Applying integrating by parts and collecting the coefficients of 3, dw, the governing
equations of motion can be expressed as:

— Pr
p+1’

fe=pr+ fr=

oM, M, — My 0%y

or T 8 -7 26a
61!) ar + r QT‘ 12 atzl ( )
sw: 2 O 1 (Naw) kyw + kg Cw Low) _, Ow 26b
Wiar T Trar\ ' ar wW or2 "ror) %otz (26b)

Inserting Egs. (16a)-(16e) into Egs. (24a, b) and regardless of nonlinear terms, the governing
equations of motion can be expressed as:

D(az—w+la—¢—ﬂ>—i<¢+aw) oy 27a)

I ,
or2 ror r? K or 29tz
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61[)+82W+1,b+18w N 62W+16W legw + kg 0%w +16W 162 -
or orz ' r 'rar) T\arz ror wW rz ' ror Oatz( )

Assume that the vibration of circular plate is harmonic. Then, the dynamic response can be
expressed as:

w(r,t) = w(r)cosit, (28a)
Y(r, t) = P(r)cosQt, (28b)

where Q is the natural frequency, and W(r) and ¥ (r) are the shape functions. Substituting
Egs. (28a) and (28b) into Egs. (27a) and (27b) gives the governing equations of motion of the
problem as follow:

> 1dy P\ S /. dw
D(d—:fm—‘f—i”—z)—xs( + ) = i @
dy Y 1dw d*w 1dw d*w 1dw
(dr+dr2+7+r dr) NT(W—l—rd ) kW + kg <dr2 +;E> (29b)
= —I,wQ2.

Non-dimensional variables are introduced as follows:

r w h 12(1 — v®»)k,R* 12(1 — v3)k,R?
, -, §=—, KW=¥, K =¥,
R R R E_ h3 E_ h3

’12(1 —v2)p.h
Wy = QR? T

Substitution of the above non-dimensional transformation into Egs. (29a) and (29b) gives the
governing equations of the FGM Reissner-Mindlin circular plates in dimensionless forms as:

2 1d 6(1 — daw ~
126%f; <dflf Ed_?_;/%) & V)f1< _f) = =8*fpws, (30)

6(1—v)  (dW 1w dj ¥ (W 1dw

p <d62+€df F3 é) O KW + (6%K, NT)<ds‘2+§d_€) 31
= =82 f,Ww?2.

In which:

1
AT
=12(1+v)a, fgl dt + — fgzdt ,
0

where:
g1 = [Er + (1 - Er)tp][ar + (1 - ar)tp]’ o

— _ _ _ i(l_—KT)i ixp+1
9> = [+ (1 = E)ella, + (1 a»tp];( D ot

In the present study, three traditional boundary conditions are considered. Boundary conditions
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in dimensions form can be written as:

)=0 aw )=0 =0 32

$=0 - +¥=0 =0 (32)
Clamped edge (C):

P=0, W=0, §=1. (33)

Simply supported edge (S):

ap B B

Er=0 w=o f=1. (34)
Free edge (F):

dp - dw o 3

d—€+mp_0, d—g+¢_0, E=1. (35)

3. Shooting method

Due to complexity and the coupling of these partial differential equations, it is very different
to obtain any analytical solution of this problem. In what follows, a shooting method [25-27] is
employed to numerically solve the problems. Here, the governing Egs. (30) and (31) and boundary
conditions Egs. (32)-(33), (32)-(34) and (32)-(35) can be rewritten in the standard form:

Z—; =H(,Y), (0<¢&<), (36a)
B,Y (0) = by, (36b)
B,Y(1) = by, (36¢)
where:

T

_dy AW
Y =[y1,Y23 Y8 ys]" = [Ip'd_f'w'd_f'wn] ’

H = [yz: Al! 3’41 AZJ O]T

Expressions of A, A, and by, b, are as follows:

RS 1-v)f 8 f; 2
A = &2 f + 262K, f3 (1 + ya) 12f33’1375 ,

[_@fl (42 +32) + (N7 = 82K,) 2+ 62K,ys — 62555
[CO=0 1 (52, - )]

bo={0 n 0}, by={0 0},

A2=

’

where 1 is a dimensionless deflection parameter.
B, and B, are matrixes of order 3x5 and 2x5 respectively, they are:

100 0 0
Bo=|0 0 1 0 ol
00010
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For the clamped boundary:

1 0 0 0 O
Bl‘[00100'

For the Simply supported boundary:

w1000
BI_[00100'

For the free boundary:

M1 0000
Bl‘[00010'

Consider the initial value problem:

dG
i H(, G6), (37a)
G(0) =I(n,D), (37b)

where G = {91, 92, 93,94, gs}"» I = {0,d1,1,0,d,}", and D = {d,,d,}" is the initial parameter
vector.
The unique solution for the initial value problem must exist, namely:

3
G(&7,D) = I(,D) + f HE,6) dq. (38)

0

For given value of 7, we seek components of D* = {d}, d3}" such that a solution of Eq. (38)
satisfies boundary condition Eq. (37b), that is:

B,G(¢;7,D%) = {0, O}T. (39)

Obviously, if D = D* is aroot of Eq. (39), the solution of the boundary-value problem Eq. (36)
is then obtained as:

Y(§) = G(&;n, D). (40)

We employ the Runge-Kutta method to integrate the system Eq. (38) of ordinary differential
equations, and the Newton-Raphson iteration method to search for a root D* of Eq. (39) to find a
numerical solution of the boundary-value problem Eq. (36). This approach is called a shooting
method.

4. Shooting method for approximate solutions of free vibration of FGM Reissner-Mindlin
plates

In what follows, the material properties of ceramic, Zr0,, and metallic, Ti-6Al-4V, as given
in Table 1, are used in the numerical computations.

4.1. Comparison studies

To ensure the accuracy and effectiveness of shooting method, two examples are solved for free
vibration of homogeneous and FGM Mindlin circular plate.
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Table 1. Temperature-dependent coefficients for ceramic and metals from Reddy and Chin [28]

Material | Proprieties | P_; I Py P, Py
Ti-6Al-4V E (GPa) 0 122.7e+9 | —4.605¢-4 | —4.605-4 0
a (1/K) 0 | 7.5788e-6 | 6.638e-4 | —3.147e-6 0
k(WmK) | 0 1.0 1.704e-2 0 0
pkgm?) | 0 4229 0 0 0

Zr0, E (GPa) 0 | 244.27e+9 | —1.371e-3 | 1.214e-6 | —3.681e-10
a (1/K) 0 12.766e-6 | —1.491e-3 | 1.006e-5 0
k(WmK) | 0 1.7 1.276e-4 | 6.648e-8 0
pkgm?) | 0 3000 0 0 0

Example 1. When the power law index p equals zero, the functionally graded material is
reduced to the homogeneous ceramics Mindlin circular plate. In order to show the accuracy of the
present numerical method, by givingp =0,v =0.3,K,, = K; = 0,6 = 0.2, the comprehensive
comparison between the shooting method results and those in Ref. [29] is given in Table 2, which
includes the cases of above-mentioned three sets of boundary conditions. Obviously, the first four
lower-order dimensionless natural frequencies show good agreement with the existing results.

Example 2. The first three order dimensionless fundamental frequency parameters w of the
FGM thick circular plates for the three traditional boundary conditions are calculated and
compared in Table 3 with a set of results [15] based on Rayleigh-Ritz method. The present results
are in good agreement with existing results.

Tables 2-3 show that the present results agree well existing results, and thus the accuracy of
the shooting method technique are confirmed.

Table 2. The first fourth dimensionless natural frequencies w,, for thick circular plates
under three sets of boundary conditions

Boundary condition wq W, w3 Wy
c Present | 9.2401 | 30.211 | 56.683 | 85.572
[29] 9.2400 | 30.211 | 56.682 | 85.571
s Present | 4.7773 | 24.995 | 52.514 | 82.767
[29] 4.7777 | 24994 | 52.514 | 82.766
F Present - 8.5051 | 31.111 | 59.646
[29] - 8.5050 | 31.111 | 59.645

Table 3. Dimensionless natural frequencies w,, of FGM Mindlin plates
with different graded index § = 0.01
Boundary W,
condition p=00|p=01|p=05]|p=1|p=2 p=>5
C | 1 [ Present | 10213 | 9.9836 | 9.4503 | 9.1331 | 8.815 8.591
[15] 10.216 | 9.8510 | 8.973 8.500 | 8.125 7.576
[ 2 | Present | 39.734 | 38.843 | 36.767 | 35.532 | 33.423 | 33.423
[15] 39.773 | 38352 | 34.933 | 33.093 | 29.496 | 29.496
S | 1 | Present | 4.935 4.823 | 4.5673 | 44133 | 4.2684 | 4.1426
[15] 4.935 4.759 4.335 4.106 | 3.925 3.659
| 2 | Present | 29.704 | 29.036 | 27.486 | 26.564 | 25.416 | 24.667
[15] 29.736 | 28.674 | 26.118 | 24.742 | 23.651 | 22.052
F | 2 [ Present | 8.9686 | 8.7673 | 8.2986 | 8.0204 | 7.7737 | 5.9883
[15] 9.003 8.682 7.908 7.491 | 7.161 6.677
| 3 [ Present | 37.787 | 36.939 | 34.964 | 33.793 | 32.754 | 25.2045
[15] 37.564 | 36.221 | 32.993 | 31.225 | 29.877 | 27.857

4.2. Numerical results and discussions

In this section, the free vibration of a FGM thick circular plate is numerically analyzed in
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thermal environment. Table 4 shows the first three order dimensionless fundamental frequency
parameters w of the FGM thick circular plates for clamped boundary condition changing with the
power law index p in room temperature ficlds without elastic foundation. It can be seen that all
the frequencies decrease with the increasing of power law index p, which is due to the fact that
the decrease of rigidity of the plate, or the increase of the component of metallic in the plate. Also,
along with the increase in the value of §, the frequencies decrease.

Table 4. Dimensionless natural frequencies w,, of FGM thick circular plates with clamped edge
(v=03,T. =T, =300K, Kw = Kg = 0)

)
§ Mindlin solution Reissner solution
p=00[p=02|p=05|p=1|p=2|p=5|p=0|p=02|p=05|p=1|p=2|p=5
8.6948 | 7.9758 | 7.3639 |6.8684|6.4509|6.0217|8.7051| 7.9850 | 7.3724 |6.8763 |6.4587|6.0291
29.464 | 27.028 | 24.908 |23.111]21.529]19.931|29.538| 27.095 | 24.969 [23.168[21.585]19.983
55.752 | 51.185 | 47.158 |43.659|40.514[37.355|55.944| 51.358 | 47.317 |43.808]40.655|37.488
8.1034 | 7.3952 | 6.8503 |6.3628|5.9388(5.5085|8.1201| 7.4468 | 6.8642 |6.3759|5.9514|5.5206
24.245122.211 | 20.516 |18.984|17.599|16.213 |24.333| 22.347 | 20.589 [19.053]17.665|16.274
43.037 | 39.484 | 36.446 |33.674|31.129|28.594|43.226] 39.731 | 36.604 |33.822|31.267|28.723

0.2

0.3

W N[ — [N |—

Subjected to room temperature or heat conduction, the fundamental frequencies decrease
significantly with increasing the value of § in Fig. 3 and 4. It can be found that for a giving &,
Ceramic plate provide the largest fundamental frequency while the metal plate hold the smallest
one. Table 5 shows the effect of uniform temperature rise on the first three-order dimensionless
frequency parameters for FGM Mindlin plate with § = 0.2 and clamped ends that frequencies
monotonously decrease as uniform temperature rise increase.

10.0 90
210, [Ti-6A4Y —=— 2710,
959 T=300k —e— =05 8.5]
904 T.=300K —o—p=2 40, [Ti-6AI-4V P
" — > Ti-6Al-4V 803 1350k —®—7Z0,
85 : —e—p=05
751 T.=300K 2

—>—Ti-6Al-4V
7.04

6.5

6.0 j\O\O\O\O\(

5.5

, 50 w
4.54 T T T T 4.5 T

0.20 0.22 0.24 0.26 0.28 0.30 0.20 0.22 0.24 0.26 0.28 0.30
] o
Fig. 3. Fundamental dimensionless frequency Fig. 4. Fundamental dimensionless frequency
parameter w, of clamped plate versus § parameter w, of clamped plate versus §
in room temperature field subjected to heat conduction

Table 5. Dimensionless natural frequencies w,, of FGM thick circular plates
with clamped edge (v = 0.3, = 0.2, Kw = Kg = 0)
)

é T, =T, =400K T, =T, =500K
p=00{p=02{p=05{p=1|p=2|p=5|p=0[p=02[p=0S5|p=1|p=2|p=5
8.5046 | 7.8108 | 7.2219 | 6.7486 | 6.3529 |5.9435|8.3095| 7.6418 | 7.0768 |6.6245|6.2531|5.8641
29.211 | 26.808 | 24.719 [22.95021.397[19.823|28.956 | 26.588 | 24.528 [22.788]21.263 [19.715
55.439 | 50.914 | 46.924 [43.460]40.347]37.219]55.124| 50.642 | 46.689 |43.259|40.180|37.084

—_

[\

W

In order to compare uniform and non-uniform temperature rise effects, average temperature of
non-uniform parameters equal to the temperature of uniform case are considered. Table 6 shows
the effect of uniform temperature rise and heat conduction on the free vibration of FGM Mindlin
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circular plates without elastic foundation. It can be observed that for the same value of both
uniform and non-uniform rise, the first-three frequency parameters of FGM Mindlin plate decrease
with increasing the power law index p. One can see that the frequency in case of uniform heating
is smaller than that of the non-uniform temperature rise.

Table 6. Fundamental dimensionless frequencies w, of FGM thick circular plates with clamped edge
subject to temperature rise and heat conduction (v = 0.3, 6 = 0.2, Kw = Kg = 0)
)
p=0|p=01|p=05|p=1|p=2|p=5|p=100
T. =T, =325K 8.6484 | 8.4774 | 8.0844 | 7.8528 | 7.6488 | 7.4601 | 7.2487
T. =T, =350K 8.6008 | 8.4334 | 8.0468 | 7.8198 | 7.6210 | 7.4355 | 7.2278
T,

=T,=375K 8.5528 | 8.3881 | 8.0091 | 7.7875 | 7.5922 | 7.4117 | 7.2069

350K, T,,, =300K | 8.6873 | 8.5146 | 8.1137 | 7.8788 | 7.6715 | 7.4789 | 7.2664
400K, T, =300 K | 8.6797 | 8.5063 | 8.1067 | 7.8719 | 7.6648 | 7.4740 | 7.2632
450K, T, =300 K | 8.6437 | 8.4988 | 8.0996 | 7.8650 | 7.6589 | 7.4691 | 7.2592

T
T
Te

The effects of two-parameter elastic foundation on the first-three frequency parameters of the
FGM thick circular plates in thermal environment are exhibited in Table 7. As we expect, the
elastic foundation has significant effects on the first-three frequencies of FGM Mindlin plates
subjected to uniform temperature and heat conduction, the results are bigger than the frequencies
without elastic foundation. Obviously, additional elastic foundation leads frequency rise due to
the decrease of the flexibility and the deformation capacity.

Table 7. Dimensionless natural frequencies w,, of FGM thick circular plates
with clamped edge (v = 0.3, Kw = 50, Kg = 5)
)

é T. =T, =325K T. =350K, T, =300K
p=0|p=02{p=0S5|p=1|p=2|p=5|p=0|p=02|p=05|p=1|p=2|p=5
12.509| 11.772 | 11.141 |10.630|10.155|9.7098 | 12.524| 11.784 | 11.149 |10.618|10.161 [9.7499
32.575] 30.159 | 28.065 [26.322|24.729(23.177|32.603| 30.180 | 28.081 |26.299|24.739(23.256
59.129] 54.584 | 50.595 |47.184|44.047|40.973|59.165 | 54.612 | 50.615 |47.154|44.061 |41.079
10.214 9.5429 | 8.9591 |8.4667|8.0138|7.5773]10.221] 9.5485 | 8.9631 |8.4609|8.0163|7.5963
27.813| 25.843 | 24.112 |22.624(21.259(19.937|27.827| 25.854 | 24.119 |22.613|21.265|19.977
47.875]44.399 | 41.319 |38.630|36.150|33.742|47.894 | 44.414 | 41.330 |38.614[36.157|33.798

0.2

0.3

W N [ [ [N [—

Figs. 5 shows the anterior three-order modes of vibration for a FGM thick circular plate with
clamped edge. It can be seen that the first three order mode diagrams with § = 0.2 are very close
to the one with § = 0.3. Also, the mode diagrams are in good agreement with the boundary
conditions.

0.012

0.010 e

0.008 4

0.006 4
0.004 4
0.002+

0.000
-0.002

-0.004 4

-0.006 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Anterior third-order modes of FGM moderately thick circular plate with clamped edge

Consider a FGM Mindlin circular plate with and without elastic foundation which is simply
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supported or free edge. Table 8 shows the effect of uniform temperature rise and heat conduction
on the free vibration of FGM Mindlin circular plates with simply supported edge without elastic
foundation. It can be found that for the same value of both uniform and non-uniform rises, the
first-three frequency parameters of FGM Mindlin plate are decreased by increasing the power law
index p. Subjected to the same temperature loads, the first-three frequency parameters decrease
with increasing the ratio of the thickness to the radius in Table 4 and 7, but it is not always true
for the FGM moderately thick circular plates with simply supported edge due to effect of heat
conduction in Table 8. Also, the influence of two-parameter elastic foundation on the first-three
frequencies of FGM circular plates in room and uniform temperature rise is exhibited in Table 9.
As we expect, the elastic foundation has significant effects on the first-three frequencies of FGM
Mindlin plates subjected to uniform temperature and heat conduction, the results are bigger than
the frequencies without elastic foundation. Subjected to room temperature, uniform temperature
rises and heat conduction, the second and third-order frequencies for FGM moderately thick
circular plates with free edge are calculated (see Tables 10-11). It also can be found that the
frequency in case of uniform heating is smaller than that of the non-uniform temperature rise.
Also, one can see that increasing the thickness of the circular plate, the first-three frequency
parameters decrease.

Table 8. Dimensionless natural frequencies w, of FGM thick circular plates
with simply supported edge (Kw = Kg = 0)
w

é T.=T,=325K T, =350K, T, =300K
p=0|p=02|p=05{p=1|p=2|p=5|p=0[p=02|p=05|p=1|p=2|p=5
3.6883| 3.4191 | 3.2044 [3.0511|2.9396|2.8112|3.7344| 3.4556 | 3.2311 |3.0718|3.9562|2.8257
24.046| 22.038 | 20.323 |18.909|17.703|16.467 |24.082 | 22.066 | 20.344 |18.926|17.717|16.479
51.437]47.174 | 43.468 |40.312[37.526|34.705|51.478| 47.206 | 43.492 [40.331|37.542|34.719
4.0256| 3.7072 | 3.4449 |3.2441(3.0857[2.9158 |4.0525| 3.7286 | 3.4607 |3.2564|3.0957|2.9246
22.613)|20.728 | 19.105 |17.746[16.568|15.368 |22.638| 20.747 | 19.119 |17.758|16.578|15.377
46.006| 42.222 | 38.901 {36.027|33.451]30.856|56.035 | 42.245 | 38.918 |36.040|33.462|30.866
4.1439| 3.8063 | 3.5247 |3.3033|3.1234|2.9345]4.1619| 3.8207 | 3.5354 |3.3116|3.1302|2.9406
0.3 ] [21.119]19.365 | 17.844 |16.556|15.423]14.275|21.137]| 19.379 | 17.855 |16.564|15.430|14.281
41.296| 37.925 | 34.941 |32.325(29.951|27.572|41.318] 37.943 | 34.955 [32.335]29.960|27.580

0.2

0.25

W [N | = W [N | —

Table 9. Dimensionless natural frequencies w, of FGM thick circular plates
with simply supported edge (Kw = 50, Kg = 5)
)

) T. =T, =325K T.=350K, T, =350K
p=0|p=02|p=05|p=1|p=2|p=5|p=0(p=02|p=0S5|p=1|p=2|p=5
9.5876| 9.1729 | 8.7978 |8.5058(8.2371|7.9820(9.4763 | 9.0761 | 8.7311 |8.4373|8.1825|7.9404
0.2]2]27.798] 25.792 | 24.051 |22.663|21.450(20.238 |27.601| 25.618 | 23.929 [22.534|21.344|20.155
55.194]50.936 | 47.210 |44.113]41.35938.60354.960| 50.725 | 47.060 |43.953|41.226|38.498

—

w

Table 10. Dimensionless natural frequencies w,, of FGM thick circular plates
with free edge (v = 0.3, Kw = Kg = 0)
)

é T.=300K, T, =300K T.=400K, T, =400K
p=0|p=02p=05{p=1|p=2|p=5|p=0|p=02|p=05|p=1|p=2|p=5
8.0032] 7.3311 | 6.7677 |6.3221|5.9564|5.5768|7.8281| 7.1795 | 6.6373 |6.2119]5.8657|5.5042
30.343| 27.779 | 25.596 [23.800]22.264|20.689|30.082| 27.555 | 25.402 [23.635|22.126|20.578
7.2618 | 6.6958 |6.2437|5.8689|5.4817|7.8210] 7.1629 | 6.6107 |6.1715|5.8092|5.4335
28.075]| 25.707 | 23.681 |21.995]20.536[19.044 |27.895] 25.552 | 23.547 |21.881|20.440|18.966
7.7676| 7.1050 | 6.5474 [6.0994|5.7257|5.3399|7.6855| 7.0340 | 6.4862 |6.0473 |5.6824|5.3048
25.879]23.702 | 21.832 {20.262|18.889|17.488|25.745| 23.586 | 21.732 {20.176|18.817|17.429

0.2

0.25

0.3
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Table 11. Dimensionless natural frequencies w,, of FGM thick circular plates with free edge
(v=03,T. =300K, T;, =400 K, Kw = Kg = 0)

w

1) Mindlin solution Reissner solution
p=00{p=02p=0S5|p=1|p=2|p=5|{p=0(p=02{p=0S5p=1|p=2|p=5
0.2 2|7.8281 | 7.1795 | 6.6373 [6.2119]5.8657|5.5042|7.8321| 7.1831 | 6.6405 {6.2149|5.8685|5.5069
13/ 30.082 | 27.555 | 25.402 |23.635|22.126|20.578(30.131| 27.598 | 25.442 (23.672|22.163(20.613
025 217.8210 | 7.1629 | 6.6107 |6.1715|5.8092(5.4335[7.8262| 7.1675 | 6.6148 [6.1753|5.8129(5.4370
713]127.895 | 25.552 | 23.547 |21.881]20.440]18.966|27.952] 25.604 | 23.594 {21.925|20.483|19.007
03 2| 7.6855|7.0340 | 6.4862 |6.0473|5.6824(5.3048|7.6917| 7.0395 | 6.4912 |6.0519|5.6869|5.3092
3] 25.745 | 23.586 | 21.732 |20.176|18.817|17.429(25.679| 23.643 | 21.832 [20.225|18.864|17.475

Figs. 7 and 8 show the anterior three-order modes of vibration for FGM circular plates with
simply supported and free edge. Also, the mode diagrams are in good agreement with the boundary
conditions.
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Fig. 7. Anterior third-order modes of FGM Fig. 8. Anterior third-order modes of the FGM
moderately thick circular plate moderately thick circular plate free edge

with simply supported edge
5. Conclusions

In this paper, the free vibration of functionally graded moderately thick circular plates resting
on two-parameter elastic foundations in thermal environment has been presented by employing
the numerical shooting technique. Investigations on vibration of FGM thick circular plates in
thermal environment with three different boundaries are also introduced. Material primary
parameters are assumed temperature-dependent and vary along the thickness of the plate. By
employing a shooting method, the non-linear governing equations are solved numerically and the
natural frequencies of the circular plates are obtained. The effects of uniform temperature rise and
heat conduction, material constant, boundary conditions and elastic foundations on the natural
frequency parameters are discussed in detail. Looking into the present results, one may conclude
as follows.

1) The natural frequency parameters of vibration are decreases with increasing the ratio of the
thickness to the radius for both the homogeneous ceramics plate and FGM plate without thermal
environment, but it is not always true for a FGM plate with simply supported edge due to effect
of heat conduction. The uniform temperature rise has more effect than the non-uniform
temperature rises on the frequency parameters.

2) All the first-three order frequencies of the FGM moderately thick circular plates in thermal
environment decrease monotonously with the increase of the value of p, the reason is that the
increase of the volume fraction of the metal reduces the bending stiffness of the whole plate.

3) The effect of elastic foundation on the free vibration is significant. The natural frequency
of vibration for the plate is lower than the plates with elastic foundation. Also, the boundary
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conditions have large influence on vibration frequency of the thick plates. The natural frequency
parameters are maximum with fixed boundary condition but it is minimum under free boundary
condition.

4) The solutions can be used as benchmark for other numerical methods.

Acknowledgements

This research was supported by the National Natural Science Foundation of China
(11262010, 11272278) and the Fundamental Research Funds for the Universities of Gansu
(201405056001). The authors gratefully acknowledge both of the supports.

References

[1] Yamanouchi M., Hirai T., Shiota I., et al. Proceeding of the First International Symposium on
Functionally Gradient Materials, Sendai Japan, 1990.

[2] Koizumi M. The concept of FGM. Ceramic Transactions Functionally Gradient Materials, Vol. 34,
1993, p. 3-10.

[3] Xiang H. J., Yang J. Free and forced vibration of a laminated FGM Timoshenko beam of variable
thickness under heat conduction. Composites, Part B: Engineering, Vol. 39, 2008, p. 292-303.

[4] LiS. R., Fan L. L. Free vibration of FGM Timoshenko beams with through-width delamination.
Science China Physics, Mechanics and Astronomy, Vol. 57, 2014, p. 927-934.

[S] Leissa A. W., Narita. Y. Natural frequencies of simply supported circular plates. Journal of Sound
and Vibration, Vol. 70, 1990, p. 221-229.

[6] Kermani I. D., Ghayour M., Mirdamadi H. R. Free vibration analysis of multi-directional
functionally graded circular and annular plates. Journal of Mechanical and Technology, Vol. 26, 2012,
p. 3399-3410.

[71 Dong C. Y. Three-dimensional free vibration analysis of functionally graded annular plates using the
Chebyshev-Ritz method. Materials and Design, Vol. 29, 2008, p. 1518-1525.

[8] Wang Y., Xu R. Q., Ding H. J. Free axisymmetric vibration of FGM circular plates. Applied
Mathematics and Mechanics (English Edition), Vol. 30, 2009, p. 1077-1082.

[91 Malekzadeh P., Atashi M. M., Karami G. In-plane free vibration of functionally graded circular
arches with temperature-dependent properties under thermal environment. Sound and Vibration,
Vol. 326, 2009, p. 837-851.

[10] Iman D. K., Mostafa G., Hamid R. M. Free vibration analysis of multi-directional functionally
graded circular and annular plates. Journal of Mechanical Science and Technology, Vol. 26, 2012,
p- 3399-3410.

[11] Lee W. M., Chen J. T., Lee Y. T. Free vibration analysis of circular plates with multiple circular
holes using indirect BIEMs. Journal of Sound and Vibration, Vol. 304, 2007, p. 811-830.

[12] Ramesh M. N. V., Mohan Rao N. Free vibration analysis of pre-twisted rotating FGM beams.
International Journal of Mechanics and Materials in Design, Vol. 9, 2013, p. 367-383.

[13] Ying J., Lu C. F., Chen W. Q. Two-dimensional elasticity solutions for functionally graded beams
resting on elastic foundations. Composite Structure, Vol. 84, 2008, p. 209-219.

[14] Aydogdu M., Taskin V. Free vibration analysis of functionally graded beams with simply supported
edges. Materials Design, Vol. 28,2007, p. 1651-1656.

[15] Pradhan K. K., Chakraverty S. Free vibration of functionally graded thin elliptic plates with various
edge supports. Structural Engineering and Mechanics, Vol. 53, Issue 2, 2015, p. 337-354.

[16] Chen W. Q., Bian Z. G., Ding H. J. Three-dimensional analysis of a thick FGM rectangular plate in
thermal environment. Journal of Zhejiang University, Science A, Vol. 4, 2003, p. 1-4.

[17] Kim N-IL., Lee J. H. Geometrically nonlinear isogeometric analysis of functionally graded plates
based on first-order shear deformation theory considering physical neutral surface. Composite
Structures, Vol. 153, 2016, p. 804-814.

[18] Foroughi H., Azhari M. Mechanical buckling and free vibration of thick functionally graded plates
resting on elastic foundation using the higher order B-spline finite strip method. Meccanica, Vol. 49,
2014, p. 981-993.

443 8 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716



2613. SHOOTING METHOD FOR FREE VIBRATION OF FGM REISSNER-MINDLIN CIRCULAR PLATES RESTING ON ELASTIC FOUNDATION IN
THERMAL ENVIRONMENTS. QING-LU LI, WEI-D1 LUAN, ZUO-QUAN ZHU

[19] Jha D. K., Kant T., Singh R. K. An accurate two-dimensional theory for deformation and stress
analyses of functionally graded thick plates. International of Advance Structure Engineering, Vol. 62,

2014, p. 1-11.

[20] Liu Z., Lee Y. T. Finite element analysis of three-dimensional vibrations of thick circular and annular

plates. Journal of Sound and Vibration, Vol. 233, Issue 1, 2000, p. 63-80.

[21] Malekzadeh P. Nonlinear free vibration of tapered Mindlin plates with edges elastically restrained

against rotation using DQM. Thin-Walled Structure, Vol. 46, 2008, p. 11-26.

[22] Malekzadeh P., Shahpari S. A. Ziaee H. R. Three-dimensional free vibration off thick functionally
graded annular plates in thermal environment. Journal of Sound and Vibration, Vol. 329, 2010,

p. 425-442.

[23] Malekzadeh P., Golbahar Haghighi M. R., Atashi M. M. Free vibration analysis of elastically
supported functionally graded annular plates subjected to thermal environment. Meccanica, Vol. 46,

2011, p. 893-913.

[24] Shen H. S., Wang Z. X. Assessment of Voigt and Mori-Tanaka models for vibration analysis of

functionally graded plates. Composite Structures, Vol. 94, 2012, p. 2197-2208.

[25] Li S. R., Zhou Y. H. Shooting method for non-linear vibration and thermal buckling of heated

orthotropic circular plates. Journal of Sound and Vibration, Vol. 248, 2001, p. 379-386.

[26] Ma L. S., Lee D. W. A further discussion of nonlinear mechanical behavior for FGM beams under in-

plane thermal loading. Composite Structures, Vol. 93,2011, p. 831-842.

[27] Yun S., Li S. R. Thermal post-buckling of functionally graded material circular plates subjected to

transverse point-space constraints. Journal of Thermal Stresses, Vol. 37, 2014, p. 1153-1172.

[28] Reddy J. N., Chin C. D. Theromechanical analysis functionally graded cylinders and plates. Journal

of Thermal Stresses, Vol. 21, 1998, p. 593-626.

[29] Irie T., Yamada G., Takagi K. Natural frequencies of thick annular plates. Journal of Applied of

Mechanics, Vol. 49, Issue 3, 1982, p. 633-638.

Qing-lu Li received Ph.D. degree in structure engineering from Lanzhou University of
Technology, Lanzhou, China, in 2012. Now he works at Department of Engineering

’ Mechanics, Lanzhou University of Technology. He is an Associate-Professor in the

Department of Engineering Mechanics, Lanzhou University of Technology, China. His

current research interests include control, dynamics and FGM structures.

behaviors of intelligent materials.

mechanical behaviors of advanced materials and structures.

Wei-di Luan graduated in mechanical design and manufacturing from University of
China, Qindao, China, in 2014. Now he is a M.S. degree student with School of Science,
Lanzhou University of Technology, Lanzhou, China, his current works are the mechanical

Zuo-quan Zhuy received the B.S. degree in theory and applied mechanics from Henan
Polytechnic University of China, in 2014. Now he is a M.S. degree student with School of
Science, Lanzhou University of Technology, Lanzhou, China, his current works are the

© JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716 4439





