The analysis of the ventricle assist device controlled rotor dynamics

Elena Ovsyannikova1 , Alexander M. Gouskov2

1, 2Moscow Bauman State Technical University, Moscow, Russia

2Corresponding author

Vibroengineering PROCEDIA, Vol. 8, 2016, p. 169-173.
Received 7 September 2016; accepted 14 September 2016; published 7 October 2016

Copyright © 2016 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License

The analysis of dynamics of rotor-driven artificial ventricle (VAD) was conducted in the work. A comparison of two types of control is given: a linear-quadratic (LC) optimization and PID-regulator. It was shown that LC – control allows the pump rotor positioning with an accuracy of 0.2 mm at speeds ranging from 5,000 to 12,000 rev/min.

Keywords: mechanical circulatory support, ventricle assist device, artificial heart, active magnetic bearings, dynamics of the control system, LC-control, PID controller, rotor stabilization.


This work was supported by the Russian Foundation for Basic Research (Grant No. 15-29-01085 ofi_m).


  1. Birks E. J. Left ventricular assist devices. Heart, Vol. 96, 2010, p. 63-71. [Search CrossRef]
  2. Thunberg Christopher A., Gaitan Brantley Dollar, Arabia Francisco A., Cole Daniel J., Grigore Alina M. Ventricular assist devices today and tomorrow. Journal of Cardiothoracic and Vascular Anesthesia, Vol. 24, Issue 4, 2010, p. 656-680. [Search CrossRef]
  3. Griffith B. P., Kormos R. L., Borovetz H. S., Litwak K., Antaki J. F., Poirier V. L., et al. HeartMate II left ventricular assist system: from concept to first clinical use. The Annals of Thoracic Surgery, Vol. 71, 2001, p. 16-20. [Search CrossRef]
  4. Schweizer G., Maslen E. H. Chapter 7: Dynamics of the Rigid Rotorsa; Chapter 10: Dynamics of Flexible Rotors. Magnetic Bearings. Theory, Design and Application to Rotating Machinery, Springer, Berlin Heidelberg, 2009, p. 167-189, p. 251-297. [Search CrossRef]
  5. Franklin G. F., Powell J. D., Emami-Naeini A. Feedback Control of Dynamic Systems. 4th Edition. Prentice Hall, Upper Saddle River, NJ, 2002. [Search CrossRef]
  6. Barbaraci G., Virzì Mariotti G. Sub-optimal control law for active magnetic bearings suspension. Journal of Control Engineering and Technology, Vol. 2, Issue 1, 2012, p. 1-10. [Search CrossRef]