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vibration modes of track slabs: the first and seventh orders only related to longitudinal vibration 
and the vertical modal displacement is 0 mm; the second, third, fourth, ninth, and tenth orders 
mainly related to vertical bending vibration; and the fifth, sixth, and eighth orders related to 
twisting vibration. Since interlayer damage of ballastless tracks can cause change of vertical 
supporting rigidity in the system directly, the Gaussian curvature values of different orders for the 
first 10 vibration modes of track slabs are calculated, except for the first and seventh order (Fig. 4). 

According to the calculated Gaussian curvature mode shapes of different order (Fig. 4), the 
surfaces of the Gaussian curvature are smooth and distributed symmetrically and no obvious peaks 
appeared. This indicates that in the track slab-CA mortar system, there is neither curvature 
discontinuity nor rigidity discontinuity in the units. In other words, no damage of the track slab-CA 
mortar system is found. It can be used to identify the internal damage in ballastless tracks. 

3.2.2. Ballastless track system with damage 

The computational model is modified according to the set damage of the ballastless track 
system, and the supporting spring at the location with damage is removed. The displacement 
vibration mode of the track slab is also analyzed. Then, the damaged track slab’s distribution of 
the Gaussian curvature mode is calculated according to the Gaussian curvature theory. The 
calculated results are as shown (Fig. 5). 

 

 

 
Fig. 5. The Gaussian curvature mode shapes for track slab set with damage: a) Second-order Gaussian 

curvature mode shape, b) Third-order Gaussian curvature mode shape, c) Fourth-order Gaussian  
curvature mode shape, d) Fifth-order Gaussian curvature mode shape, e) Sixth-order Gaussian  

curvature mode shape, f) Eighth-order Gaussian curvature mode shape, g) Ninth-order Gaussian  
curvature mode shape, h) Tenth-order Gaussian curvature mode shape 
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In second-order Gaussian curvature, an obvious peak appeared, indicating that curvature 
discontinuity occurs in this area (Fig. 5). When splitting occurs in CA mortar, a track slab’s lower 
supporting condition changes. For the track slab-CA mortar system, local splitting of CA mortar 
can cause local rigidity discontinuity of the system. According to material mechanics, the change 
of rigidity can cause a change of curvatures. Therefore, the area with damage can be detected 
according to the discontinuity location of the second-order Gaussian curvature. For the calculated 
third-, fourth-, ninth- and tenth-order Gaussian curvatures, an obvious peak appears at the same 
location. This clearly indicates that rigidity discontinuity occurs here, and the damaged area can 
be accurately identified. But for the calculated fifth-, sixth- and eighth-order Gaussian curvature, 
no obvious peak and change of curvatures appear. The three order Gaussian curvatures relate to 
twisting vibration, when the damage appears at the nodel line, the modes of vibration and Gaussian 
curvatures do not change, so the three order Gaussian curvatures cannot be used to identify the 
damaged area.  

The vibration mode of vertical bending is better for identifying any single splitting of the 
plate-type ballastless track system. The splitting and its approximate range can be evaluated and 
detected according to the calculated second-, third-, fourth-, ninth- and tenth-order Gaussian 
curvatures. 

4. Modal test 

According to the calculated results for identifying damage of the ballastless track, the Gaussian 
curvature analysis on the vibration mode of the vertical bending for the track slab can help to 
identify the area where the damage exists accurately. A corresponding scale model of the 
ballastless track is made in order to verify the feasibility of the numerical simulation, and the 
damage of the ballastless track can be identified through laboratory test.  

The curvature modal test is mainly performed for ballastless tracks. Therefore, a certain 
number of acceleration sensors are first placed at a certain place on the track slab. The instrument 
used for the test system comprised of an excitation device and a detection device. The track slab 
is then exerted with a certain transient force by a hammer, and the vibration signals of the sample 
are detected by acceleration sensors. Next, these signals are sent to a signal collection system after 
being amplified by an amplifier. The vibration displacement values of different testing points 
under different order modes can be selected according to the modal analysis on the acceleration 
for the time domain data of the testing points measured on the track slab. 

4.1. Test method 

To verify the accuracy of the Gaussian curvature method in identifying damage of ballastless 
tracks, a plate-type ballastless track model is made (Fig. 6). The size of the track slab is  
1.2 m×0.8 m×0.19 m. The C40 concrete is used, and the density of which is 2,500 kg/m3. The size 
and density of the CA mortar is 1.2 m×0.8 m×0.03 m and 1,548 kg/m3, respectively. During the 
manufacture of the sample, splitting and open joints are preset respectively in the ballastless track 
structure. The range of the damage is 0.4 m×0.4 m and the positions of collocation points are 
shown in Fig. 7. 

The DH5922 (Donghua) dynamic signal collection system is used mainly in this test. A 
hammer is also used as the excitation device, and the force-hammer is used to apply transient 
signals to the track slab model by the hammer percussion. The force signal and response signal of 
the tested object can be measured at the same time. The pulse force and impact waveform depends 
on material hardness of the force-hammer’s top. If the material hardness is higher, the duration 
time of impact force is shorter and frequency component is higher. 

The sampling frequency in the test is 51.2 kHz; the analytical frequency in the study is  
0-3 kHz, the vibration acceleration signal and noise signal are collected and transferred to the 
testing computer through the charge-amplifier and signal collection board. The linear smoothing 
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method is adopted for smoothing the measured data. The vibration acceleration responses of the 
track slab model are collected at different testing points. The input signal in the test is a pulse 
excitation signal, and the force window is applied to remove the noise signal. The collected signals 
are the damped vibration signals, and the exponential window is applied to make the signals 
attenuating to 0 at the end of the signals and eliminate the truncation errors. The maximum 
excitation force is 11.435 kN, and the time-history curve of excitation force is shown as Fig. 8. 

 
Fig. 6. Model of ballastless track 

 
Fig. 7. Modal test system for detecting damage 

Modal test signals are collected by piezoelectric-type acceleration sensors placed on the track 
slab. The excited and responded process is recorded by the DH5922 (Donghua) dynamic signal 
collection system. The recorded time domain signals are converted into digital number signals by 
an A/D converter. The acceleration sensors are placed evenly on the track slab. The longitudinal 
and transverse spaces among the testing points are 0.2 m and 0.16 m, respectively. The modal test 
of the track slab is performed by means of single-point excitation and multi-point vibration signal 
collection. The testing system is powered after the acceleration sensors were installed. With a 
proper wire connection, the modal test is performed after normal signals were sent. The hammer 
is used for giving excitation signals at different testing points, and the data collection system is 
used for collecting time domain signals under different conditions (Fig. 9). 

 
Fig. 8. Pulse force time domain signals 

 
Fig. 9. Acceleration time domain signals 

The acceleration signals and force signals are processed for wave filtration and noise reduction 
before making a modal analysis on the tested data. A structural model corresponding with the test 
sample is established in the modal analysis software, and nodes corresponding with the testing 
points are given in the model. The frequency response functions of each testing point are 
calculated first according to the dynamometry. This test is carried out using single-point excitation 
and multi-point collection. Therefore, taking one testing point as an example, the frequency 
response function can be calculated. Different order vibrations of the ballastless track system can 
be calculated through the modal analysis software after the frequency response function is 
calculated. 
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4.2. Results analysis 

For the acceleration time domain signals of testing points, grounding technique is applied to 
reduce the noise in the testing process and moving average filtering algorithm is applied to 
eliminate the noise in the signal processing stage. The simulated model consistent with the testing 
model of ballastless track is established and the data collection points are placed at the 
corresponding nodes. The modal test is performed with the method of single point excitation and 
multiple-point collection. Frequency response function of each collection point is simulated with 
the approach of force-testing (Fig. 10) and the vibration modes of ballastless track system are 
obtained by the modal analysis software, the second order vibration mode of track slab is taken as 
example and shown in Fig. 11. 

 
Fig. 10. Frequency response function 

 
Fig. 11. The second order vibration mode of track slab 

The Gaussian curvature mode shapes of the track slab are calculated through the central 
difference method with the vibration mode displacement. The second-order Gaussian curvature 
mode shape of test model is taken as example and shown in Fig. 12. The Gaussian curvature mode 
is simulated based on the actual test data in Fig. 12(a) and it is simulated based on the increased 
data by the linear interpolation between two adjacent collocation points in Fig. 12(b). 

 
Fig. 12. The second-order Gaussian curvature mode shapes of test model: a) Simulated based  

on the actual test data, b) Simulated based on the increased data by the linear interpolation  
between two adjacent collocation points 

A peak appeared in the second-order Gaussian curvature of the track slab ( ݔ -direction 
coordinate: 0.2-0.4 m, ݕ-direction coordinate: 0.3-0.6 m), so damage can be found in this area 
(Fig. 12(a)). This measured result is almost the same as that of the practical test, indicating high 
detection accuracy. While a peak appeared in the second-order Gaussian curvature of the track 
slab (ݔ-direction coordinate: 0.3 m, ݕ-direction coordinate: 0.3-0.4 m), the measured result is 
different from that of the practical test and it has some errors for the linear interpolation between 
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two adjacent collocation points. The third- and fourth- order vibration modes of the track slab are 
also simulated based on the actual test data, as shown in Fig. 13. 

According to the tested results of the third- and fourth -order Gaussian curvature, an obvious 
peak appears under the two order modes (ݔ -direction coordinate: 0.2-0.6 m and ݕ-direction 
coordinate: 0.2-0.6 m), indicating that curvature discontinuity occurs in this area. The change of 
the curvature is caused by a change of rigidity, and therefore damage appeared here. Accordingly, 
this is found to be correct as compared with the ones actually preset. 

 
Fig. 13. Test results for the Gaussian curvature mode of the ballastless track: a) Third-order Gaussian 

curvature mode shape, b) Fourth-order Gaussian curvature mode shape 
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5. Conclusions 

By taking the detection of the interlayer damage of CRTS II plate-type ballastless track in 
China as an example, this paper presents a method for detecting damage of an ballastless track 
system based on Gaussian curvature mode shapes. The proposed method has been proved feasible 
according to the relevant numerical simulation and laboratory test, and the main conclusions 
constitute the following:  

1) If no damage is found in the ballastless track, the Gaussian curvature mode shapes will be 
smooth, continuous, and symmetrical to each other under different order modes of the track slabs. 
In addition, no obvious peaks will be found. Thus, if no curvature discontinuity is found, no 
damage will appear in the ballastless track. 

2) Taking the detection of the interlayer damage of CRTS II plate-type ballastless tracks as an 
example, the vertical bending vibration modes (e.g. the second-, third-, fourth-, ninth- and tenth-
order), and according to the calculation for different order Gaussian curvature modes of damaged 
track slabs, obvious peaks will appear at locations with damage. Therefore, the feasibility of 
detecting internal damage of ballastless tracks through Gaussian curvature modes has been proved 
theoretically.  

3) Second-, third-, and Fourth-order Gaussian curvature modes are calculated according to the 
Gaussian curvature theory through the modal test for the scale model of ballastless track with 
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damage. Discontinuity points are found in all order Gaussian curvature modes, and the locations 
of which are almost the same as those with preset damage.  

4) The damage detection method based on a Gaussian curvature mode, can be adopted to detect 
and roughly locate internal damage of ballastless tracks. 
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